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An Overview of Scienti�c Computing�Lloyd FosdickElizabeth JessupSeptember 28, 19951 IntroductionThe computer has become at once the microscope and the telescope of sci-ence. It enables us to model molecules in exquisite detail to learn the secretsof chemical reactions, to look into the future to forecast the weather, and tolook back to a distant time at a young universe. It has become a criticallyimportant �lter for those tools of science like high-energy accelerators, tele-scopes, and CAT scanners that generate large volumes of data which must bereduced, transformed, and arranged into a picture we can understand. Andit has become the key instrument for the design of new products of our tech-nology: gas turbines, aircraft and space structures, high-energy accelerators,and computers themselves.The story of modern scienti�c computing begins with the opening of thecomputer era in the 1940s during World War II. The demands of war providedthe motivation and money for the �rst developments in computer technology.The Automatic Sequence Calculator built by H. H. Aiken at Harvard, therelay computers by George Stibitz at Bell Telephone Laboratories, the Eniac�This work has been supported by the National Science Foundation under an Ed-ucational Infrastructure grant, CDA-9017953. It has been produced by the HPSCGroup, Department of Computer Science, University of Colorado, Boulder, CO 80309.Please direct comments or queries to Elizabeth Jessup at this address or e-mailjessup@cs.colorado.edu.Copyright c
1995 by the HPSC Group of the University of Colorado1



2 Overviewby John Mauchly and J. Presper Eckert at the Moore School of the Universityof Pennsylvania, the Edvac growing from the Eniac e�ort and inspired byideas of John von Neumann were products of this time. They were usedalmost exclusively for numerical computations, including the production ofmathematical tables, the solution of equations for the motion of projectiles,�ring and bombing tables, modeling nuclear �ssion, and so forth. But it wasnot all numerical computing, the deciphering of codes by Alan Turing on theColossus computers at Bletchley Park in England is an important exampleof non-numerical computing activities in this period. The machines of thisearly period operated at speeds ranging from about one arithmetic operationper second to about one hundred operations per second.Immediate problems of war did not provide the only motivation for com-puter development in this early period. Goldstine, von Neumann, and othersrecognized the importance of computers for the study of very fundamentalproblems in mathematics and science. They pointed to the importance ofcomputers for studying nonlinear phenomena, for providing \heuristic hints"to break a deadlock in the advance of 
uid dynamics, and for attackingthe problem of meteorological forecasting. And computers themselves moti-vated new kinds of investigations, including Turing's work on fundamentalquestions in logic and the solvability of problems, and von Neumann's onself-reproducing automata. The possibility of solving systems of equationsfar larger than had ever been done before raised new questions about thenumerical accuracy of solutions which were investigated by Turing, Golds-tine, von Neumann, Wilkinson and others. While great advances have beenmade, these questions, these problems remain. This is not a failure of thepromise of the computer but a testament to the fundamental nature of thesequestions.In the following sections we take a broad look at scienti�c computingtoday. The aim is to capture your interest, to stimulate you to read further,to investigate, and to bring your own talents and energy to this �eld.2 Large-scale scienti�c problemsIn 1987, William Graham, who was then the director of the O�ce of Scienceand Technology Policy, presented a �ve-year strategy for federally supportedresearch and development on high-performance computing. Subsequently,CUBoulder : HPSC Course Notes



Overview 3as a part of this strategy, a detailed plan for a Federal High PerformanceComputing Program (HPCP) was developed.1 It provided a list of \grandchallenge" problems: fundamental problems in science and engineering withpotentially broad economic, political, or scienti�c impact, which could beadvanced by applying high-performance computing resources. The grandchallenge problems are now often cited as prototypes of the kinds of problemsthat demand the power of a supercomputer.Here is a slightly shortened list of the grand challenge problems as fromthe 1989 report on the HPCP by the O�ce of Science and Technology Policy.Prediction of weather, climate, and global change The aim is tounderstand the coupled atmosphere-ocean biosphere system in enough detailto be able to make long-range predictions about its behavior. Applications in-clude understanding carbon dioxide dynamics in the atmosphere, ozone deple-tion, and climatological perturbations due to man-made releases of chemicalsor energy into one of the component systems.Challenges in materials science High-performance computing providesinvaluable assistance in improving our understanding of the atomic nature ofmaterials. Many of these have an enormous impact on our national economy.Examples include semiconductors, such as silicon and gallium arsenide, andhigh-temperature superconductors, such as copper oxide ceramics.Semiconductor design As intrinsically faster materials, such as galliumarsenide, are used for electronic switches, a fundamental understanding is re-quired of how they operate and how to change their characteristics. Currently,it is possible to simulate electronic properties for simple regular systems, how-ever, materials with defects and mixed atomic constituents are beyond presentcomputing capabilities.Superconductivity The discovery of high temperature superconductivityin 1986 has provided the potential for spectacular energy-e�cient power trans-mission technologies, ultra sensitive instrumentation, and new devices. Mas-sive computational power is required for a deeper understanding of high tem-1Approximately $800M was proposed for this program in 1993.CUBoulder : HPSC Course Notes



4 Overviewperature superconductivity, especially of how to form, stabilize, and use thematerials that support it.Structural biology The aim of this work is to understand the mecha-nism of enzymatic catalysis, the recognition of nucleic acids by proteins, an-tibody/antigen binding, and other phenomena central to cell biology. Compu-tationally intensive molecular dynamics simulations, and three-dimensionalvisualization of the molecular motions are essential to this work.Design of drugs Predictions of the folded conformation of proteins and ofRNA molecules by computer simulation is a useful, and sometimes primary,tool for drug design.Human genome Comparison of normal and pathological molecular se-quences is our most powerful method for understanding genomes and themolecular basis for disease. The combinatorial complexity posed by the ex-ceptionally long sequence in the human genome puts such comparisons beyondthe power of current computers.Quantum chromodynamics (QCD) In high energy theoretical physics,computer simulations of QCD yield computations of the properties of stronglyinteracting elementary particles. This has led to the prediction of a new phaseof matter, and computation of properties in the cores of the largest stars.Computer simulations of grand uni�ed \theories of everything" are beyondcurrent computer capabilities.Astronomy The volumes of data generated by radio telescopes currentlyoverwhelm the available computational resources. Greater computational powerwill signi�cantly enhance their usefulness.Transportation Substantial contributions can be made to vehicle perfor-mance through improved computer simulations. Examples include modelingof 
uid dynamical behavior for three-dimensional 
uid 
ow about completeaircraft geometries, 
ow inside turbines, and 
ow about ship hulls.CUBoulder : HPSC Course Notes



Overview 5Turbulence Turbulence in 
uid 
ows a�ects the stability and control, ther-mal characteristics, and fuel needs of virtually all aerospace vehicles. Under-standing the fundamental physics of turbulence is requisite to reliably model-ing 
ow turbulence for the performance analysis of vehicle con�gurations.E�ciency of combustion systems To attain signi�cant improvementsin combustion e�ciencies requires understanding the interplay between the
ows of the various substances involved and the quantum chemistry thatcauses those substances to react. In some complicated cases the quantumchemistry required to understand the reactions is beyond the reach of currentsupercomputers.Enhanced oil and gas recovery This challenge has two parts: to locateas much of the estimated 300 billion barrels of oil reserves in the US as possi-ble and to devise economic ways of extracting as much of this oil as possible.Thus both improved seismic analysis techniques and improved understandingof 
uid 
ow through geological structures are required.Computational ocean sciences The objective is to develop a global oceanprediction model incorporating temperature, chemical composition, circula-tion and coupling to the atmosphere and other oceanographic features. Thiswill couple to models of the atmosphere in the e�ort on global weather as wellas having speci�c implications for physical oceanography.Speech Speech research is aimed at providing communication with a com-puter based on spoken language. Automatic speech understanding by com-puter is a large modeling and search problem in which billions of computa-tions are required to evaluate the many possibilities of what a person mighthave said.Vision The challenge is to develop human-level visual capabilities for com-puters and robots. Machine vision requires image signal processing, textureand color modeling, geometric processing and reasoning, as well as objectmodeling. A competent vision system will likely involve the integration of allof these processes. CUBoulder : HPSC Course Notes



6 OverviewThus there is no shortage of problems for today's supercomputers. At afuture time, when we have peta
op computers (1015 
oating-point operationsper second), we can be sure there will be no shortage of problems for themeither. The solution of old problems raises new problems. That is the natureof science, its challenge and its mystery.Most of the grand challenge problems involve modeling a physical systemin a computer and using this model to create a simulation of its behavior.Others involve reduction and analysis of experimental data on a very largescale. Even the modeling problems involve data analysis and reduction ona large scale because running the simulation generates large �les of data foranalysis. Frequently, data analysis requires representation of the data in theform of pictures, graphs, and movies | a fascinating and rapidly growingactivity known as scienti�c visualization. To get a closer look at a modelingproblem we focus brie
y on an important problem from the atmosphericsciences.2.1.1 Computer simulation of the greenhouse e�ectGlobal warming has been the subject of growing international attention. Thisproblem is being studied by computer simulations that help us understandhow changing concentrations of carbon dioxide in the atmosphere contributeto global warming through the greenhouse e�ect. A study of this type re-quires modeling the climate over a period of time. Studies by Washingtonand Bettge at the National Center for Atmospheric Research provide a typi-cal example. A climatemodel known as the general circulation model (GCM)is used to study the warming which would be caused by doubling the concen-tration of carbon dioxide over a period of 20 years. The computations theydescribe were done on a Cray-1, now a relatively old computer, with a peakspeed of about 200 M
ops.2 The scientists report:\The model running time was 110 seconds per simulated day.For two 19-year simulations, over 400 computational hours wererequired to complete the experiment."The e�ects the GCM attempts to take into account are illustrated in �gure 1.2M
op is an abbreviation for a \mega
op," 106 
oating-point operations per second.CUBoulder : HPSC Course Notes



Overview 7
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Figure 1: Schematic of the physical processes included in the GCM. This �gure isadapted from the article by Washington and Bettge with their permission.The atmosphere is a 
uid and so the partial di�erential equations thatgovern the behavior of 
uids are the mathematical basis of the GCM. Com-puter solution of these equations is done by a \�nite di�erence" algorithm inwhich derivatives with respect to spatial coordinates and time are approxi-mated by di�erence formulas in space and time. Thus a three-dimensionalmesh in space is created, as illustrated in �gure 2. Solution of the prob-lem involves starting with some set of initial conditions, for which valuesare assigned to the variables at each mesh point, and stepping forward intime updating these variables at the end of each time step. There are someeight or nine variables at each mesh point that must be updated, includingtemperature, wind velocity, CO2 concentration, and so forth.The mesh is the key for understanding why speed is so important. Themesh used in the computations was three dimensional with about 2000 pointsCUBoulder : HPSC Course Notes



8 Overview
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Figure 2: Illustration of a three-dimensional mesh.to cover the surface of the earth and nine layers spaced at di�erent altitudes:altogether about 18,000 mesh points. A moment's thought will make it ap-parent this is an extremely coarse mesh. The surface of the earth is 2:1�108sq. mi.; i.e., 100; 000 sq. mi. per mesh point. Colorado with a land area of103,595 sq. mi. rates one surface mesh point! Quite clearly we would likegreater accuracy, and this means more mesh points. But if we double thedensity of points in each of the three directions we increase the number ofmesh points by a factor of 8, essentially an order of magnitude increase incomputational demand. And so this computation which took 400 hours foraround 18,000 mesh points, would take over 3000 hours, and we would stillhave only 3 or 4 surface points for Colorado.3 The scienti�c computing environmentThe scienti�c computing environment consists of high-performance worksta-tions, supercomputers, networks, a wide range of software, and technicalliterature. In this section you will �nd some pointers to this material.High-performance workstations have peak speeds of 10 to over 100 M
ops;CUBoulder : HPSC Course Notes



Overview 9Machine Manufacturer LINPACK(M
ops)SUN SPARC10/40 SUN Microsystems 10.0IBM RS/6000-350 IBM 19.0IBM Power2-990 IBM 140.0DEC 5000/240 Digital Equipment 5.3HP 9000/735 Hewlett-Packard 41.0SGI Indigo R4000 Silicon Graphics 12.0SGI Crimson Silicon Graphics 16.0Table 1: A short list of high-performance workstations, and their performance onthe LINPACK benchmark.the supercomputers have peak speeds of 500 M
ops to over 100 G
ops.3High-resolution color monitors with over 106 pixels provide excellent toolsfor pictorially representing data from scienti�c simulations. In table 1 thereis a short list of high-performance workstations with the name of the machine,followed by the name of the manufacturer, followed by the performance inM
ops on the LINPACK Benchmark. [Dongarra 94]. This benchmark isbased on the speed of solving a system of 100 simultaneous linear equationsusing software from LINPACK [Dongarra et al 79]. The peak performance ofworkstations in this table could be as much as �ve to ten times the LINPACKperformance number.Table 2 provides a short list of supercomputers, with the name of themachine series, the name of the manufacturer, and the Theoretical Peak Per-formance [Dongarra 94].4As with the workstations, the machines in this list come in various modelsand con�gurations; the performance data is for the largest system listed inDongarra's report. Note here, in contrast with the previous table, a theo-retical peak performance �gure is given; in an actual computation the per-formance could fall to one-�fth or one-tenth the performance �gure given3G
op is an abbreviation for a giga
op, 109 
oating-point operations per second (
ops).4Dongarra's de�nition of these values: \The theoretical peak performance is determinedby counting the number of 
oating-point additions and multiplications (in full precision)which can be performed in a period of time, usually the cycle time of the machine."CUBoulder : HPSC Course Notes



10 OverviewMachine Manufacturer Number of Theor PeakProcessors (G
ops)CM 5 Thinking Machines 16,384 2,000Cray Y-MP Cray Research 16 15Cray T3D Cray Research 2,048 307IBM ES/9000 IBM 6 2.7IBM 9076 SP2 IBM 128 32Intel iPSC/860 Intel 128 7.7Intel Paragon Intel 4,000 300KSR2 Kendall Square Research 5,000 400MP-2 MasPar 16,384 2.4NEC SX-A Nippon Electric Company 4 22Table 2: A short list of supercomputers and their theoretical peak performances.here. Roughly speaking, the speed advantage of a supercomputer over ahigh-performance workstation is a factor of 1000. The price di�erence isroughly the same or slightly higher.The National Science Foundation (NSF) supports �ve supercomputer cen-ters available to scientists and students for research and education:� Cornell Theory Center, Cornell University, Ithaca, NY.� National Center for Atmospheric Research (NCAR), Boulder, CO.� National Center for Supercomputer Applications (NCSA), University of Illi-nois, Champaign, IL.� Pittsburgh Supercomputing Center, Carnegie Mellon University and theUniversity of Pittsburgh, Pittsburgh, PA.� San Diego Supercomputer Center, University of California at San Diego,San Diego, CA.The facilities at these centers can be accessed via worldwide networks. Cen-ters usually have facilities to accommodate on-site visitors, and they runworkshops on a wide range of topics in scienti�c computing. In addition toCUBoulder : HPSC Course Notes



Overview 11these NSF centers there are other supercomputer centers at universities andnational laboratories which provide network access to their facilities. Theseinclude:� Arctic Region Supercomputing Center, University of Alaska, Fairbanks, AK.� Army High Performance Computing Research Center, University of Min-nesota, Minneapolis, MN.� Advanced Computing Research Facility, Argonne National Laboratory, Ar-gonne, IL.� Center for Computational Science, Oak Ridge National Laboratory, OakRidge, TN.� Lawrence Livermore National Laboratories, Livermore, CA.� Los Alamos National Laboratory, Los Alamos, NM.� Massively Parallel Computing Research Center, Sandia National Laborato-ries, Albuquerque, NM.� Maui High Performance Computing Center, Kihei, Maui, HI.� Research Institute for Advanced Computer Science, NASA Ames ResearchCenter, Mo�ett Field, CA.All of the supercomputers listed in table 2, except the NEC SX-A, are avail-able at one of these centers.Communication networks are a vital part of the supercomputing environ-ment. The Internet is the worldwide system linking many smaller networksrunning the TCP/IP protocol. In May 1994 the Internet consisted of 31,000networks, connecting over two million computers, and was growing at thephenomenal rate of one new network every 10 minutes [Leiner 94].The National Science Foundation Network (NSFNET) is one of the mostimportant components of the Internet, linking the the supercomputing cen-ters in a network known as the backbone, which can be reached from othernetworks linking universities and other research organizations. Among theseother networks are WESTNET in the Rocky Mountain states; NEARNETin the New England states; SURANET in the southern states; and MIDNETin the midwestern states. CUBoulder : HPSC Course Notes



12 OverviewThe bandwidth of the NSFNET backbone has been 44.7 megabits/sec buta new backbone is under construction with a bandwidth of 155 megabits/sec.Communication networks with bandwidths in the gigabit/sec range are emerg-ing. NSF and the Defense Advanced Research Projects Agency (DARPA)are supporting �ve testbed research projects on communication networks op-erating at gigabit/sec rates. Included in these research projects is a studyof distributed computation on a very large scale: ocean and atmospheric cli-mate models will simultaneously run on separate computers exchanging dataacross a network which includes the Los Alamos National Laboratory andthe San Diego Supercomputer Center.Software to support scienti�c computing is available on the Internet fromthe supercomputing centers and other sources. There is a particularly valu-able resource for software known as Netlib. It is a library of numerical soft-ware available by e-mail or ftp from one of two centers in the U.S.A. A copyof machine performance information as shown in the two tables above, andshort descriptions of these machines are also available from Netlib. Informa-tion about Netlib can be obtained via e-mail tonetlib@research.att.com or netlib@ornl.govThe body of your mail message should contain just the linehelpAlso, you can access Netlib directly with anonymous ftp. For Europe thereis a duplicate collection of Netlib in Oslo, Norway with Internet addressnetlib@nac.no; and for the Paci�c region there is a collection at the Uni-versity of Wollongong, NSW, Australia with the following Internet addressnetlib@draci.cs.uow.edu.au.There is a relatively new network tool called Mosaic now widely used forbrowsing and retrieving information on the Internet. With this tool the usercan read documents located at another Internet site. These are hypertextdocuments so the user can navigate through them by clicking on highlightedkeywords. High quality graphics images and animations can be includedin these documents. Menus facilitate other operations including retrievingentire documents and programs. Mosaic was developed at NCSA and isavailable from them at no charge by anonymous ftp at ftp.ncsa.uiuc.edu.A commercial version known as Netscape was recently produced.CUBoulder : HPSC Course Notes



Overview 13Another important resource is represented by technical publications: jour-nals and conference proceedings. The following lists tends to focus on com-puter related publications, especially those concerning parallel computingand supercomputing, rather than applications. However an increasing num-ber of articles concerning the application of computers to problems in physics,chemistry, and biology are �nding there way into these publications. Someof the journals are:� ACM Transactions on Mathematical Software� Computers in Physics� Computer Physics Communications� Computer Methods in Applied Mechanics and Engineering� IEEE Transactions on Parallel and Distributed Systems� International Journal of Parallel Programming� International Journal of Supercomputer Applications� Journal of Computational Physics� The Journal of Supercomputing� Methods in Computational Physics� Parallel Computing� SIAM Journal of Scienti�c Computing� Supercomputing Review.Some of the regularly held conferences that issue proceedings are:� Annual Symposium on Computer Architecture (IEEE Computer Society)� Distributed Memory Computing Conference (IEEE Computer Society)� Frontiers of Massively Parallel Computation (IEEE Computer Society)� International Conference on Supercomputing (ACM)CUBoulder : HPSC Course Notes



14 OverviewWorkstation Clock SPECmark LINPACK Theor PeakMHz M
ops M
opsSUN SPARC10/40 40.0 60.2 10.0 40IBM RS6000-350 41.6 74.2 19.0 84IBM Power2-990 71.5 260.4 140.0 286DEC 5000/240 40.0 35.8 5.3 40HP 9000/735 99.0 167.9 41.0 200SGI Indigo R4000 50.0 60.3 12.0 |SGI Crimson 50.0 63.4 16.0 32Table 3: Some typical workstations and performance data. The SPECmark valueis the ratio of the average speed of 
oating-point operations for the given machineto the average speed of 
oating-point operations for a VAX 11/780 on a set ofbenchmark programs. The LINPACK value is the speed in solving a system of100 linear equations in double precision arithmetic. Theor Peak stands for thetheoretical peak performance.� International Conference on Parallel Processing (ACM)� International Parallel Processing Symposium (IEEE Computer Society)� SIAM Conference on Parallel Processing for Scienti�c Computing (SIAM)� Supercomputing (IEEE Computer Society)� Supercomputing in Europe� Visualization (IEEE Computer Society).4 WorkstationsThe workstation is the desktop \supercomputer," small enough to �t on adesk but with peak speeds in the range of about 10 to 100 M
ops. Table 3lists some popular workstations with performance �gures. The actual speedof operation and the peak speed can di�er substantially, as is illustrated bythe data in this table: the speed on the LINPACK benchmark is substan-tially below the peak speed of these systems. Careful tuning of a programCUBoulder : HPSC Course Notes



Overview 15is necessary to get close to peak speed, and for some computations this issimply an unreachable goal. In some cases, best performance requires pro-gramming parts of the computation in assembly language: the compilers forhigh-level programming languages cannot always produce the best results.Normally, a workstation is connected to a network giving it access toadditional computing resources which include other workstations, storagedevices, printers, and still more powerful computing systems. Thus it servesthe scientist as a primary computing resource and as a link to a wide array ofother resources. The price of a workstation ranges from about $15K to about$100K. The high-end machines are faster and include high quality graphics,multiple processors, and large memories.The architecture of scienti�c workstations has undergone a period of rapiddevelopment since the early 1980s when they �rst appeared. From that timeto the present, clock rates have increased to about 200 MHz; pipelining of in-structions and arithmetic, and parallel functional units have been introduced;and a variety of caching mechanisms have been developed to overcome mem-ory access delays. In a ten year period the speed of these machines hasincreased by about two orders of magnitude. In the following paragraphs wediscuss some of the architectural features now found in popular workstations.4.1 RISC architectureMany workstations use a RISC (Reduced Instruction Set Computer) archi-tecture [Patterson 85]. It is characterized by a relatively small set of simpleinstructions, pipelined instruction execution, and cache memory. The prin-cipal goal of this architecture is an execution speed of one instruction perclock cycle: with a 40 MHz clock an execution speed of 40 mips5 is the goal.In contrast, the acronym CISC is used for architectures with larger and morecomplex instruction sets: the DEC VAX 11/780 with about 256 instructionsis a CISC system; the DEC 5000 with 64 instructions is a typical RISCsystem.The move towards RISC systems was stimulated by recognition that bet-ter performance could be achieved with a simpler and smaller instruction set.Studies of programs executed on CISC machines showed that more complex5mips is an abbreviation for \million instructions per second," 106 instructions persecond. CUBoulder : HPSC Course Notes



16 Overview
Stream

Instruction
FI DI FO EX SRFigure 3: Pipelined execution of instructions. The steps are: FI, fetch instruction;DI, decode instruction; FO, fetch operand; EX execute instruction; SR store re-sult. Since this pipeline has �ve segments, it can be operating on �ve instructionssimultaneously. While the FI segment is fetching an instruction, the DI segmentis decoding the previous instruction, and so on down the pipe.instructions were not heavily used. This was attributed to the observationthat the more complex instructions were too specialized and not needed formany computations, also it was di�cult for compilers to recognize when theycould be used e�ectively. By reducing and simplifying the instruction set, in-struction decoding time was reduced, and space on the chip was saved. Thisprovided more space for cache and cache management. Particularly impor-tant was the fact that simple instructions, all taking about the same amountof time to execute, made it possible to execute instructions in a pipeline.Using a pipeline makes it possible to execute one instruction per clockcycle. The idea of pipelined instruction execution is easy to understand byanalogy to the automobile assembly line. In the automobile assembly linethe work to be done is divided into a series of steps each requiring the sameamount of time, say � seconds, so the rate of production of autos is one autoper � seconds. Similarly, in the instruction pipeline the work of executing aninstruction is divided into steps as illustrated in �gure 3. In this pipeline,which has �ve steps, we expect to gain a factor of �ve in speed over executionwithout pipelining.The speedup promised by a pipeline cannot always be attained. For ex-ample, branch instructions can cause a problem because the next instructionafter the branch is not known until the branch test is executed. Thus a branchinterrupts the smooth 
ow of instructions through the pipe. Since branchesoccur frequently in code they could seriously degrade performance. To dealwith this problem RISC systems use a delayed branch that delays fetchingthe next instruction after the branch by a �xed number of clock cycles. Thiscauses a bubble in the pipe that can be �lled by an instruction that wouldbe executed regardless of the direction the branch takes. Whether or not thebubble can be �lled depends on the program, and if it cannot, there will bea degradation of performance.CUBoulder : HPSC Course Notes



Overview 17RISC systems usually have a separate 
oating-point pipelined coproces-sor, and some RISC systems contain multiple functional units allowing over-lap of operations: the IBM RS6000 series and the Intel i860 are examples.Therefore, with these systems it is possible to achieve a performance evenhigher than one instruction per clock cycle, often referred to as superscalarperformance. For example, overlap of 
oating-point add and multiply in theIBM RS6000 system allows evaluation of a� b+ c in one clock period, givinga peak speed of 50 M
ops with a 25 MHz clock. Moreover, in one clockcycle this system is capable of executing four instructions simultaneously:a branch, a condition-register instruction, a �xed-point instruction, and a
oating-point instruction. Including the possibility of overlap of 
oating-point add and multiply, this system can execute �ve instructions per clockcycle. Operation Single Doubleadd 0:75 � 10�7 0:75 � 10�7subtract 0:75 � 10�7 0:75 � 10�7multiply 1:01 � 10�7 1:26 � 10�7divide 3:00 � 10�7 4:79 � 10�7Table 4: Time for arithmetic on DEC 5000/240, units are seconds.4.2 The DEC 5000 workstationOne system we use in the HPSC laboratory is a DEC 5000/240 series systemwith a 40 MHz clock for the CPU. The memory subsystem, I/O controller,etc. operate with a 25 MHz clock [DEC 91]. It uses a MIPS6 processorand 
oating-point coprocessor. Measurements of the time for elementaryarithmetic operations give the results shown in table 4. The system canhave from 8 to 480 Mbytes of DRAM memory7 with a bandwidth of 100Mbytes/sec. Our systems are con�gured with 24 or 32 Mbytes.6MIPS Computer Systems, Inc., Sunnyvale, CA.7In this section, the following abbreviations are used: Mbytes for megabytes (106 bytes),Gbytes for gigabytes (109 bytes), and nsec for nanoseconds (10�9 seconds).CUBoulder : HPSC Course Notes



18 OverviewOperation Single Doubleadd 2 2subtract 2 2multiply 4 5divide 12 19Table 5: Cycle time for arithmetic in MIPS R3010 coprocessorThe processor subsystem has a 4 Gbytes virtual address space, 2 Gbytesof which are available to user processes. It has a 64 Kbyte cache memoryfor data and another 64 Kbyte cache memory for instructions. One word (32bits) can be accessed from each cache in each processor cycle (25 nsec). Asingle memory read from a noncached address requires 690 nsec. Thus thetime for a reading an operand from memory is about 28 times longer thanreading it from cache.The DEC 5000, as for most scienti�c workstations, can be augmentedwith 2D and 3D graphics options. The DEC PXG 3D Accelerator moduleincludes an Intel i860 chip as a geometry engine and a scan converter chip tocompute pixel values. The resolution of the display is 1280-by-1024 pixels.Double bu�ering and 24 image planes are provided with this module. ThePXG system uses a 16 in. or 19 in. color Trinitron monitor. Peak speeds(for PXG Turbo+) are 436 � 103 vectors/sec and 106 � 103 polygons/sec: a\vector" is 10 pixels long; a \polygon" is a triangle, 100 pixels in area.4.2.1 The MIPS R3000 and R3010 processors.The CPU of the DEC 5000 is a MIPS R3000 processor and R3010 
oating-point coprocessor. The user address space is 2 Gbytes. The coprocessorconforms to the ANSI/IEEE Standard for 
oating-point arithmetic.The processor has 32 general purpose registers of 4 bytes each, and thecoprocessor has 16 registers for 
oating-point numbers of 8 bytes each. Arith-metic instructions are register-register; e.g., add contents of register r1 tocontents of register r2 and store result in register r3. Explicit move instruc-tions move data between memory (cache) and registers in the processor orcoprocessor, and between registers in the processor and coprocessor.CUBoulder : HPSC Course Notes



Overview 19Times for arithmetic in the coprocessor are shown in table 5. Multiply anddivide operations can be overlapped to some extent with other operations butnot with each other; e.g., it is possible to execute a double precision 
oating-point addition and multiplication together in 5 cycles. For more informationon these processors, see [Kane 88].5 SupercomputersThe word \supercomputer" came into use in the late 1960s when radicallynew and powerful computers began to emerge from university and commerciallaboratories. Since then it has symbolized the most powerful computers ofthe time.Table 2 provides some information on the speeds of current supercomput-ers. The performance data given in the table provide only a rough estimateof performance. Performance depends strongly on the characteristics of theproblem being solved, and hand tuning of the software can have a signi�cante�ect on performance. Because of the cost of supercomputers and the de-sire to solve increasingly large problems on them, the issue of squeezing themost out of these machines has received a lot of attention. New algorithms,tools, and techniques to improve their performance are constantly being de-veloped, and research in programming languages to simplify writing e�ectiveprograms is a continuing activity.The high speed of supercomputers is the result of two factors: very fastlogic elements and parallel architectures. Many people believe that the speedof logic elements is reaching the limit imposed by laws of physics and thatparallel architectures are the key to supercomputers of the future. A parallelarchitecture allows many parts of a computation to be done simultaneously.This feature is what really distinguishes these computers from earlier ma-chines of the computing era. It is also the reason why supercomputers posesuch an interesting challenge to the algorithm designer and why their perfor-mance depends so strongly on the problem being solved.5.1 Parallel architecturesThe common notion of a parallel computer or multiprocessor is a collectionof processors that are connected together in a manner that lets them workCUBoulder : HPSC Course Notes



20 Overviewtogether on a single problem, the idea is ten processors working together ona problem can get the job done ten times as fast as one of them workingalone, and ten-thousand of them can get the job done ten-thousand times asfast, and so on. Of course, it doesn't happen quite that way.Not all computational jobs can be divided up neatly into independentparcels in such a way as to keep all processors busy. Furthermore, one pro-cessor may need a result from another processor before it can proceed withits computation. Some jobs divide neatly while others do not; some requirelittle interprocessor data communication while others require a lot. The fol-lowing examples illustrate how hard it can be to keep the processor workloadsbalanced. In presenting these examples, we assume we are working with adistributed-memory multiprocessor. In this type of machine, a processor hasdirect access to its own memory only. Processors are required to send andreceive messages to share data.5.1.1 Evaluation of an integralIf the problem we have is to evaluate an integral, sayZ ba Z dc f(x; y) dx dy ;then an obvious way to proceed is to divide the domain of integration into nsmaller rectangles, ri, in such a way that the original problem is broken intosubproblems, thusZ ba Z dc f(x; y) dx dy = Z Zr1 f(x; y) dx dy + (1)Z Zr2 f(x; y) dx dy + (2): : :+ Z Zrn f(x; y) dx dy : (3)The computation represented by each term on the right can be done by adi�erent processor. After all of these computations have been done, the nresults must be brought together to form the sum. At this point, commu-nication is needed. Clearly we can reduce communication by reducing thenumber of rectangles covering the domain of integration, but then we reducethe parallelism in the computation.CUBoulder : HPSC Course Notes



Overview 21If we divide the region of integration into equal subareas it might seemthat we will keep all processors equally busy. Not necessarily so! The in-tegrand may change its value very rapidly in some regions compared withothers. To maintain accuracy we will need to use smaller integration steps insome regions than others. If we know this in advance, we can try to dividethe work more or less evenly. If we don't know it, we can use an adaptivescheme to adjust the integration step during the computation. In the lattercase, we could �nd that one processor is doing most of the work and a thou-sand others are idle. If we want to do some sharing of the work, we will needadditional communication to �nd out which processors can accept work andto tell them what to do.So in this relatively simple example we see in one circumstance, a rela-tively smooth integrand, the job divides up nicely into parcels and there islittle communication. But when the integrand is not smooth there may bedi�culty in dividing the work evenly, and there may be additional commu-nication costs.5.1.2 Molecular dynamicsImagine we have n molecules interacting with each other as in a 
uid. Theforces between them are such that at very short distances of separation themolecules repel each other strongly. At intermediate distances, they attracteach other. Beyond a certain distance, say several molecular diameters, theyhardly interact at all. We are interested in tracing the motion of the moleculesof the 
uid. In a problem like this n may be in the hundreds of thousandsor more.The computation we must do can be described informally as follows.Newton's laws tell us the di�erential equations we must solve, numericalanalysis gives us a choice of algorithms to use to solve these equations. Wechoose an algorithm and start its execution at time 0 with each molecule ata certain point in space, moving with a certain velocity. We compute theforce on each molecule from all of the others within a speci�ed distance, i.e.,its neighbors. We then compute new values for the position and velocity ofeach molecule at time t + �t and repeat the process to compute new valuesfor the intermolecular forces, position, and velocity at time t + 2�t, and soon. In this way, we generate the solution stepwise in time until the �nal timeof interest has been reached. CUBoulder : HPSC Course Notes



22 OverviewAn obvious idea for doing the computation in parallel is to assign eachprocessor to one or more molecules. The processor computes the new positionand velocity of its molecules at each step and communicates them to the otherprocessors. New positions must be computed for every molecule so the newforces between the neighboring molecules can be determined. Distributingthe new values for all n molecules between all of the processors involvesenormous amounts of communication. In message-passing multiprocessors,the time to communicate a 
oating-point number is much larger than the timeto perform a 
oating-point operation, and the algorithm we've described willnot be able to make e�cient use of the machine without careful balancing ofcomputation and communication.To reduce the communication, we could have each processor communicateonly with those processors holding molecules in the neighborhood of its ownmolecules. But determining what processors hold molecules in the neighbor-hood of a given molecule is itself a major problem. As the molecules move,the population of neighbors changes. To implement this new algorithm, eachprocessor will have to keep track of its neighbors somehow or will have toinstitute a search at each step. Maintaining a list of neighbors would involveredundant, non-parallel computation, and a search would require extra in-terprocessor communication. Minimizing this overhead presents a di�cultproblem.Yet another approach would be to assign processors to speci�c regions ofspace rather than to speci�c sets of molecules. However, it's not immediatelyobvious that this organization of the problem solves the di�culties encoun-tered with the earlier ones. As each particle moves, we must keep track of theregion and, hence, processor to which it is assigned. Again, we'll either needmore computation or communication for bookkeeping purposes. Whateverthe approach, organizing an e�cient parallel computation for this problemis going to take some careful thought. It is a computation which can causedi�cult load-balancing and communication.5.1.3 Types of parallel computersWe can identify two distinct types of parallel computers according to whetherthey obey instructions asynchronously or synchronously. We can furtherclassify them according how they communicate information: by sharing acommon memory space or by sending messages to each other. And we canCUBoulder : HPSC Course Notes



Overview 23classify them according to the physical nature of the interconnection network.Parallel computers in which individual processors execute instructionsasynchronously and send messages to each other are probably the easiest tounderstand at a logical level. These computers are labeled MIMD, whichstands for multiple instruction, multiple data streams. The Intel computersiPSC/2, iPSC/860, and Paragon are of this type. Each processor executesits own private set of instructions. The Intel computers are also distributed-memory computers. Messages are passed between the processors by send andreceive commands. There are mechanisms for causing the processor to entera wait state in which it waits until receiving data from another processor.Programming these computers at a low level, that is, specifying the individ-ual send and receive commands, is di�cult and various languages have beendeveloped attempting to simplify it: Linda, developed at Yale University byGelernter [Carriero & Gelernter 89], and DINO, developed at the Universityof Colorado by Schnabel, Rosing, and Weaver [Rosing et al 91], are two ex-amples. A group known as the High Performance Fortran Forum (HPFF)has been developing a version of Fortran, High Performance Fortran (HPF),which aims to support parallel programming (see [Koelbel et al 94]).Parallel computers in which individual processors execute instructionsasynchronously but share a common address space include machines like theCray Y-MP and C-90, the IBM SP1 and SP2, the Silicon Graphics Challenge,and the Convex Exemplar. They are often referred to as shared-memorycomputers. These are also MIMD computers. They tend to be easier toprogram than the MIMD message passing computers referred to above, butthey are not without their own set of di�culties. Clearly, if two processorsare able to read and write into the same memory location some kind ofsynchronization is needed to insure the reads and writes are done in thecorrect sequence. Managing this synchronization adds to the complexity ofprogramming these machines.The other class of parallel computers in which processors operate syn-chronously is typi�ed by the Maspar MP1 and MP2. In these computersthere is a single sequence of instructions obeyed by all of the processors, eachacting on its own data. They are labeled SIMD, standing for single instruc-tion, multiple data streams. The �rst real parallel computer, the Illiac IV,�nished in about 1970,8 was in this class. A trivial example, matrix addition8Now in the Computer Museum in Boston. CUBoulder : HPSC Course Notes



24 OverviewC = A + B, illustrates the nature of an SIMD computation. We store thematrices so that each element is on a separate processor. If we have n2 pro-cessors connected to form a square mesh, we could map elements Aij and Bijto processor pij located in row i and column j of the mesh for n � n matri-ces A and B. With this distribution, a single add instruction performed inunison on all processors produces the sum. The result is left distributed oneelement per processor; in particular, processor pij holds element Cij . Usingthis parallel algorithm, matrices of order 100 require only the time for oneaddition, not 10,000 additions.SIMD machines do not share memory, rather they have a distributedmemory, one memorymodule for each processor, and communication of datais by message passing. Like computation, message passing is generally donein parallel. For example, suppose we wish to compute the matrix productC = AB on the square mesh with Aij and Bij initially in processor pij . Aspart of this computation, all processors in column j of the mesh must accessall elements in column j of matrix B. Every processor in the square meshhas four neighbors (north, east, west, and south). One way to make sure allprocessors receive the proper elements of the matrix B is to have each pro-cessor send its element to its north neighbor. Each processor then receives anelement from its south neighbor, performs the proper multiplication with itselement of A, then passes the received element of B on to its north neighbor.During this data exchange, the processor at the top or northernmost positionin the column passes the elements of B to the processor at the bottom orsouthernmost position in the column. In this way, the elements of column jof B can cycle through column j of the processor mesh, and all n columnsof processors can cycle their elements in parallel.This partial matrixmultiplication algorithm description demonstrates oneway in which the processors of a SIMD multiprocessor can cycle data in lockstep. It is also possible to broadcast data from one processor to all othersor to exchange data by other special algorithms which take advantage of theway processors are physically interconnected in a particular machine.In addition to the square mesh mentioned above, interconnection pat-terns include buses, hypercube structures, two-dimensional square meshes,switches of various kinds, rings, and combinations of these mechanisms. Bussystems, where processors are attached to one central piece of hardware orbus for message passing, are limited to about thirty processors at most. Theothers can accommodate much larger numbers of processors.CUBoulder : HPSC Course Notes



Overview 25As we approach the physical limits of how fast processors can operate,machine design has begun to concentrate on increasing the number of pro-cessors in a multiprocessor. Two con
icting factors limit this number. First,the performance of a message-passing computer is determined in part bythe distance a message must travel from a given processor to any otherprocessor in the machine. This suggests that, for e�cient message pass-ing, a multiprocessor should have each of its processors connected to everyother processor in the machine. In such a machine, a message would alwaystravel from the sending processor directly to the receiving processor with-out being transferred through intermediate processors. As we added moreprocessors, however, this completely-connected machine would encounter thesecond limiting factor|the maximum number of processors possible is lim-ited by the number of interprocessor connections (physical wires) required.A completely-connected machine with p processors requires p�1 connectionsper processor or a total of p(p � 1)=2 connecting wires.Other processor interconnection patterns are more amenable to increasedprocessor number. In a ring interconnection, for instance, every processoris connected to only two others. But while the number of ring-connectedprocessors can be almost arbitrarily large, processors diametrically oppositeeach other in an p-processor ring would have to pass messages through aboutp=2 processors to communicate. Some multiprocessors have used an inter-connection scheme known as a hypercube: with p processors each has log2 pinterconnection wires and a message need pass through no more than log2 p�1intermediate processors between its source and destination. This scheme hasthe advantage of a relatively short path length, measured in terms on thenumber of processor-processor connections that a message must traverse toreach its destination. However, it has the disadvantage that the number ofwires connected to each processer increases with p. Some multiprocessorsconnect processors in a two-dimensional mesh: with p processors, assumingp = m2, the mesh has m rows and m columns. In this scheme the numberof wires connected to a processor is 4, assuming the edges at the top andbottom and left and right are joined, regardless of the value of p. Thus thenumber of wires connected to a processor does not grow with p as it doeswith a hypercube. On the other hand the path length grows as m = pp,thus messages in the mesh have longer paths than in a hypercube. However,the delay suggested by a longer path can be made almost insigni�cant by atechnique called wormhole routing. In this technique a short header messageCUBoulder : HPSC Course Notes



26 Overviewis sent �rst and it sets a switch in each processor along the path, enablingthe body of the message to pass through without delay.The notion of scalability is important in characterizing parallel comput-ers. As we pointed out earlier we would like the speed of a computer toincrease in proportion to the number of processors; that is, if we double thenumber of processors then we double the speed of the computer. In practicethis isn't exactly true for a number of reasons, some of which have been de-scribed above. But if the computer is designed in such a way that its speeddoes increase, at least approximately, in proportion to the number of proces-sors, and its complexity in terms of the number of interconnecting wires alsoincreases in proportion to the number of processors, we say the computer isscalable. Our preceding discussion suggests that parallel computers in whichthe processors are organized in two-dimensional square meshes are scalable.5.2 A virtual parallel computerOver the years systems which allow the interconnection of a set of work-stations in such a way as to enable them to act as a distributed memorymultiprocessor have been developed. The most successful of these is a sys-tem developed by Dongarra and his coworkers, called PVM (Parallel VirtualMachine). In addition to the fact that this system enables anyone with work-stations networked together, on an Ethernet say, to have a multiprocessor,it also enables them to make a single workstation look like a multiprocessor,insofar as programming is concerned.PVM is not restricted to workstations, versions have been built for theIntel iPSC/860 and Paragon, Thinking Machine Corporation's CM-5, Craycomputers, and Convex computers. Thus PVM can serve as a common lan-guage for a number of parallel computers and in this way improve the porta-bility of parallel programs. Furthermore, it can serve as as a platform for aheterogeneous multiprocessor consisting of, say, a Paragon, a CM-5, and agroup of workstations.The PVM software and documentation can be obtained by anonymousftp at netlib.att.com, and the PVM manual is now available as a book[Geist et al 95].From the programmers point of view, PVM consists of a library of proce-dures for C programs or Fortran programs to support interprocessor commu-nication by message passing. Experience with PVM and a number of relatedCUBoulder : HPSC Course Notes



Overview 27works has led to an uno�cial standard for message passing known as MPI(Message-Passing Interface), created by the Message Passing Interface Forum[Gropp et al 94]. It speci�es the syntax and semantics for message-passingprocedures callable from C or Fortran programs.6 Further readingThis has been a very brief treatment of the important and rapidly developing�eld of scienti�c computing. The intent was, as we said earlier, to get youinterested to study it further. Here are a few suggestions for further read-ing. Books by Hockney and Jesshope [Hockney & Jesshope 88], Almasi andGottlieb [Almasi & Gottlieb 89], and Leighton [Leighton 92] discuss parallelcomputers, their architectures, and programming. For the broad history ofcomputing see books by Williams [Williams 85] and Augarten [Augarten 84].For the history of scienti�c computing see the book by Nash [Nash 90] Thework on the greenhouse e�ect by Washington and Bettge is described in[Washington & Bettge 90]. The federal high-performance computing pro-gram is described in [HPCC 89]. A description of High Performance Fortranis in [Koelbel et al 94]. A simple introduction to the Internet is given in thebook by Krol [Krol 92]; see also the August 1994 issue of the Communicationsof the ACM for a number of articles on the Internet and related topics.More complete descriptions of the architecture, performance, and applica-tions of supercomputers can be found in the following chapters of this book.There you will �nd further references to the topics touched on here.
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