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SEMI-IMPLICIT BACKWARD DIFFERENTIATION FORMULAS

Kris Stewart

B.A. Mathematics, University of California, San Diego, 1973

M.S. Computer Science, San Diego State University, 1979

The Semi-Implicit Backward Differentiation Formulas (SIBDF)
form a variable order family of methods designed for stiff ordinary
differential equations. They are based on a prediction followed by
a fixed number of corrections obtained by an approximate Newton
scheme. We present the method and relate it to the BDF.

Stability models for the SIBDF are explored and related to
stabilty for the BDF. One model yields wupper bounds on the
spectral radius of the relative correction matrix error for each
order of the SIBDF. Numerical estimation of the largest eigenvalue
can then be wused to predict the mneed for updated correction
matrices and determine the numwber of corrections to perform in an
order dependent manner.

The local truncation error is derived. It shows how accuracy
depends on the error of the predictor and the number of
corrections. When implemented, a code will vary order and step
size. A low cost matrix modification technique is developed to
reduce the number of factorizations of the matrix due to changes of
order or step size.

Experimental evidence confirms the wusefulness of these

techniques for stiff problems.
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Chapter 1. Introduction

The numerical solution of stiff ordinary differential equations

(ODEs) is the focus of this dissertation. An excellent introduction to
the numerical implications of stiffmess is given 1in the STAM Review
article by Shampine and Gear [47]. Following their lead, we say that a
problem is stiff if the step size is limited more severely by stability
than by accuracy when using one of the classical methods such as the
Adams. Methods more appropriate for solving stiff ODEs require a set of
algebraic equations be solved to some fixed accuracy at each time step.

The Backward Differentiation Formulas (BDF) have proven to be an

effective family of formulas for stiff ODEs. First explored by Curtiss
and Hirschfelder [10], they were popularized by Gear [15,16,1/] in the
code DIFSUB and by Brayton et. al {1]. Production codes cased on DIFSUB
were made available by Hindmarsh, first GEAR [23] and then LSODE [25].
Most implementations of BDF methods obtain an accurate solution to
the algebraic equations by using an explicit predictor followed by
Newton-like corrections. Reliable convergence tests are difficult.
This suggests an alternative family of formulas we call the

Semi-Implicit BDF _ (SIBDF) based on a predictor and a fixed number of

corrections formed in an inexact Newton process. This fixed number, in
theory, is held constant throughout the integration interval. The
distinetion in method is similar to that between an  iterated
Adams-Moulton corrector, as in DIFSUR (and LSODE), and a PECE
Adams-Bashforth-Moulton method, as in STEP [48] by Shampine and Gordon.
The purpose of this dissertation is to demonstrate and investigate
rhe differences between the SIBDF and the BDF in both analysis and

practice. The SIBDF first received analytical attention  from



Klopfenstein [29]. Details in the implementation of the BDF that do not
affect its analysis play an important role in the performance of the
SIBDF. Our analysis of these matters leads wus to make specific
algorithmic design decisions.

With the SIBDF, we pgain the simplicity of a fixed number of
corrections, but introduce more parameters into the specification of the
method. An important quantity in the analysis of bhoth stability and
accuracy 1is the sgpectral radius of the relative error matriz which
results from the inexact correction matrix. We «call these formulas
Semi-Implicit to emphasize that a linear algebraic system must be solved
at each step. These formulas have been implemented by Stewart and Krogh
[52} where they have proven effective in solving stiff ODEs.

We present the formulas and fundamental theory for the BDF in
Chapter 2 to make the exposition self-contained, define mnotation and
emphasize points. The recommended reference is Hall and Watt [20j. The
accuracy of the formulas is a consequence of the theory of the
interpolating polynomial. The results of =zero stability (h=0) are
stated, but more is required in practice. To ensure numerical stability
when the step size is nonzero for the linear, constant coefficient model

system, one must satisfy the algebraic equations either

a) exactly (yielding the homogeneous BDF difference equation) or

b) to some fixed accuracy (ylelding an inhomogeneous difference

equation for the iterated BDF).

The formulas for the SIBDF are presented in Chapter 3. Since the

form of the predictor is significant, we give examples to highlight the



performance of a 4-step corrector formula when coupled with a 3-step
predictor formula or a 4-step predictor formula. The SIBDF depend
explicitly on the relative error in the 'Newton-like' matrix used tao
compute corrections. Examples are given to show the performance of the
two predictor forms when there is no error in the correction matrix and
when error is introduced.

In Chapter 4 we present the wvector generalized difference equation

(VGDE) developed by Krogh and Stewart [35] which medels stabilicy for
the SIBDF for the linear, constant coefficient system. Through this
difference equation, we investigate how the SIBDF methods inherit the
stability properties of the BDF. The VGDE is not =olvable in the

general case, and we explore assumptions that will yield solutions:

a) vector test problem with
i) finite h and no correction matrix error
ii) h»~ and matrix error

b) scalar test problem with finite h and matrix error.

Case ii) yields the Asymptotic Absolute Stability (AAS) model, presented

by Klopfenstein in [29].

To balance the discusgionsg of stability, we consider the accuracy
of the SIBDF in Chapter 5. The local truncation error of the PEC method
(only one correction) £for a nonlinear system 1s derived and compared
with the BDF. We then consider local truncation error for the linear
system and a fixed number (greater than one) of correctiomns. We end

with a discussion of the practical estimation of the local error.



In Chapter 6 the implications of relative matrix error are
examined. In Section 6.a, we examine low cost methods to reduce the
error in the correction matrix. In Sectlion 6.b we discuss the ways in
which a practical code uses estimates of relative matrix error. This
provides an order-dependent mechanism to predict the need to form a new
correction matrix and separately the need for a new Jacobian of the
differential equation. Experimental evidence 1is cited [52] to
demonstrate that the number of corrections mneed not remain fixed
througheout the entire integration as assumed for the Asymptotic (h-w)
Absolute Stability wmodel. Thus, these same matrix error estimatots
provide an effective mechanism to determine the number of corrections
that need be performed. Finally, we discuss how relative matrix error
is estimated in a code.

We conclude with a discussion of how the SIBDF provide an effective

alternative family of formulas for solving stiff ODEs.



Chapter 2. The Backward Differentiation Formulag (BDF)

We begin with a brief review of the BDF to establish the accuracy
and absolute stability characteristics of the method. Three cases of
absolute stability are considered:

(1) h-0
and the case of finite, nonzero, h when the corrector is
(2) solved exactly and

(3) appproximately satisfied.

Consider the initial wvalue problem

(2<1) vy = f(x,y) yeﬂn

y(XO) = yO

We assume f satisfies a Lipschitz condition

(2-2) l£x,y) - £(x,2)] <L [ly-=|

for some positive constant L. This assures the existence of a unique

solution near the initial point (xo,yo).

2.a. The Formulas

Let Yoo e o Yok denote the computed solution of (2-1) at k+1
equally gpaced points, Xn—j =X - ijh, j=0,...,k. The basis for the kth
order, k+l step BDF at X, is given by the kth degree polynomial,
@k+1,n(x)’ defined by k+l interpolatory conditions



@k+1,n(xj> =y, j=n,...,n-k

We define yé by

yﬁ - ﬁ+1,n(xn)

and the discrete approximation to y'(x) = £(x,y), by

This is an implicit condition which we call the collocation condition.

Also, one of the interpolatory conditions is implicict, @k+l,n(xn) = M

for the unknown value yn.'

The polynomial in the case of constant stepsize is

@ (x) - y_ + G Uy o+ O ty) () vey
k+1,n n h n h2 91 n
Bl B ) 1
+ ... + % A% yn
B k!

and the collocation condition scaled by h is

k
* T
(2-3) E §_ Yy, =hf(x,y)

%
The coafficients will be referred to as Sr (= —%*) in analogy with the

explicit Adams-Bashforth coefficients, P and implicit Adams-Moulton

*

coefficients, Y.



In Lagrangian form (Gear [17] p. 217), we have
k
(2-4) %=§ar%¢+hﬁoﬂﬁdg
r=1

When k=1, we have a,=1, ﬁ0=l to yield the Backward Euler method.

1

2.b. Accuracy

We define the local truncation error to be the amount by which the
true solution fails to satisfy the scaled collocation condition (Egn.
2-3). This is obtained by differentiating the error of the
interpolating polynomial and evaluating at xn. Using f(xn,y(xn)) =

y'(xn), in backward difference form this is

k+1 k+1
y()

(2-5) T =hy(x)- } 55 Vyx ) =6, b €)

with ¢ € [x This is equivalent, up to a scale factor, to the

n-k’xn}'

difference between the true solution and the method given exact data, yj

= y(xj), j=n-1,....n-k and y; = y‘(xn). Using the right hand side of
the Lagrangian form (Eqn. 2-4) yields
k
(e~ 6 n T y(Xn) " Vn T y(Xn) B E “r y(Xn-r) - h ﬁO y (Xn)
r=1
= ﬂO [@k+1,n(xn) Y (Xn)] T ﬁOTn

In contrast, the explicit Adams-Bashforth formula through these

k+1 y(k+l>(u).

past values of X would have truncation error T h The

implicit Adams-Moulton formula with these back points would have

ke ()

truncation error Vsl h £). (See Henrici [21] pp. 203-204)



2.c. Absolute Stability

Early discussions of stability were mnot concerned with stiff
problems, where h) is expected to be large. They focussed on the case

of h+0, ecalling this zero stability. The difference equation (2-3) is

solvable then since the derivative v'(x) = f(x,y) no longer appears.
For methods based on numerical integration such as Adams, this led to a
stability condition that was easily characterized. To guote from the

ground-hreaking text written by Henrici iIn 1962, Discrete Variable

Methods in_ Differential Equationsg [21, p. 220], (in Henrici'’'s notation

below, gq refers to order (we use k), r=0 specifies the BDF, p({) is the

first characteristic polynomial (see Eqn 2-10))

"For methods based on numerical differentiation there is
no such simple general result, because the 1location of the
roots of p(¢) 1is mnot so easily ascertained. Either by
numerical calculation or by applying an algebraic criterion
due to Hurwitz it can be shown that for r=0 (differentiation
at the foremost point) these methods are stable tor
g=1,2,...,6. For g=7, and very probably for all larger q, the
methods are unstable.™

In 1972, CGryer (Thm. 1.1, [5]) published a proof that the BDF have a
region of stability as h»0 if, and only if, the order is less than 7.
Though one requires zero stability for a wusable method, stiff
problems also require that an effective method be stable for large
values of h. For finite h, the derivative explicitly appears, and a
convenient model that vyields results is given by the linear, constant

coefficient system



We apply the method (Eqn. 2-4) to obtain the vector difference equation

(2-7) (I - h8,I) y_ =

pe

I M~1"
R
H
]
-
-

1

Assume I — hﬁOJ is invertible, else we need to consider the topic of
bifferential-Algebraic Equations [40]. Egn. 2-7 will then be directly
solvable at the current point, L for the wvector of difference

solutions in termsg of past information

K
y_ = (1-nsD) " } oy

n n-r
r=1

Let J have a full set of eigenvectors forming the columns of a

matrix T. The same similarity transformation that diagonalizes J,

-1 "
TJT - A = dlag(Al,Az,...,An),

will diagonalize the vector difference equation {(Eqn. 2-7) and yield a

; .th -
solution W= Tyn, whose 1 component, [wn]i satisfies

k
2.8 ], = ——~ Vo [w ]
(2-8) [wn i 1-hB.A. r n-r'i
01
r=1
Once the equations are uncoupled, we may consider an arbitrary

component, call it w, of the transformed vector Ty along with XA, the

corresponding eigenvalue of J. Focussing on this single component, the



true solution to the differential equation, w(x ), vyields a 1local
83

truncation error from Eqn. 2-6 of

k
w(xn) - E @ W(Xn-r) = hﬁok w(xn) =7

r=1

n

The actual computed value, LA has been subjected to rounding errors or
other perturbations (e.g. not exactly satisfying the collocation

condition), and therefore satisfies a perturbed version of (2-4)

k
v~ E O W o hﬂol w_ o= 5n
r=1
Subtracting, we have the global error, ey = w(xn) = W of the
transformed problem satisfying
k
(2-9) (1 —'hﬁOA) B ™ } a € .- T Sn
r=1
causing us to examine the stability polynomial
(2-10) w(z;hA) = p(z) + hh o(x)
k
k k-r
= (1 - hﬁOA) z § @,z
r=1

The homogeneous version of Eqn., 2-9 will have solutions that do not grow

as long as this stability polynomial has all its roots strictly within

10



the wunit circle for a given wvalue of hX. We call this the root

condition which characterizes absolute stability (Definition 10 [from

Hail and Watt [19] p. 37) for finite, nonzero step size.

The particular solution to the inhomogeneous difference equation
(Eqn. 2-9) will be kept small if in addition to the root condition above
ont n(z;hX), we have T and Sn small. This 1is a more practical
definition of stability when the BDF are implemented in a computer code

and we call this absolute stability for the iterated BDF (see Section

2.d4) to allow for the local truncation error of the formula and that the
collocation condition (Eqn. 2-4) is not satisfied exactly. 7. can be
kept small by controlling the stepsize, Sn can be kept small by
satisfying the collocation condition well.

To appreciate what restrictions are placed on the method by the
root condition, we focus first on absolute stability of the BDF. For a
given wvalue of hi, there are k solutions to the scalar difference
equation, the k roots of w(z;hx). Let wus call them Zq s 6B ; zk.
Without great loss of generality, we can assume the zj's are distinct.
(In the general case, the difference solution will have polynomial-like
terms  such as jzj, which do mnot substantially alter the final
coneclusions.) One could compute these k roots and verify their
magnitude is less than one for values of hi of interest. This is a
laborious task.

Alternate, more compact, schemes have been pursued. We know the
behavior as h=0: the BDF are stable only when the order is 6 or less.
Another characterization is the A(a) stability region. From Gear [17,
p. 213] Definition 11.2, "A method is A(a)-stable, «ec(0,n/2), 1f all

numerical approximations to y’=Ay converge to 0 as n»= with h fixed for

11



all J|arg(-2)| < «a, |a|=0." Analytical techniques were explored by
Norsett [38] to specify the angle, a, for A(a) stability. Table 1 (p.

263 of [38]) gives:

Table 1

L S for A(a) Stability Boundary of the BDF

Order k: 1 2 3 4 5 6
Angle o: 90°  90° 88°27' 73°14' 51%°50° 18°47

A(n/2) stable indicates the methed is stable in the entire left half
plane, usually called A-stable,
To gain a broader view of the restrictions on hl for different

order formulas, we pursue the houndary locus technigque to characterize

absolute stability graphically (See Lambert [36] p. 82). Instead of
finding the k roots, zj, of w(z;hA) for fixed hA, one maps the unit
circle in the z-plane, into the hl-plane using the difference equation
in backward difference form (Egqn 2-3). This 1s a continuous
transformation of complex values and therefore takes closed curves into
closed curves,.

It is well known that a solution to a linear, constant coefficient,
homogeneous difference equation 1is of the form ¥, z" , where z is
any root of the corresponding characteristic polynomial, x(z;hl), and ¢
is some constant [36, p.8]. Considerations for an effective computation

lead wus to substitute this into the difference form of the collocation

condition (Egn. 2-3), cancelling the ceocefficient ¢ to yield

12



k
T } -
z = — VZ
r=1 T

which is satisfied by any root of a(z,hA). The identity

1
(2-11) viz" - 2" (1 - -
z
easlly proved by induction, then yields
k
1 S -
weyda-b
r=1

The interior of the wunit circle in the =z-plane contains all
possible roots of the difference equation with magnitude less than one.
The argument will be simplified by examining an intermediate

transformation.

is a one to one transfoxrmation of the interior of the unit circle in the
z-plane to the exterior of a disk in the w-plane centered on the real

axis at one with radius one.

13



The homogenous difference equation is now a polynomial in w

k
Find) o= E e JB
T
=1
For hx sufficiently large, the roots, s will be large.: 1In fact,Nf(W)

will have k distinct roots since f'(w) is nonzero. We claim that
k
1 r
(2-12) [Ba| > - 2
r=1

characterizes when hl is sufficiently large to insure all roots of the
original difference equation in the z-plane will have its roots within
the wunit circle. We use the triangle inequality to show that all roots

of f(w) must satisfy |[w| > 2 if |h)\| satisfies Eqn. 2-13.

[£Goy| = fnx - —%— el IS SY I

1 T

I ~1%
I P15

k
L s ml =) e
i r

r=1

T 1

k
1f |w] < 2, then |f(w)| = |hA| - E —%— 2" and by Eqn. 2-12 |f(w)| > o0,
r=1

so f{w) can have no such root. |w| > 2 guarantees w outside the image
in the w-plane of the unit disk in the z-plane, i.e. |z] < 1.

This says that when the magnitude of hi is large enough, the BDF
are stable at all orders for all XA ,even for orders greater than & and
when Re()} > 0 and the differential equation y'=Ay is itself unstable.

This maximum value is attained for z=-1, i.e. § = w, corresgponding to hi

14



on the positive real axis. The boundary on the positive real axis in

the hA-plane is given by

Table 2. BDF Stabilityv Bound for h)
(If |hA| > STB(k), then BDF stable)

Qrder k | 1 2 3 4 5 6 7
STB(k) | 2 4 6.6/ 10.67 17.0/ 27.73 46.02

To compute the regions of absglute stability, we plot the image of

; . . i6
the unit circle in the z-plane and so set z = e

k
2 -if.r
(2-13) h,\=§—(l—el)
r=1 £

One selects points on the unit circle in the z-plane, say values of g td
for # between 0° and 360° in increments of 5°. 'This is substituted into
(Eqn 2-12) to yield a value of hX which is then plotted as part of the
image curve In the hl-plane. Since we know now that the BDF are stable

for large h), we see the exterior of the curves forms the region of

absolute stability.

15



We present the results for the first through third order BDFs.
Table 2 indicates where the absolute stability region will intersect the

positive real axis.

Figure 1.

Absolute Stability for BDF orders 1 to 3
(Stebility Boundaries in the hi-plane)
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Next we present the absolute stability regions for the fourth

through sixth order BDFs. Notice the correspondence with the o-angle

given in Table 1 from Norsett’s results.

Figure 2.
Absolute Stability for the BDF orders 4 to &
(Stability Boundary in the h)-plane)
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Since the behavior near the origin for the higher order formulas is
difficult to see in Figure 2, we refine the scale of the plot and focus
on the behavior at the origin. We know these BDF are stzble as h+0 from

the results of Cryer.

Figure 3.
Absolute Stabilty for BDF order 4 to 6
(Detail near Origin of hi-plane)
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The absolute stability of the transformed scalar (k+1) -step method
(Eqnf 2-8) can also be examined using the k by k companion matrix, H, to
the stability polynomial, «(z:h)). We pursue this approach because it
helps clarify the stability when we no longer assume the collocation

condition is solved exactly.

W
Il
Let Wn = : = Rk. The homogeneous difference equation (2-8)
n-k+l
takes the form
(2-14) Wwo=HW
with
al/ﬂ az/D ak/ﬂ
0 1 0 0
{2-15) H = 0 0 1
0 0 1

and 0 = 1 — hg A,

The condition that all roots of = be less than one in modulus ic
equivalent to all eigenvalues of H being less than one in modulus. Given
p(H) < 1, we have that any two sclutions of the homogeneous difference
equation, say Wn and Un’ satisfy

Il
[ w-u | =] w

0~ UO) ” + 0 asn-+ o
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in some norm. (See for example, Thm. 4.2.2 (Stability Theorem) Ortega

[39, p. 71].)

2.d. Iterating the Implicit BOF Collocation Condition

In order to implement a method based on the BDF, one must consider
how to handle the implicit collocation condition (Egn 2-3). We adopt
the mnotation Hindmarsh [23, pp. 28-29] uses in describing the formulas
implemented in GEAR. One could attempt functional iteration on the

nonlinear equation for g

k

r=1

but convergence will generally require [hﬁOLI < 1, where L is a
Lipschitz constant (Eqn 2-2) for the ODE. This restriction on the step
size when solving stiff problems is not acceptable.

Let ybdf denote the exact solution to the homogeneous BDF

n

difference equation (Eqn 2-4). Thus

bdf
By, ¥ =0

In practical codes, the most common way of approximating the
solution of g(y) = 0 is to predict a value for yio) and improve it with
an inexact Newton method. In DIFSUB [13] and its descendants, the
predictor formula is

€ _ g (

Yn T~ k+1,n-1""n

20



which has the same order as the k+1 step BDF used. The iteration

matrix, P, approximates

P K og/ody = 1 — ﬁo h af/8y

with the iteration defined for i =0, 1, by
(i} oo (L)
P Ay, gy, )
(1+1) y(l) + Ayt
n n n
The matrix controlling convergence to the fixed point is I - P~ dg/oy

since we have

(i+1)  bdf_ (i) _ 21 , (i), _ bdf
“n n T ¥p r g(yn ) ¥h

= yéi)— pt {g(yzdf) +vg1® (yii)g' bdf)} - yodf

n Ti

1 bdf

e 1% (r{7- y2

(I — P "

where [Vg*]t comes from an application of a Mean Value Theorem to

g(y(l)) and denotes the matrix of transposed gradient wvectorg of the
n

i bdf
components of g, each evaluated at some point between yél) and B
When solving the model problem, y' = Jy, we have convergence

controlled by

21



where it is hoped that the matrix P = I—ﬁOhJ is approximated well by P.

A useful relationship results from the fact that Newton's methed is

. (0)

exact for linear problems. If P = P, the first corrrection Ay =

!
—P_lg(yio)) yields the BDF for the linear, constant coefficient system

0y

no matter what value is used for y

n
) bdf  (0) -1 (0)
(2-17) Py ¥ Poogly, )
2.e.  Stability for an Iterated BDF
In practice, this iteration must be terminated. There 1s much

debate on an effective scheme. One can measure the residual

(2-18) e = &y

Hindmarsh [22, p. 3] wuses a test based primarily on the size of

successive differences

5B L) _ (D)

where hy( ) ls the scaled derivative of the polynomial passing through

i
n
y(l) and the appropriate past points. Shampine [46] discusses

n

techniques wused in actual working codes along with the problems

associated with unreliable convergence tests.

The stability of the computed results is of interest here. Define
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the k-vector representing the accepted solutions from the previous Lk

poeints by

_ 5 -
e
(1)
Yit . yn—l
n .
(3)
yn~k+lﬁ

where the superscripts emphasize that the number of iterations varies

from step to step. The inhomogeneous difference equation satisfied by

it

x is
Fa8
Y ouYt 4 g
n n-1 n

e

n
The k-vector, En = : relative to the current time step represents

®n-k+1

the residual of each of the previously accepted yif;, =0, ..., k-1;

typically i = 1,2 or 3. The inhomogeneous difference equation can bhe

written

i it
(2-19) Y =HY " +E=H(HYn-2+En-

with YO representing the initial starting error for the k+l step method.

Absolute stability of the homogeneous difference equation {Eqn
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2-14) requires p(H)<l and guarantees that the difference of two
solutions tends to =zero as n+e for fiwed h. Given that h has been
chosen so that hX lies within the absolute stability region (Figures 1
and 2), we have for the inhomogeneous difference equation (Eqn. 2-18)

that, in some norm, there exists a constant ¥ < 1 such that

n-1

it
F s Il + ) o

(2-20) ||Yn

e
r=0

(Thm. 4.2.5, Ortega [34, p. 75]). Thus, in some norm, the global error
of the actual computed solution will be uniformly bounded and mot large
as long as the root condition holds for the BDF and the residuals due to
not satisfying the collocation condition exactly at each step are small

enough with respect to v < 1,

2.f. Implications of the BDF Analvsis

The homogeneous difference equation for the RDF (Eqn. 2-7) leads to
regions in the complex plane, primarily near the imaginary axis, where
the performance of the method does not match the behavior of the
differential equation. Table 2 demonstrates that the higher order BDF
will be stable for stable problems (Re{(X) < 0) when the step size, h, is
sufficiently large. Figures 1, 2 and 3 demonstrate that smaller wvalues
of h for stable problems can yield unstable methods.

The inhomogeneous difference equation (Eqn. 2-19) more closely
describes the way the BDF are actually implemented by dropping the
assumption that the implicit equations have a zero residual. We see

from the analysis that it is not mnecessary to satisfy the collocation
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condition to get absolute stability. In addition te requiring hi
strictly within the appropriate region of Figures 1 and 2, it is only
necessary that the residuals, ej, be kept sufficiently small. The
scheme to ensure small residuals does not enter inte the stability
argument.

It is in the actual implementation that efficiency of the scheme to
generate solutions sufficiently accurate becomes important. A true
Newton iteration requires an accurate starting value along with an
iteration matrix formed as each iterate is produced within each time
step, a very costly procedure. A variety of Newton-like schemes with
differing predictors and iteration matrix strategies are possible:

(1) A frequent modification is to use finite difference approxi-
mations to the ODE Jacobian. This does not significantly degrade
performance (Thm. 5.4.1, [117]).

(2) Implementations simplify the Newton-like process by holding
the Jacobian approximation constant over several time steps. Thig
degrades the rate of convergence to linear but is an efficient scheme .

(3) There is a choice of predictor to start the iteration. A
predictor of same order as corrector will use one more past peoint than a
predictor with order one less.

(4) The step size and order will change over the integration
interval in an effective method. This causes a change in the iteration
matrix. Linear alpgebra costs can enter into step size and order
control.

(3) A specific test (or combination of tests) must be formulated

to terminate the iteration.
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(6) A strategy must be formed to deal with nonconvergence, or
insufficiently rapid convergence for an effective method. Step size
reduction and/or reevaluation of the ODE Jacobian are remedies,

In Chapters 3 and 4 we will consider a method whose analysis and
implementation are significantly different., The number of corrections
computed is a fixed wvalue. This 1is the idea that spawned the
Semi-Implicit Backward Differentiation Formulas,. The predictor and
iteration scheme that disappeared in the stability analysis of +the BDF

will play a significant role in the stability analysis of the SIBDF.
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Chapter 3. Semi-Implicit Backward Differentiation Formulas

We develop the formulas for a SIBDF method in this chapter. We
develop formulas using two possible predictors and a fixed number of
corrections computed with a correction matrix that is not the exact
Newton matrix. Then, in Chapter 4, we proceed with the stability
analysis which will determine the amount of relative error in the
correction matrix that can be tolerated by a stable method.

We also discuss the implementation decision to use a variable step
size formulation of the basic formulas instead of the more commonly used
fixed step size formulation. This will require that special attention
be paid to the effective implementation of the correction process. A

technique that appears to work in practice is discussed in Section 6.a.

3.a. Higher order Corrector than Predictor: P(k)[EC(k+l)}m

For simplicity, let the step size, h, and step number, k, remain
constant. The method also involves a fixed number, m, of corrections.
As a result of considerations of Asymptotic Absolute Stability (Chapter
4.d.1), we will prefer m=2.

The polynomial interpolating the computed solution at the previous

k equally spaced points, X1 R s
® () =3 + Ef:fﬂ;ll Vy + (kan_l)(xmxn_Z) sz
k.n-1 n-1 h n-1 GNPy e

GNP EERE Ca Y k-1

+ ... + b
hk-l (k-1)! n-1

One predicts the k-step solution at the forward point by
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extrapolating this polynomial to yield

k-1
r
€21 Pn ~ @k,n~1(xn) B } V' a1
r=0
The predicted derivative is
1 k-1 .
5-8) P ™ ) =) 6 T
r=1
where
Y r
6r d (x_xn_l)...(x—xn_r) 1 1 1 i
(3-3) — = — = = §
h r h ; h i
dx h™r! . i .
=X i=1 i=1

%
the 51 being the coefficients from the backward difference form of the

*
BDF (Eqn 2-3). We have 6r = Sr = ar—l'

th :
All subscripts mnow refer to the n time step

and will be

suppressed along with reference to the independent variable, i.e. £(y)

(0

denoctes f(xn,y). Setting vy = P, one computes m

solving the sequence of linear systems

(3-4) Gle,ay oy - - p(D)

y(i+l) _ L) ()

The right hand side 1s given by the residual

28
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"

i ; .
(3-5) O 10 Ales J P oo C S
h
. me (m) . .. :
Label the final result, ¥y =y » the superscript indicating m
corrections were performed.

The correction matrix, G(c,e) is a parameterized approximation to a

Newton matrix, G

"

¢ = arP oy ) L gDy (0 7
g

~

G is called the correction matrix rather than iteration matrix to

emphasize the fixed number of corrections to be computed.
A fal

We begin by requiring G(c,a) to have the form

(3-6) a(c,;) = ¢ (3 e ;I)

~ A

where the parameter o is an approximation to Sk/h; the matrix J ig an
approximation to the Jacobian of the differential equation; and the

parameter ¢ is a scalar which is manipulated to help reduce the error
fal

when o approximates the coefficient in the residual (3-5) in the case of

the wariable step size formulation (Section 3.c). Analysis of the

accuracy and stability of the SIBDF method in Chapters 4 and 6 will

guide us in choosing values for the parameters a and c.
We think of (3-5) as a k+l step residual associated with the k+1

. i)
step corrector because if one were so fortunate as to have r{ =0 for

some y(l), then setting ¥, = one has

y(i)
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, (i)
@k+1,n(xn) = iy ),

the collocation condition (Eq. 2-3) for the k+1 step BDF. This follows

from the relation

(x—x Yo (wxm=x h]
_ n-k n-1 k
i1, n(®) = O o () + K ¥ Ty
h™ k!
definitions (3-2) and (3-3), and
k-1
r k

¥, “BE ¥ Vyn_l—Vyn

r=0

As an illustration of possible choices for these parameters, Table

3 presents the results of solving

y' =-10y
L) =~ 1

e—lO(x-l)) w

{(which has the true solution ¥y = ithm=1, and k = 3 for a

P3EC4 SIBDF method. The remaining method parameters are h = 0.2 and ¢ -

l, a = 53/h = 2.08888/0.2 = 10.41666, J = —-10 (corresponding to G=G).
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Table 3. P3E§4;4c=1; o _= SBZQ

3-step Predictor/ 4-step Corrector hx = -2 =20

The exact past data:

y( 0.600) = 0.2479E-02

v({ 0.800) = 0.2355E-03

y( 1.000) = 0.45408-04

X Predictor Error Solution !AV(I)! Global Error_  Lecal Error

1.20 1.602E-03 1.1981E-04 1.489E-03 1.137E-04 1.137E-04
1.40 5.425E-04 1.0517E-04 4 .535E-04 1.043E-04 8.895E-05
1.60 1.275E-05 3.9372E-05 3.789E-05 3.926E-05 2.514E-05
1.80 8.291E-05 7.8253E-08 7.766E-05 6.302E-08 5.250E-06
2.00 1.272E-05 ~6.2001E-06 6.513E-06 6.202E-06 6.211E-06
2.20 2.138E-05 -1.4593E-06 2.200E-05 1.460E-06 6.202E-07
2.40 1.450E-05 1.2509E-06 1.301E-05 1.291E-06 1.488E-06
2.60 1.876E-06 1.0421E-06 1.008E-06 1. 042E-06 B8.674E-0Q7
2.80 2.347E-06 1.8356E-07 2.389E-06 1.836E-07 4.253E-08
3.00 1.310E-06 -1.5189E-07 1.133E-06 1.518E-07 1.767E-07

We see the stable correction process revealed in the global error.

To further illustrate the parameters, we model the situation where
~
the matrix used in the correction process has the correct Jacobian, J =

J, but the coefficient is incorrect due to a change in the step number
used, k, or the step size used, h, ie. a s 5k/h. Since the

differential equation is stable, we can hope that the numerical

computation will remain stable. The computation with ¢ — 1, = 7.01388

~

= 63/h, and J = J is presented in Table 4.
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Table 4. P3Eg4; e=1: o 531h

3-step Predictor/ 4-step Corrector hix = -2 wo= -.2

The exact past data:

y{ 0.600) = (.2479E-02

y( 0.800) = 0.3355E-03

y( 1.000) = 0.4540E-04

% Predictor Error __ Solution jAV(l)! Global Error Local Error

1. 20 1.602E-03 -1.7795E-04 1.787E-03 1_841E-04 1.841E-04
1.40 3.105E-04 -8.6513E-05 2.481E-04 8.734E-05 6.243E-05
1.60 3.314E-04 -5.6892E-05 3.766E-04 5.700E-05 4.518E-05
1.80 &.138E-05 -1.3557E-05 7.553E-05 1.357E-05 5.858E-06
2.00 4.533E-05 -3.7432E-06 4.723E-05 3.745E-06 1.908E-06
2.20 2.694E-05 2.4041E-06 2.985E-05 2. 404E-06 2.911E-06
2.40 4 .559E-06 1.6238E-06 3.261E-06 1.624E-06 1.298E-G6
2.60 6.304E-06 1.2223E-06 7.306E-06 1.222E-06 1.003E-06
2.80 1.034E-06 3.9637E-07 8,032E-07 3.964E-07 2.309E-07
3.60 9.076E-07 1.3853E-07 9.925E-07 1.385E-07 8.489E-08

It is seen that with this incorrect coefficient in the correction

matrix, the process remains stable.

m
3.b. Predictor - Corrector of Same Order: P(k+1)[EC(k+l)]

One might ask the effect of using a k+l step predictor with the k+1

step vresidual (3-5). The only change in the method above would be to
use
k
3-7 p=-) Vv
(') P = yn—l
=0
and

N 1
(3-8) B =
h

with the residual, T, defined by



(3-%)

T

Ea

and the same correction matrix, G

A

£(y) = 9" - —= (v - p)
h

(3-6).

6

We first examine the case corresponding to Table 3,

a=63/h = 10.41666.

i.

e,

c=1 and

The error in the predicted value is different, dbut

the corrected solution is the same.

Table 5. PAEQA;_9=1: a = 631h

4-step Predictor/ 4-step Corrector

h

-2

The exact past data:
y{ 0.400) = 0.1832E-01
y( 0.600) = 0.2479E-02
y( 0.800) = 0.3355E-03
y{ 1.000) = 0.4540E-04
X Predictor Error Solution iAv(1)| Global Error Local Error
1.20 1.024E-02 1.1981E-04 1.035E-02 1.137E-04 1.137E-04
1.40 9.463E-04 1.0517E-04 1.035E-03 1.043E-04 8.895E-05
1.60 4.663E-04 3.9371E-05 4.914E-04 3.926E-05 2.514E-05
1.80 4 .502E-05 7.8249E-08 3.977E-05 6.302E-08 5.250E-06
2.00 6.493E-05 -6.2001FE-06 7.114E-05 6.202E-06 6.211E-06
2.20 2.789E-05 -1.4592E-06 2.851E-05 1.460E-06. 6.202E-07
2.40 7.4%7E-06 1.2909E-06 8.986E-06 1.291E-06 1.488E-06
2.60 1.113E-05 1.0421E-06 1,200E-05 1.042E-06 8.674E-07
2.80 3.355E-06 1.8356E-07 3.397E-06 1.836E-07 4, 252E-08
3.00 1.0679E-06 -1.5188E-07 1.256E-06 1.519E-07 1.767E-07
Table 6 is similar to Table 4, i.e. a = 7.013888 = 53/h was used
with ¢=1 and X=X\, except that the k+1 step predictor is used.
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Table 6. Pagg4;7c=l: o 531h

4-step Predictor/ 4-step Corrector hi = -2 po=-.2

The exact past data:

v( 0.400) = 0.1832E-01

v( 0.600) = 0.2479E-02

y{ 0.800) = 0.3355E-03

y( 1.000) = 0.4540E-04

b4 Predictor Error Solution 1Av(¥)| Global Error ILocal Error

1.20 1.024E-0Q2 2.1901E-03 1.242E-02 2.184E-03 2.184E-03
1.40 7.055E-03 6.0026E-04 6.751E-03 5.994E-04 3.039E-04
1.60 1.097E-02 1.7188E-03 1.261E-02 1.719E-03 1.638E-03
1.80 1.176E-02 -8.3690E-04 1.283E-02 8.369E-04 1.070E-03
2.00 1.334E-02 1.1595E-03 1.461E-02 1.159E-03 1.273E-03
2.20 1.578E-02 -1.5256E-03 1.746E-02 1.526E-03 1.4683E-03
2.40 1.792E-02 1.5606E-03 1.969E-02 1.561E-03 1.767E-03
2.60 2.066E-02 -1.8712E-03 2.274E-02 1.871E-03 2.082E-03
2.80 2.386E-02 2.1728E-03 2.628E-02 2.173E-03 2.426E-03
3.00 2.738E-02 -2.4552E-03 3.014E-02 2.455E-03 2.749F-03

There 1s a lack of stability (revealed by growth in the global

error) due to the incorrect coefficient o being used.

The choice of method parameters c=1 and ; = Ek/h specifies the L+l
step BDF since the exact Newton matrix solves a linear problem in one
iteration no matter what value is used as a predictor (Egn. 2-17). This

is the reason the corrected solution in Tables 3 and 5 were identical.

To see this, examine the equation

bdf, 6k bdf
(3-10) f(yn > =p + N (yn = p)
Labelling ygdf = Y e have
= k-1
7L el " ”
o LY b T B ) )
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1 4 K
R § S Vet * 5 VY,
h
T=1
1 k-1
T r+1 k
== i } 5r [V Yo v n} + 5k v ¥
h
r=1
or
il X * ¢
(3-11) £y ) = —} 6. Viy,
h
r=1
*
since 5r = 6r - 61:—1' This is the k+l step BDF in backward difference
form (Eqn. 2-3) and so
(3-12) r(y?y o

. ~, bdf ; . i
If one examines r(yn J. a manipulation similar to the above shows

. 1 R% k
f - — 5§ v + 6§ -5 g5
(yn) N h r yn—l k yn yn—l
lr=1 r=0
1 [k
T k+1
:—-; } SrVyn_1+5kV yn
| r=1
k
1 § *
= — § Vy
h r n
r=1

The residual of the BDF, g(y) (Eqn 2-16), and that of SIBDF are

related by
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h
— r(y) = h ﬂo r(y) = g(y)

%

It was chosen to write the residual, r{y), with f isolated so that

1
analysis of the case h-e would easily eliminate the -—- term. Also,

h

when the correction matrix is formed, the Jacobian, J, would be isolated
in anticipation of implementing a code based on this method. This
allows the savings of the n2 cost to form a matrix hﬁOJ from J and
facilitates the design goal of re-using old Jacobians, if space is
provided, when forming a new correction matrix because of changes in the
order or step size of the formula used.

If one were to consider this explicit correction scheme te be an
iterative method, 1i.e. i=0,1,..., the convergence would be governed by

the eigenvalues of

1-c¢lg
which we will soon label B. In the case of the model system, vy o= Jy,
Fizxing ¢ =1 and a = Sk/h, this is the same convergence matrix derived
in (Eqn. 2-16) for the BDF.
Ll 1.7 1 -1 1
{3-13) I -G G=1 - Eﬁa (J — EEE L) (hﬁo)(J hﬁo 1)

I - (hgd - 1)t (hg T ~ 1)

I — P'IP

i

36



A

assuming both methods are approximating the Jacobian by J.

Experimentation [52] has convinced the author that the parameter ¢

A 5
can be used successfully to reduce matrix error when o =

due to
h

changes in the step number, k, or step size, h. As an example of this,

examine the results of Table 6, where a error caused the PaEC4

computation to be mildly unstable. This computation was repeated using
a value of ¢ = 1.189 which is the result of the parameter prediction
algorithm to be presented in Chapter 6.a.

~

Table 7, Paﬁga; c #1;: a » 631h

4-step Predictor/ 4-step Corrector hy = -2 po=-.2

The computed value for ¢ is 1.189 giving a p value of -0.009

The exact past data:

y( 0.400) = 0,1832E-01

y( 0.600) = 0.2479E-02

y{ 0.800) = (.3355E-03

y( 1.000) = D.4540E-04

= Predictor Error Solution !AV(I)] Global Error Local Error

1.20 1.024E-02 2.1356E-04 1.045E-02 2.074E-04 2.074E-04
1.40 5.840E-04 1.8518E-04 7.403E-04 1.843E-04 1.563E-04
1.60 7.195E-04 7.2187E-05 7.667E-04 7.207E-05 4.713E-05
1.80 2.328E-05 2.7485E-06 1.626E-05 2.733E-06 7.021E-06
2.00 1.047E-04 -1.1035E-05 1.161E-04 1.104E-05 1.141E-05
2.20 4 .A43E-05 -3.8546E-06 4.679E-05 3.855E-06 2.361E-06
2.40 9.878E-06 1.6486E-06 1.205E-05 1.649E-06 2.170E-06
2.60 1.736E-05 2.0111E-06 1.918E-05 2.011E-06 1.788E-06
2.80 6.503E-06 6.5541E-07 6.886E-06 6 .554E-07 3.832E-07
3.00 9.155E-07 -1.4094E-07 1.145E-06 1.4G9E-07 2.296E-07

The results from Table 5 were also repeated using ¢=1.1899 (the

same matrix, G, and incorrect coefficient, «, are involved) yielding a

computation slightly more accurate.
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A

c# 1l: a = 631h

Table 8. PBEQ

4
3-step Predictor/ 4-step Corrector hy = -2 u = -.2
The computed value for ¢ is 1.18% giving a p value of -0.009
x __ Predictor Error  Solution iAV(1)| Global Error Local Error
1.20 1.602E-03 1.0632E-04 1.502E-03 1.002E-04 1.002E-04
1.40 5.038E-04 9.0778E-05 4.275E-04 8.995E-05 7.639E-05
1.60 1.352E-05 3.3701E-05 3.493E-05 3.359E-05 2.142E-05
1.80 6.947E-05 6.8665E-07 6.560E-05 6.714E-07 3.874E-06
2400 8.356E-06 -4.7243E-06 3.539E-06 4_726E-06 4 817E-06
2.20 1.811E-05 -1.2030E-06 1.867E-05 1.203E-06 5.637E-07
2.40 1.141E-05 8_.7370E-07 1.038E-05 8.737E-07 1.037E-06
2.60 1.388E-06 7.3681E-07 7.691E-07 7.368E-07 6.186E-07
2.80 1.713E-06 1.4593E-07 1,760E-06 1.459E-07 4.622E-08
3.00 9.187E-07 -9.0882E-08 8.080E-07 9.088E-08 1.106E-07
We develop local truncation error for the SIBDF in Chapter 5. To

accompany the previous examples on for a stable problem, y’'=.10y, which
exercises primarily the stability properties of an method, we present
the following examples where a forcing function is introduced to the
stable problem. The following examples highlight the interplay of

stability and accuracy with respect to the choice of a P SIBDF or

kC%e1
i i 5-3 th

a Pk+1ECk+1 SIBDF. We will see in Chapter 5 (Eqn ) how e 1local

truncation error of the SIBDF involves the parameter g and the predictor

formula used.

Consider the simple, scalar problem as in the previous examples,

but with a forecing function present.

y' = d(y-cos(x)) - sin(x)

y(a) = Y
The solution is

d(x-a)

yv{x) = (ya - cos(a)) e + cos(x)
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If we use as initial condition, y(1.0) = 1.1%cos(1.0), the solution will
still be dominated by the second term for acecuracy requirements, though
the Jacobian, X, will always limit stability.

Assume the correct ODE Jacobian value is used, ; = A, Let X = -10.
Fix h = .2 so that hd = -2. We present examples similar to those in
Tables 3 through 8 above, which show the effect of relative matrix error
(p=0 and p=-.2) for the PBEG4 SIBDF and the PQEC4 SIBDF.

For a base case, we have the results for u=0, i.e. the BDF solution
is returned by either P3ECA or PAECa since the Newton method is exact in
one correction for linear oproblems (Eqn 2-17). The correction

A

coefficient is a = 63/h = 10.4167.

Table 9. P3EC# Forced Scalar Problem:; c=1: a=10.41666

3-step Predictor/ 4-step Corrector hix = -2 =0
the exact past data:

y( 0.600) = 0.3775E+01

yv{ 0.800) - 0.1096E+01

y{ 1.000) e 0.5943E+00

X Predictor Error Solution lAv(l)J Global Error local Error

1.20 1.901E+00 5.0500E-01 1.765E+00 1.353E-01 1.353E-01
1.40 6.387E-01 2.9521E-01 5.327E-01 1.243E-01 1.059E-01
1.60 2.277E-02 1.7724E-02 5.274E-02 4.679E-02 2.997E-02
1.80 1.066E-01 -2.2708E-01 1.004E-01 9.960E-05 6.233E-03
2.00 2.308E-02 -4 .2354E-01 1.567E-02 7.400E-03 7.414E-03
2.20 1.785E-02 -5.9030E-01 1.864E-02 1.795E-03 7.935E-04
2.40 1.030E-02 -7.3595E-01 8.613E-03 1.443E-03 1.686E-03
2.60 3.817E-03 -8.5577E-01 4.736E-03 1.114E-03 9.191E-04
2.80 7.695E-03 -9.4216E-01 7.608E-03 6.467E-05 B.613E-05
3.00 5.117E-03 -9.8035E-01 4.752E-03 3.564E-04 3.651E-(4

Although the corrected solution is the same for both methods, it is
valuable to examine the error of the higher order predictor. Compare

the predictor error below for PqEC4 with that obtained in Table 9.
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Table 10.

P4E04 Forced Scalar Problem:

)

c=1l;: a=10.41666

4-step Predictor/ 4-step Corrector

the exact past data:

hi

-2

I

0

y{ 0.400) = 0.2272E+02
v( 0.600) = 0.3775E+01
v( 0.800) = 0.1096E+01
y({ 1.000) s 0.5943E+00
X Predictor Error Solution IAV(1)| Global Frror Local Error
1.20 1.219E+01 5.0500E-01 1.232E+01 1.353E-01 1.353E-01
1.40 1.127F+00 2.9521E-01 1.233E+00 1.243E-01 1.059E-01
1.60 5.555E-01 1.7724E-02 5.855E-01 4 679E-02 2.997E-02
1.80 5.38B8E-02 -2.2708E-01 4.764E-02 9.860E-05 6.233E-03
2.00 7.731E-02 -4, 2354E-01 8.472E-02 7.400E-03 7.414E-03
2.20 3.351E-02 -3.9030E-01 3.431E-02 1.795E-03 7.935E-04
2.40 8 341E-03 -7.3595E-01 1.003E-02 1.443E-03 1.686E-03
2.60 1.243E-02 -8.5577E-01 1.335E-02 1.114E-03 9.191E-04
2.80 2.959E-03 -9.4216E-01 2.873E-03 6.467E-05 8.613E-05
3.00 2.491E-03 -9.9035E-01 2.857E-03 3.564E-04 3.6531E-04
We now explore the effect of error in the correction matrix due to
error in the coefficient, eo. Both are constructed to have p = -.2,

A

Since we assumed A=), we can compute that o

A

7.01388.

A

Table 11. P3E04 Forced Scalar Problem: c=1: o=7.0138%8

3-step Predictor/ 4-step Corrector hiy = -2 = -.2
the exact past data:

v( 0.600) = 0.3775E+01

v{ 0.800) = 0.1096E+01

y( 1.000) = 0.5943E+00

X Predictor Error Solution IAv(l)f Global Error local Error

1.20 1.901E4+00 1.5190E-01 2.119E+00 2.178E-01 2.178E-01
1.40 3.728E-01 6.8924FE-02 3.003E-01 1.020E-01 7.256E-02
1.60 3.883E-01 -9.4525E-02 4.399E-0Q1 6.546E-02 5.165E-02
1.80 1.024E-01 -2.4082E-01 9.763E-02 1.363E-02 4, 773E-03
2.00 4,804E-02 -4 ,1806E-01 4.812E-02 1.920E-03 7.477E-05
2.20 3.751E-02 -5,8322E-01 4.305E-02 5.282E-03 5.541E-03
2.40 3.976E-04 -7.3325E-01 3.036E-03 4 .148E-03 3.433E-03
2.60 1.182E-02 -8.5351E-01 1.463E-02 3.378E-03 2.816E-03
2.80 2.251E-03 -9.4019E-01 3.823E-03 2.030E-03 1.573E-03
3.00 3.572E-03 -9.8870E-01 4.594E-03 1.297E-03 1.022E-03
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In Table 11, the computation remains stable even in the presence of

relative matrix error of 20%.

When the

same order predicter and

corrector are used, Table 12 reveals dramatic loss of stability.

A

Table 12. PaEC& Forced Scalar Problem: e¢=1: o=7.01388

4-step Predictor/ 4-step Corrector

hx = -2 po=-.2

the exact past data:
y( 0.400) = 0.2272E+02
y( 0.600) = 0.3775E+01
v{ 0.800) =  0.1096E+01
y( 1.000) = 0.5943E+00
X Predictor Error Solution |Av(l)| Global FError ILocal Error
1.20 1.219E+01 2.9691E+00 1.478E+01 2.599E+00 2 .599E+00
1.40 8.396E+00 8.8460E-01 8,034E+00 7.136E-01 3.618E-01
1.60 1.306E+01 2.0167E+00 1.501E+01 2. 046E+00 1.949E+00
1.80 1.3%9E+01 -1.2231E400 1.526E+01 9.959E-01 1.273E+00
2.00 1.587E+01 9.6387E-01 1.739E+01 1.380E+00 1.515E+00
2.20 1.878E+01 -2 . 4044E+00 2 _078E+01 1.816E+0Q0 2 .003E+00
2.40 2.133E+01 1.1198E+00 2.343E+01 1.857E+00 2.103E+00
2.60 2.459E+01 -3.0843E4+00 2.707E+01 2.227E+00 2.473E+00
2.80 2 .839E+01 1.6433E+00 3.128E+01 2 . 585E+00 2.887E+00
3.00 3.260E+01 -3.9128E+00 3 .588E+01 2.923E+00 3.273E+00
We can again verify the benefit of choosing the scalar c=l. The
results for the P3EG4 computation in Table 13 demonstrate a modest
improvement in an already stable computation. The scalar ¢ produces a

dramatic improvement in the PAEC4 computation displayed in Table 14.
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The computed value for ¢ is

Table 13, P3EC4 Forced Scalar Problem with cl: o=7.01388

the exact past data:

3-step Predictor/ 4-step Corrector

hx =

-2

1.189 giving a mu value of

L

= §2

-0.009

The computed value for c is

the exact past data:

1.189 giving a p value of

-0.009

v( 0.600) - 0.3775E+01

v{( 0.800) = 0.1096E+01

y( 1.000) 0.5943E+00

X Predictor Error Soluticon lAv(l)] Global Error Local Error

1.20 1.901E+00 4.8901E-01 1.781E+00 1.193E-01 1.193E-01
1.40 5.929E-01 2.7820E-01 5.018E-01 1.072E-01 9.109%E-02
1.60 2.355E-02 1.1104E-02 4.921E-02 4. 017E-02 2.566E-02
1.80 9.052E-02 -2.2622E-01 8.604E-02 9.600E-04 4 . 476E-03
2.00 1.777€-02 -4 .2165E-01 1.214E-02 5.507E-03 5,637E-03
2.20 1.407E-02 -5.8986E-01 1.468E-02 1.358E-03 6.125E-04
2.40 6.733E-03 -7.3632E-01 5.480E-03 1.070E-03 1.254E-03
2.60 4.303E-03 ~-8.5603E-01 5.020E-03 8.612E-04 7.164E-04
2.80 6.864E-03 -2.4211E-01 6.860E-03 1.120E-04 4 .530E-06
3.00 4 .595E-03 -9.9021E-01 4.366E-03 2.135E-04 2.286E-04

Table 14. PaECa Forced Scalar Problem with c=1: a=7.01388

4-step Prediector/ 4-step Corrector hy = -2 = -.2
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y( 0.400) = 0.2272E+02
y( 0.600) = (.3775E+01
v{( 0.800) = 0.1096E+01
y{ 1.000) = 0.5943E+00
X Predictor Error Sclution IAv(l)f Global Error local Error
1.20 1.219E+01 6.1658E-01 1.243E+01 2.469E-01 2 . 469E-01
1.40 6.956E-01 3.9045E-01 §,817E-01 2.195E-01 1.861E-01
1.60 8.569E-01 5.6791E-02 9.131E-01 8.586E-02 5.615E-02
1.80 2.80CE-02 -2.2390E-01 1.966E-02 3.286E-03 8.334E-03
2.00 1.246E-01 -4 .2930E-01 1.382E-01 1.315E-02 1.360E-02
2.20 5.319E-02 -5.9315E-01 5.606E-02 4 _.650E-03 2.870E-03
2.40 1.118E-02 -7.3553E-01 1.367E-02 1.859E-03 2.489E-03
2.60 1.989E-02 -B.5464F-01 2. 189E-02 2.254E-03 2.002E-03
2.80 6.721E-03 -9 4161E-01 7.025E-03 6.081E-04 3.031E-04
3.00 2.277E-03 -9.9036E-01 2.724F-03 3.651E-04 4 4T74E-04



Stability along with better accuracy is obtained by wusing a
suitable value of the parameter c to reduce u.

An explanation of these examples will be postponed until we discuss
stability for the SIBDF in the next chapter. We see in these examples
that with a given order corrector formula, the predictor of order one
lower produces a more stable algorithm in the presence of matrix error
than does the predictor of the same order. Also with proper choice of

the scalar parameter ¢ we turn an unstable method into a stable one.

3.c. Variable Coefficient Implementation

When implementing a method, a facility to allow the step size to
change comes into consideration. There are two major choices: constant
coefficient formulas and variable coefficient formulas (see [20, »p.
90-95]). The constant coefficient formula would use precisely the
formulas presented above and the solution history would be at equally
spaced back points. The Nordsieck representation for the solution
history is the one most often seen in codes.

The variable coefficient formula uses past solution data that is
variably spaced (reflecting past changes 1in step size). One way to

accomplish this effectively is by using the Modified Divided Differenceg

(MDDs) [34]. The implementation chosen for the code STRUT uses the MDDs
and this distinguishes the code from other stiff solvers. Other
techniques to work with variable spaced past data are possible. EPISODE
[2,3] uses the Nordsieck history array to represent variable spaced past
data to represent the BDF, DASSL  [40] employs the Fixed Leading
Coefficient technique [28] with the MDDs to solve Differential-Algebraic

Equations with a BDF based method.
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3.c.i, Modified Divided Difference Representation

The Modified Divided Difference representation due to Krogh [34]
allows efficient implementation of variable order, variable step size
methods with error estimators. The MDDs avoid the lessened stability
properties of methods which use constant coefficient, fixed step size
formulas and interpolate in the past data when the step size is changed.
Fixed step size formulas were wused in the code DIFSUB and its
descendants GEAR and LSODE. An interesting plot demenstrating the poor
behavior of high order divided differences for approximating a function
when the spacing is cut by % is given by Krogh [33]. A discussion of
the implications this of property for high order Adams methods is given
by Hall and Watt [20, p. 101-102]. 1In this case, a reduction of step
size will not result in a reduction in error and a code would be forced
to drop its order, and possibly restart, to get any error reduction.

The derivation of the MDD representation for the Adams formulas and
BDFs is presented by Krogh [34] for first and higher order equations and
is directly applicable to systems of equations. The reader is also
referred to Shampine and Gordon [48] for a lucid explanation of the
derivation of the Adams representation for first order equations.
Krogh's Adams and Backward Differentiation Formulas were in terms of a
fixed number of corrections, namely two. This was, then, an algorithm
for the SIBDF. Krogh recommended using ratlos of successive corrections
to Jjudge the need for mnew correction matrices. We  present an
alternative scheme based on eigenvalue estimates in Section 6.c.

Since the MDD representation stores solution information at
variable spaced past points, coefficients for the kth order method must

be recomputed when the step size changes and for k-1 steps after a
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single change 1in step size. The coefficients are labelled dk’

th

corresponding to the fixed step coefficient, §, , and we have at the n

‘k]

step, xn,

h
% & n
Starting with d0 = 0, we have d1 =1, d2 =1 + TR , and
n n-1
hn hn
by = L . m
n n-l n n-l1 mn-2

Using the algorithms developed by Krogh, the cost is only linear in
k. Obviously, the cost of calculating coefficients is not important for
the BDF, except in how it affects relative matrix error. . Since this
can have significant impact on the algorithm, we examine the matrix B —

m
T - G‘lG. Consider the P(k)[EC(k+l)] method, The k—lSt order

predictor is a sum of dj’s and MDDs. The residual at ®_ using the

variable step size coefficient, dk’ is

; 3 dk .
(3-14) et = £y —pr - fD) -

h pn)
n

which defines G = 3r/dy = 8f/dy — - I. But the matrix used to compute
T

corrections is G =c¢ (J — al). Suppose the step size had been changed

the step before, at For simplicity, assume that G was formed

X‘ﬂ*l'

then, the order and step size have not changed and J is the correct ODE

~

Jacobian. If o was chosen to match the method coefficient of the
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residual at X 1 then the coefficient in the residual at X is slightly

different. If the matrix G is not refactored, then error will have been

introduced due to a previous step size change.

3.c.i1i. Fixed Leading Coefficient

We mention the idea of Fixed Leading Coefficient, due to Jackson
and Sacks-Davis [28], because

a) it addresses the problem of correction matrix error due to a
variable step size implementation,

b) it was wused in the implementation by Petzold of DASSL [40] of
the BDF-based method for Differential-Algebraic Differential equations
and

¢) it can be modelled by our stability model of Chapter 4.b,

The MDDs are used to represent the past solution history. A

variable coefficient formula is used to form the predictor. Then, given

that the correction matrix currently available is ¢ = J - al, the

A

residual used to compute corrections is

n el n

- Pn)

This defines a new corrector formula of the same order as predictor,
though the coefficient of the error term for the corrector may be quite

large. Any error in the correction matrix can only be due to J

differing from 8f/3y, not to changes in the variable step coefficient.
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3.d. Implications

It is expensive to reform the correction matrix and we seek a
device that will help avoid this. For a wvariable <coefficient
implementation, great care must be taken. The stability analysis of the
next chapter will provide a firm basis for deciding how much relative
error can be tolerated by a stable method using a fixed number of
corrections. This will make it feasible to use the higher order
corrector (Eqn 3-5). This is not possible with the Fixed Leading
Coefficient technique. The scalar ¢ modification of the correction
matrix will be relied upon to reduce error in the correction matrix due

to small changes in the dk’s after a change in step size.
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Chapter 4, Models of Stabilitv for the SIBDF

We investigate the stability properties of the methods presented in
Chapter 3, wusing two possible predictors and a fixed number of
corrections computed with a correction matrix that is in error,

returning to the assumption of fixed h and k. We then determine the

amount of relative error that can be tolerated by a stable method. This
is convenient because it eliminates the need to judge convergence. It
also removes concerns over what tactics to employ in the event of
convergence failure.

Klopfenstein [29] first investigated a class of explicit P(EC)m
alporithms involving a predictor (Egqn 3-1) followed by m applications of
the Newton-like process (Eqn 3-4) applied to the model system, y' = Jy,
Krogh and Stewart [35] presented a simplified derivation which postponed
diagonalizing the matrices involved in the algebraic manipulations so
that more could be understood about the relationship between predictor
and corrector. We will see this difference equation is more involved
than that for the BDF. Nevertheless, statements relating predictor -
corrector order to relative matrix error can be made.

The derivations in [29] and {35} focussed on the order of the
predictor. In this dissertation we select the order of the corrector,
and then study the effects that two different order predictors have on
the stability of the resulting formula. First we examine the general
nonlinear equation to make clear when the simplifying assumption of the

linear model problem is needed.
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4.a. The Nonlinear Problem

For the general nonlinear problem,
¥ =Y
the SIBDF will wuse the correction matrix E (Eqn. 3-6) which is
associated with either
a) the k step predicted solution P (Egqn 3-1) and derivative p°*
(Eqn 3-2) and k+1l step residual r (Eqn 3-5) or

b) the k+l step predicted solution p (Eqn 3-7) and derivative p’

(Eqn 3-8) and k+l step residual T (Eqn 3-9).

i ; . st
We will consider case a) first. Expressing the (i+1) corrected
th ; . ; : .
value at the n time step in terms of Previous information and

suppressing the subscript, we have

; & 5 .
A N N S T o P’ + £(p) — £(p)
h
Let
&
N L S
h

* *
with J° defined as J° - [v¢*)T by

ve (6"

) t
J = |VE (¢r.
e

; t
v 5

: i
where ¢. is a point somewhere on the line between,y{ ) and p. Each row
J
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*
of J results from the application of a Mean Value Theorem to the jth

component of f

ey = £y + 7P pyy.

Recognizing r = f{p) - p', we have

—p) + (0 G*(y(i)—p) G(y(l) =pJ .

Also,

(1) (l+1) y(i)

A

As in Section 2.¢c, we assume G invertibe. We now have

SO+ _ (1)

(4-1) G Tg* (y Gl p) + Y(i)- p+y

(1)

!

- ¢t ey = oy v

A

*
This shows that no change occurs after one correction if ¢ = G , 1.e.

the BDF (Eqn. 2-17). To obtain the vector difference equation, we must

write y(l+l) In terms of past data. We trace the term y(l)—p back to
y(l)—p — gy 00 —G_l(f(p)mp') which uses only differences of past
time steps via p and p’. The general nonlinear case will have G

changing on each correction within a time step. To proceed further, we

assume the linear, constant coefficient model.

4.b. The Vector Generalized Difference Equation (VCDE) for v'=Jv

We now concentrate on y' = Jy and remove the asterisk from the
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matrix & to indicate that it does not depend on which correction is

being computed. The SIBDF solution results from m corrections and is
me

denoted y . We repeat and expand the derivation from [35] for

definiteness. Let

Rewriting Eqn 4-1,

me (m) _ _%-1 (m-1)

y =3y = G A ¥ -p) + ¥y * P B
= "G'lA[—G ' v 2)—p) + y( ; p] +'<y(l)—p) +p
m-1
=-p+ } (—G'lﬂ)r (y(l) p)
=0
m-1
= i & } -yt | ("t (O,
r=0

We call B the relative error matrix

(4-2) B =@ 1K = —G'l(c—c) - T Bt

Assuming I-B 1is invertible, the sum above can be simplified using

m-1

E B" = (I -8™ (1-B)"!. Wenote that T - B = I+ ¢ la. Also

=0
1 -1r(0)) - _G-lr(U)

(I-B) ©~ = (-6 which comes from

1 1

1+ ety e L@y - oL ele b 610y L 1,00
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We write

v = [I - Bm] gt g 4 p

) -1 ) &
[IﬂBm}[J--EI] [p'—Jp+—Ep——kp}+p
h h h

)
[I - Bm] [—P relp - K p)] +p
Thus
Ik

B'p + [I - Bm] ¢1 (p’ — —= p)
h

(4-3) me

~
I

Using the difference equations for P (Eqn.3-1) and p’ (Eqn. 3-2)

and SOEO, the sums can be collapsed. If we label the matrix

m -1
(4-4) (I -B) G = Cm’

the vector generalized difference equation (VCDE) then is

k-1 ) &
mc m r k r
} B O+ Cm (;— — h—) v yn-l

(4-5) Y.

The VGDE (Eqn 4-5) will not be diagonalizable even when 'solving

¥y'=Jy unless there is some special relationship between J and J. For
example, if one knew J were diagonal, one could force the approximation

J also to be diagonal and so be able to dlagonalize Eqn 4-5.

We have a k-step vector difference equation. TIn Section 2.e, we

treated the k-step scalar difference equation. We assumed above Egn.
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A

4-1 that the iteration matrix @ could be inverted. Thisg assumption

allows the simpler techniques for monic matrix pelynomizals to be

applicable [14, pp. 18-19]. Without the assumption that the matrix
coefficient of ¥, can be inverted, the nonmonic matrix polynomial mnust
be dealt with [14, Thm. S§1.8 and Prop. §1.9 where a basis for the
solution space is constructed]. This 1is of concern when solving
differential equations coupled with algebraic equations and is beyond
the scope of this dissertation. See the article by Petzold [40] for an
Introduction to differential-algebraic equations.

We assume h, k and the matrices B and Cm involved in Eqn. 4-5 are
constant. For readability we suppress the fixed walue of the

superscript m to yield the vector difference equation

)
k 1 1 1
v B- € B(6,-6)0C Bi7(5,-5,)C B (85-6,)C ... o
Yol | I 0 0 Yn-1
= I -1 0
I 21 I k-1
n-k+1 yn_]_

with the n by n identity matrix I and n by n matrix of zeros, 0. The
vector backward differences of ¥n-1 are expressed in ordinate form using

Pascal's triangle. Egn. 4-5 takes the form

yn b % m] o

Yy _ I 0 0O o v )
(%63 mok 01 0© g | B2

n-k+l @00 0y .

the n by n matrices Ai representing the coefficients of the ordinate
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form of the backward difference equation (Egqn 4-6). Following the

development in [35], we define the kn vector

yn—l
- B o [
@ e - Paes
n-k

and label the kn by kn matrix in Eqn 4-6, W. We have

(4-8) VO awy™ w2y LRy

Y0 again represents the kn vector of starting errors for the k step
method.

As  In  [35], there are two simplifications of some generality for
which the VGDE can be diagonalized and stability analyzed easily. This
is discussed in the next two gubsections. In a third subsection the

full equation is investigated in the scalar case.

4.c. Zero Matrix Error (BDEF)

It is of value to develop here an alternative relationship between

the SIBDF and the BDF. Rewriting Eqn 3-10 for the linear, constant

coefficient problem, we have

bdf _ ,  °k . bdf
J yn =P + h (Yn p)
or
o bt _ ., ok
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Thus an alternative representation of the SIBDF from Eqn. 4-3 is

mc df bdf

m, b
(4-9) Yo = Bp, + (18T 59 o P ybdf]

+ B [pn =Fs
This shows that the correction process for the SIBDF simply introduces
powers of the relative error matrix, B, acting on the difference between
the k step predictor and the BDF solution in order to bring the SIBDF
nearer the BDF.

If one assumes B=0Q, equivalently G=é, one has from FEqn 4-9 the
equivalence of the SIBDF and the BDF when solving ¥'=Jy. Thus, the
absolute stability for the VGDE under the assumption that G=é is the
same  as absolute stability of the BDF. Accordingly Figures 1, 2 and 3
also represent the absolute stability regions for the SIBDF when there
is no matrix error. We now proceed to analyze cases that allow matrix

error.

4.d. Asvmptotic (h-x) Absolute Stability (AAS).

Examining the difference equation (Eqn 4-5), we notice that the
limit as howo will cause the coefficient of Cm to vanish. 1In the
super-matrix W (4-6), this causes the blocks of W to simplify, each AL
is a scalar multiple of B". The solution of a difference equation can
be expressed in terms of the eigenvalues of the associated companion
matrix. Since the eigenvalues of a matrix are continuous functions of
the elements of that matrix [27, Thm. 4-2], the limit matrix resulting
from W as h-» will have eigenvalues which are close to those of W when h
is sufficiently large. Working with this simplified case, we need only

assume B can be diagonalized in order to produce a solvable difference
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equation.

In solving stiff problems we are concerned with stability for large
h. We have analytic tools that allow us to analyze the VGDE in the
limit hw+o, Experimentation and the analsis in 4.e will guide wus in
determining how well these limit results pertain to the practical case
of finite, but large h.

We proceed to solve the difference equation for the limit case.
This case was originally studied by Klopfenstein [29] who defined

Asymptotic _(h-x) Absclute Stability (AAS) in the following manner [29

®

p. 453, Def. 1]

'The  algorithm is said to be asymptotically (h-w)
absolute stable in solving the system y'=Jy if the sequence

yn}n:O 1s uniformly bounded in norm for all sufficiently

large h = hO > 0 when the eigenvalues of T — J—lJ lie within a

region R containing a circle of radius ¢>0 centered on the
origin where ¢ is independent of h. '

The characterization here (and in [35]) differs from that of
Klopfenstein in using the error of the correction matrix relative to the
approximate matrix, I — GhlG, in place of the error of the Jacobian

=37
relative to the true Jacobian, I - J *J. Equivalent results are

obtained, but the analysis is not done in the same technical manner

since different assumptions are made. Klopfenstein assumed J was
diagonalizable with eigenvalues entirely in the left half plane. We
assume B = I -— G-lG is diagonalizable and make no assumption on the

eligenvalues of J. Klopfenstein assumed that all error was in the ODE

Jacobian. Taking the limit as h+», G+J, G-J and the relative error

matrix, B, becomes
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A A A ~ Py A
B T =8 o G- (E-g) = I (J=3) =1 — 3713
In a code we need a simple way of describing the stability region. For

this purpose we use the radius of the largest circle contained in the
stability region. One reason we prefer error relative to the
approximate matrix is that the regions that result are more nearly
circular,

The definition of Asymptotic Absolute Stability requires a uniform
bound on the solution of the difference equation. The limit case when
h== is not of interest in itself but it is solvable and provides
guidance. 1If all roots of the difference equation in the limit case are
less than one, we are assured that solution growth is bounded. TIf any
root has magnitude larger than one, then we can conclude that some
solution will be unbounded, We require, then, all roots of the
difference equation to be strictly less than one in modulus . By
continuous dependence of eigenvalues on the elements of the matrix, we
can conclude that for h sufficiently large, the solution to the VGDE
(4-6) will be bounded.

From Eqn 4-5, the limiting difference equation depends only on the

step number of the predictor and B.

(4-10) vy =B v yn—l =B p

If we had used the k+1 step predictor scheme (case b at the top of
this section), the derivation of Eqn 4-3 would be unchanged. When the

backward difference form for E (Eqn 3-6), and ﬁ' (Eqn 3-7) are
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substituted into Egn 4-3, we have

r k
-~ m
(4-11) y_ =13 = } B+ Cm (— — —) v o

k
(4-12) y, = B" E vy

As in Section 2.c on absolute stability for the BDF, the solution
of a difference equation can be expressed in terms of the eigenvalues
and eigenvectors of the associated companion matrix. For the BDF, these
eigenvalues involve hi, where ) is an eigenvalue of J. The eigenvalues
of interest now are those of the relative error matrix B which we call
7

o€ al(B)

If the matrix B can be diagonalized, the same matrix will

diagonalize Egqn 4-10. We begin with the standard substitution, yn=zn,

in the diagonalized form of the difference equation (4-10). Using the

difference identity (Eqn. 2-11), we obtain

n m v n-1 m n-1 1qrx
(4-13) z = p V'z = p z 1 - —
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Collapsing the finite geometric sum and solving for u, we have

(4-14) Wt -

We will use the boundary locus technique (See Section 2.¢c) to delimit

the stability repion in the u plane of eigenvalues of the relative error

ié

matrix, B. Allow z to take on values from the root unit circle, z =e
The right hand side of 4-14 can then be evaluated and we rewrite this

complex number in polar form,

1

1 - [1- e—lﬁjk
The m roots are then given by

1/m ei(w/m + 2nj/m)

(2%
I
<

B, = p .,m-1

J

Figures 4 and 5 present the AAS regions for the 3 step predictor and ¢4
step predictor with m=1, 2, 3, and 4 corrections. Since u=0 corresponds
to z=0, which is within the root unit circle, the origin of the u-plane
1s within the stability region. We therefore have stability in the
#-plane for values of # In the interior of the closed curves. AAS with
m=1 correction must have p in the most interior region. AAS with m=2
must have p2 in this same region, equivalently, x must be in the two
correction region. The effect of additional corrections iz to enlarge

the region of stability. Notice the tear drop shaped region for m—1.
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Figure 4. Asymptotic (h»e) Absolute Stability
3 Step Predictor (Order 2)
Stability Limitation in the 4-plane
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Figure 5. Asymptotic Absolute Stability
4 Step Predictor (Order 3)
Stability Limitationm in the p-plane
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Additional plots of AAS regions are contained in Appendix B. This

is most easily summarized by tabulating the radius of the largest cirele
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contained entirely within the appropriate AAS region. Table 15 ig
repeated from [35] giving the minimum radius of AAS region when a kth

order predictor is followed by m corrections.

Table 15. Minimum || for p on the Boundary of the Region
of AAS for a P(EC)™ Algorithm with Predictor of Order k

Values of k
m O 1 2 3 4 5 6
1 1.0 0.333 0.143 0.067 0.032 0.016 0.008
2 1.0 0.577 0.378 0.258 0.179 0.126 0.088
3 1.0 0.693 0.523 0.405 0.318 0.251 0.199
4 1.0 0.760 0.615 0.508 0.424 0.355 0.298
0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4.d.1  The Choice of m=2

Examinination of Table 15 shows that the effect of more corrections
with a chosen predictor is to allow more relative matrix error to be
tolerated by a stable method. One sees a dramatic increase in relative
matrix error that can be tolerated between m=1 and m=2 for all choices
of predictor order. Larger values of m bring only a modest increase in
tolerable error. This suggests that we choose m=2, P(EC)Z, as the wvalue
for an implementation of a SIBDF method. The experimental code STRUT
[52] successfully used this strategy on both the stiff [12] and
non-stiff test sets [26] It demonstrated that the theory developed for
h=o could be wused in practice for finite, and even small h. See

‘Appendix A for summary details.
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&.d.ii The Choice of P(K)[EC(k+1)]1% over P(irl)[EG(ks1)1>2

The VGDE for the L+l step corrector took two forms depending on
whether the lower order predictor, P(k), (Eqn 4-5) or predictor of same
order as corrector, P(k+l), (Eqn 4-9) was used. The analysis of the
asymptotic (h»») case shows that stability depends on the stability of
P(k) and P(k+1) and that P(k+l) tolerates less relative matrix error
than P(k). This is confirmed by the computed examples in Chapter 3
where the P(3)EC(4) method clearly outperformed the P(4)EC(4) when error

was introduced in the iteration matrix. We therefore choose to implement

2
the P(k)[EC(k+l)] method for the SIRDF.

4.e. The Scalar Problem (SCDE)

We extend the models presented in [35] 1in this section. The
matrices B and Cm appearing in the generalized wvector difference
equation (Eqn 4-5) will not, in  general, be simultaneously
diagonalizable. We have examined two limiting cases that eliminate one
of these matrices, namely, either B is zero or the scalar coefficient of
Cm goes to zero. Either assumption yields a difference system eagily
solved.

Another way to glean information from the stability model is to
examine the sgcalar case. This is possible for finite hX, X& . The
results will show that the AAS bounds derived in Section 4.c are
somewhat conservative values. The analysis will show the important fact
that the scalar SIBDF with finite, real hi will be stable for larger
amounts of relative matrix error as h gets smaller. This strengthens
the argument that wusing the scalars in Table 9 to Judge acceptable

matrix error will be adequate for the actual implementation case of
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finite h,

We focus now on the scalar problem

The results when i = ;, ; = 6(k)/h, c=1 constitute the case of the
tamiliar BDF absolute stability already studied 1in the system case
(Section 4.¢). The stability plots in the h) plane were given 1in
Figures 1, 2 and 3. Now we examine the effect of error in the matrix
used to solve for the corrections.

We begin by examining the results of error in the coefficient ; to
explain the behavior of the examples for a single correction presented

in Tables 3 through 8 in Chapter 3. let m — L, =X, e= 1 and a s

§(k)/h. This causes

A 6. /h + o 6, — h a
B=I—‘1G:_—5—;—= L =
A — hX - ha
and
1
A
C, = (I-B) L= ¢l - x
1 A
[0 4
When the standard substitution, s = zn, is made in the sealar
version of (4-5), the result is
k-1 A
&, ~ho 1 & —& 1
Zn=§ *LAH-—*F A{r k} an(l———)r
hi—ha A—cr h =
=0

63



k-1 1 -r
z hx - } ) [1 — ——‘]
r
A T a
(4-15) ho - —I0

ig

Again, we use Egqn 4-15 to map the unit circle in the root plane, z=g
A

into a stability limitation on hax. The finite values chosen for hy
should be interesting values which are easy to work with and analyze .
The previous computational examples (Tables 3 through 8) had hy = .9

Once ha is found, the value for the eigenvalue of the relative

error matrix is

A

5. — ha
(4-16) po= k =
hA — ha

which is plotted in the Figure 6 for the 3 step predictor with 4 step
corrector (the second order Predictor with a third order corrector),
The region of absolute Stability is the interior of the region since the
origin, u=0, corresponds to the BDF third order cortrector which is

absolutely stable when hi = -2, (See Figure 1),
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Figure 6. P3EC4 Scalar SIBDF with h\ = -2

Stability Limitation in the k-plane
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Table 3 (from Section 3) presented the example results for p=0,
hA = -2 and revealed the stability of the P3EC4 SIBDF (equivalently the
BDF) for ; = 63/h = 10.41667, the correct coefficient since =0 .

Table 4 presented the case for hA = -2 with non-zero u. The wvalue
of 4 will also be real, since the scalars involved are real. The value
# = -.2 was chosen for this example because we will relate u to the rate
of convergence of an iterated corrector and some codes accept a

convergence rate of .2 as acceptable, Notice the circle of radius .2 is
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A

entirely within the boundary image curve in Figure 6, The value o -
7.01388 was computed to give this value of u. Although this represents
significant absolute error in the correction matrix, it is a relative

error of 20% and is stable for the SIBDF P ECa. We see from Figure 6,

3
that for hi = -2, the PyEC, will be stable for any [u]| < .391.

We pass over Table 5 which demonstrated the PQECA with p=0 and
reproduced the BDF stability behavior.

To explain Table 6, we must examine the stability for a PaECa S1IBDF
with matrix error. As we saw in Section 3-4, this uses the same
correction matrix, with residual defined by the ¢4 step predicted
solution and derivative. The difference equation (Eqn 4-6) is derived

in Section 4.b, differing only in the summation termination. Repeating

the development above, we have the scalar equation

k Sr—ha 1 ,
Z=§ Y (l_—'_)
hX — ha z
r=0

We fix the value of hi, solve for ho given z on the root unit cirele and
compute the corresponding u. The result is presented in Figure 7,

revealing a greatly reduced region for stability in the #-plane.
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Figure 7. P4EC4 Scalar SIBDF Method with hi = -2
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The computed wvalues show the severe effect of correction matrix
error when the step number (or order) of the predictor matches that of
the residual. We emphasize both examples wuse the same corrector
formula. The same matrix with the same error was able to compute stahle
values for the SIBDF P_EC, method but not for the PAECA' 0f course, if

3774

a second correction had been performed for the PAEC4 example, stability
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would have been assured since then p2 = (—_2)2 = .04 would lie well
within the 4 step predictor, 4 step corrector stability region.
Examining Figure 7, we require I#I = .143 for a PQEC!4 to remain stable
when hXx = -2,

In Table 7, we saw the benefit of the chosen parameterization for
the relative error matrix invelving a scalar value, c. Although we have
not discussed the arguments that go into the computation of this scalar,
the effect of using it is clearly evidenced for the P4EC4 case. It hag
reduced the size of the relative matrix eigenvalue to g = -.009 which
produces a stable computation,

We want more information on the relationship between 4 and
different linear problems, which are categorized by the choice of A. 7Tt
is not convenient to examine in detail the results for each gpecific ha,
Thus, we choose to characterize a broad spectrum of hA in the following
manner. Given the magnitude of [hAf = 2, we need only specify its
argument, Six equally spaced arguments for hiA in the upper left

quadrant were chosen and the corresponding p computed using Eqns 4-15

and 4-16. The curves would be reflected about the real axis if )\ were

replaced by XA. Since A and i appear 1in pairs when solving y' = Jy, we
need only look at the intersection of the two regions, which happens to

be that above the real axis.
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Figure 8. P;EC, Scalar SIBDF Method with |hA| = 2
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Examining Figure 8 for IhA] = 2 with arg(hi) = 900, we see the

boundary image curve passes through the origin of the u-plane. This isg
consistent since u=0 is the BDF, and hi = -2i isg a ‘point on the
stability boundary in the hi-plane for the third order BDF (See Figure
1). This indicates that even for the third order, 4 step corrector,
better stability is possible for A purely imaginary if one chooses a
non-zero value for p, say u = -.1i, and computes corrections with the

)

incorrect « which results. Accuracy, though, would be expected to be

impaired.
The case of finite h) allows us to respond to the question, "When
do the asymptotics apply?", 1i.e. for what finite value of h will the

model results of AAS be applicable. Figures 9, 10, and 11 show the case
for PSEC4 for IhAf=1, |hx|=5 and lhk]=25, respectively. We see the

smooth emergence of the tear-drop shaped region characteristic of the

AAS model for m=1. The indication is that for [hAI=25, the region is
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nearly 1indistinguishable from the asymptotic case. When solving stiff
problems, having |hA| = 25 is not uncommon for some eigenvalue of J, but
stability requires all eigenvalues be examined. .

Figure 9. P,EC, Scalar SIBDF Method with fhaf = 1

Stability Limitation in the #-plane
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Figure 11. P,EC, Scalar SIBDF Method with |hA|=25

Stability Limitation in the u-plane

I i
m !
m AEgLhN 2
: . 184
Y 162
n
" 144
: ] ¥ 1)
5 a3 urist abie a8
P
a .23
stairle
H
_a : ‘ 9] ‘ ;5“%? I
R -5 -5 -5 # « -3 : £
5 Real fwis

Section 4.f. The VGDE Focussed on the Predictor Formula

We extend the applicability of the VGDE by focussing on the
predictor formula, This was the approach pursued originally by
Klopfenstein [29] and by Krogh and Stewart I35] and allows wus to
highlight other implementation schemes.

We have seen graphically that the limit case (h-ow) ig applicable

for the scalar problem when ]hA] = 25. We have also seen that stability

m m
in the limit case h+w of P(k)[EC(k)] and P(k)[EC(k+l)} is the same,

These two methods differ only in the coefficient used in the residual.
This is the coefficient that multiplies the highest difference in the
corrector formula. We parameterize the basic method in terms of this
Ca— . b D .
coefficient. Let P, = @k,n—l(xn) and b/ @k,ngl(xn) as before in (Eqn

3-1) and (Egn 3-2). Define the residual
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(4-17) r. =1t - P, -2 (y - p)

where a=5k/h specifies the k+l step corrector forpula of order k

2

a=6k_l/h specifies the &k step corrector of order k-1. The YeDE takes

the form

k-1 S
(4-18) y, - } [Bm + G {Tf - aH vy,
r=0

Klopfenstein used this flexibility in his paper to investigate 4
choice for method coefficient, «, that would improve the stability of
the corrector. Though optimal values were found, the method would be of
order k-1. The improvement of stability for the modified BDF corrector
appeared was modest from Klopfenstein’s analysis,

It we wview this as g model of a variable coefficient method

(Section 3.c), one could also choose o to implement the fixed-leading

coefficient technique (Section 3.e.ii). In thisg case, the method
coefficient a = g eliminates the difference with the iteration
coefficient. Still we have a method of order k-1, but p=0 is the

Jacobian is exact.

This gives us another interpretation of the P(k){EC(k+l)}m choice
made earlier, Since stability in the asymptotic limit is the same, we
choose to implement the higher order BDF corrector to improve accuracy
of the overall scheme. This can be considered local extrapolation [49]
of the (k,k) BDF predictor-corrector pair, both of order k-1 contrary to
the choice of Byrne and Hindmarsh [2, p. 77] for their variable

coefficient implementation of the BDF called EPISODE.. Choosing the
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higher order corrector with a variable Step implementation means the
method must be explicitly concerned with relative matrix error. This is

discussed in Chapter 6,

Section 4.g. Implications of the Stability Models

The Asymptotic (h—+) Absolute Stability model allowed us to choose

2
P(k)[EC(k+l)J

as a good method to implement (Sections 4.d.i and G.od.ii), If a way
could be found to estimate the spectral radius of B, p(B), dynamically,
then this could be used with the results of Table 8 to predict when the
two correction matrix is about to go unstable in an order dependent
manner. It is to be expected that in comparisen to lower order methods,
the high order methods would need to wupdate the correction matrices
frequently to keep p(B) within their more stringent asymptotic limits.

The scalar results indicate that the asymptotic results are
conservative, Let us examine the extreme cases of A real and 2
imaginary. When solving problems where Im(XM)=0, for all Ai’ the
k-region shrinks uniformly as hi-w, Therefore, the AAS results are
conservative when applied to the problem with hi real and finite for all
values of h. Of course, the BDF have excellent behavior on the negative
real axis and we anticipated a correspondingly favorable result for the
SIBDF.

As Im(Ai) begins to grow for some Ai, we must be content with the
poor behavior of the BDF on the imaginary axis. Figure 9 confirms the

fact that the AAS does not contain the origin for A pure imaginary, with
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0o matrix error (u=0). The stability regions which must contain p ¢
g(B) are larger for small hi. As hX -w, the regions uniformly shrink,
thereby allowing less error to be tolerated in the eigenvalues of the

relative error matrix, B.
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Chapter 5. Accuracy

Following Chapter 2 (Eqn. 2-6), we take the local truncation error
(r) to be the difference between the true solution and that provided by
the method using past true solution values. The resulting form for
will reveal the dependence of r on h and k, but also on B, the

eigenvalues of the relative error matrix, as well on as the number of

corrections that are made. Since the SIBDF and the BDF are cleosely
related, we will find that TEIBDF and r:DF are equal when either n=0

(the BDF), or lu[<l and m+o (BDF has been iterated to completion),

Since the order of the predictor played a prominent role in the
Asymptotic Absoclute Stability model, we begin with the local truncation
error of the k-step predicted solution, P (Eqn. 3-1). This ig the
result of extrapolation of the polynomial defined by k interpolation

conditions at equally spaced back points.

y(xn) =By = h(2h) (3h)...(kh) y[xn~l""’xn-k’§xn]

k k (k)
(5-1) SVPE, I~ by ey )
n n

where £ ., ¢ | and 7, Tepresent unknown points depending on x in the
-4 X

smallest interval containing Xn-k""’x , and x.

n-1

Section 5.a. P EGC. . Method for a Nonlinear Svstem
k=&t

To obtain the local truncation error for the computed solution,

ymc, we must take into consideration the algebraic system defining it,
n

First, we look at the case for m=1 applied to the nomnlinear systeam, y' =

f(x,y). The method is then defined by equations 3-1, 3-2. 3-4, and 3-5
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from Chapter 3 to vield

and the local truncation error results from subtracting from the true

solution to yield

Le -1 ,
n y(xn) G)k,n—l(xn) v [f(xn’pn) - ¢ ,n-l(Xn)]

T

k

All work is at x = X, thus the independent variable will be suppressed.

We do not assume autonomous systems. Using a Mean Value Theorem,

) = G + 3% (b - y(x ))

We have
rm= et 6 vy + £y ) 4 g ¢ () ) =6 (x)
n Y n pn o n pn Y n k,n-1'"pn
= G [ (6= ) (Y(Xn) *’Pn) 1 yx) - @k,n-l(x) }
dx X=%
j41
(x-—=x Jovn (Koix )

i -1 -k k .
Since y(x) - @k’n_l(x) = i hk o o v y(fx), using the
definition of Sk {(Eqn 3-3), we have

e gl [ og® S Wy v L v ]

Ty =6 [( TR e e i, N y % a2 ¥ 3, .y
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% * k . k
Let G = J - —" 71, Using y(x ) — P =V (£ ) from (Eqn. 5-1), we
n n X
h n
have
A-1 ~ * k A—l
(5-2) r-elee) v Y€, ) + 6 {hk y g, )}
n *n
Consider the situation in the nonlinear case when G = G* so that

the first term in (Eqn 5-2) disappears. With the assumption of no
. lc bdf .
matrix error, we know o, * ¥y o whose local truncation error (Eqn 2-6)

can then be expressed

T(ybdf) = [ G* J_l { hk y(k+l)(ux )}

I

This leads us to interpret the 1local truncation error of the one
correction SIBDF as the sum of an approximation to the loecal truncation
error of the BDF plus the effect on the error of the predictor due to
the term -é'l(c—é), which we have already seen controls the stability of

the formuls.

m
sSection 5.b. P(k)[EC(k+l)J Method for y'=Jy

To analyze the case of a two OT more correction method adds the
*
increased complexity of a different J for each correction. To make the
analysis  tractable, we assume the case of the linear, constant
* -
coefficient system so that J = J for all corrections,
We begin with Eqn. 4-9 in the derivation of the vector generalized

difference equatlion

me bat = om [pn _ bdf}
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The local Lruncation error, TEC = y(xn) - yﬁc is expressad as
(5-3) Tmc _ def n Bm ybdf -
n

The effect of additional corrections is to reduce the local truncation
m :

error by the effect of B , which for a stable method hag all its

. . bdf |
elgenvalues less than one in modulus. However, the term r is always
n

Present. Although the two terms may combine to give an answer even

smaller on any particular step, over g4 sequence of steps any large
values appearing will dominate.

This form also relates the SIBDF to RDF when an iteration scheme ig

applied to solve the implicit equation. Recall Eqn. (3-13) stating that

A

when the BDF uses the iteration matrix P. Contvergence of the iteration
. . me

requires p(B) < 1. Ve interpret T to represent the error of the BDF

iteration when u corrections are formed. Taking norms, we have

S L I Ll N o e I 2%+ i 52%E — 5

Section 5.c. Estimation of the Local Error

The estimation of local error, LE, is more expensive for the SIBDF
than for an Adans Predictor/corrector due to the need to solve a linear
system in the solution process. The method attempts to satisfy the
collocation condition on the derivati&e and we want the error of the

corresponding solution. The estimate used in the code STRUT was first
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presented by Krogh [34] Eqn (3.2.4). Ve estimate local error by the

difference of a result of order k, yi, and a result of order k-1, yk_l_
bal

The solution process computes m corrections to the predicted value.
Let the forward difference operator,

A(r)yk

n ’

th 5 th
be used to denote the r correction at X for the k order corrector

formula (when 1less detail was needed (Eqn 3-4), we called this term

Ay(r)). Similarly for A(r)y:—l. The correction process (Egqns 3-1, 3.2
and 3-4) yields
m
k (r) k
yn—pn+§ﬂ Y,
r=1

m
Egns. 3-7, 3-8, 3.9 nust be adjusted to produce the P(k)[EC(k)] method

A & m
using a different correction matrix, G = J— —%Ll T, than P(k)[EC(k+l)} ;

~ 6
which used ¢ = J — EE I. This defines

m
o | r) k-1
y =Pn+§ﬂ( y

n n
r=1

To reduce the cost, we derive an approximation for LE in terms of
information already available from the correction process. We foecus on

the first correction defined by the relations
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) k

K 1

(5-5) G- ey ey e -
b1 (1) k-1

(5-6) J-—=—1)a Yo = = @I;’n(xn) — Ep_ )

6, — 6
Adding A ksl Ayk to both sides of the first equation and subtracting
gives
& 6. —6
. _ k-1 W) _ ooy Pk %K1 (1)
S e s R A Tn Ay
P
-k, (D
“h Ay

It was felt impractical to solve & linear system to obtain an error
estimate, though this is the tactic used by Sacks-Davig [43] in his
implementation of the second derivative method for stiff ODEs.
Additionally, there is the complication that the matrix available to our

2 Sk
P(k)[EC(k+l)] method is J — n I. We develop a simpler estimator

through reasonable assumptions,

We can examine the behavior as ho0 in Eqn 5-7, by first multiplying

through by h and then taking the limit and solving for

%
8

(5-8) LE = 6—3— AD E
k-1

At the other end of the spectrum, when IhAi| is large, we assume that
A diag(Al,._.,An), Re(Ai)<O. We can directly solve for the ith

component of the estimator
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6
(L k(1) k-1 _ k (L) k
[A Tp T A Yn . hx_—§ @ Inj .
i i "k-1 i
Setting Ai = 0 makes this more conservative and yields the same result.
Thus,

Eqn. 5-8 is the actual local error estimator used in the code

STRUT. Note that it is based on first correction information only.
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Chapter 6. Inplications of Relative Matrix Error

Stability theory in Chapter 4 guided wus toward the Pk[ECk+l]2
method. Limits are placed on the size of the eigenvalues, u, of
relative matrix error, B, for an Asymptotically (h-w) Absolutely Stable
method. The code must now explicitly monitor this to keep the process
stable, We explore in this final chapter the implications for a SIBDF
implementation of the theory developed in the Previous chapters,

The Modified Divided Difference (MDD) representation was chosen for
the SIBDF formulas based on its improved performance in  Adams
implementations (Section 3.c.1). This allows variable step size
Formulas, at the expense of recomputing the differentiation coefficients
for k steps following a single change in step size. For an effective
MDD method, it is hecessary to have some mechanism to smooth out the
effect of coefficient error in the linear algebra. Otherwise, one would
reform and factor the correction matrix due to the small changes that
oceur after a single change in stepsize, This task is accomplished by
the parameter ¢ (Section 6.a).

In Section 6.b., we discuss how one dynamically uses estimates of "
to improve performance. This includes using PEC steps when possible,
and PECC steps to perform iterative improvement, saving on a function
evaluation. Commonly used strategies of wupdating a matrix whenever
order or step change were avoided in the implementation of a code using
the SIBDF since these changes are frequent. Instead the estimates of g
signal the need for correction matrices and CDE Jacobian.

Finally, in Section 6.c., we discuss how estimates of fp[ are

computed. We relate g to convergence rates used by BDF codes to Judge

82



the iteration process and point out the limitation of using the norm to
A-l ~

estimate eigenvalues. Direct estimation of the eigenvalues of -G (G-G)

are used to aid in method selection and Inexpensive techniques were

developed.

Section 6.a. low Cost Reduction in Matrix Error

The secalar c¢ modification of the correction matrix is relied upon
to reduce error in the correction matrix due to changes in the MDD
coefficients after a change in step size and, when possible, a change in

order.

It is common in the integration of a stiff system that there will
be regions where the stepsize will grow rapidly when a method without
stability restrictions is used. Consider the model problem, y' = Jy,

with J given by the 2 by 2 matrix

with Re(A) << Re(u) < 0. The solution given starting value

y(0) =y,
is
At eAt—eut
e . 12 ‘\—_“—
Jt #
_')T(X) = € yo = YO
0 e“t

The truncation error will involve scalar multiples of
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k+1y(k+l) k+1 Jk+l

h (x.) = h

» yx ) =

| (kT b oEnk L, s AR X

y(x_)
0 (hp)k+l

whose norm will die out only as the components of y(xn) decay.

Once e)‘t has decayed out, accurate computation of the first
component in the solution may still impose a limitation on the step size
due to the off diagonal term coupling in the e#t term. This depends on
the relative size of A\, u and w. In the case where w 1s small, the step
size will be limited only by stability until the product huy becomes
active in the error estimator. We would like to allow increases in step
size as rapidly as possible while maintaining stability.

We use the scalar parameter ¢ to reduce the portion of the relative
matrix error that is due to changes in the step size or order.
Therefore, we assume there is no error in the ODE Jacobian, J = 3.
Actual implementation of the Strategy we will develop demonstrated that
this is a reasocnable assumption since it produced improved performance
even on the nonlinear problems. We repeat and expand on the
presentation in [35].

Let a represent the currrent ratio of method coefficient, dk’ to

step size, h (as in Section 4.f)

e =

%
h

A

Let a represent the corresponding value that was used when the
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~
- correction matrix G was formed. Ag in Eqn. 3-6, the correction matrix

o A

A
is G = ¢ (J — al), but now we want to think of the o corresponding to
some previous time step when, perhaps, a different order and step size
was being used. The relative error matrix is then

-1

B = "(60) = _i“ (;14)'1 [(l—c) T — (czk;) I}

If X is an eigenvalue of J, then

1 a — X
(6-1) #(Cs’\) = Lo A
c
a — X

is an eigenvalue of B,

An  argument is presented in [35] to specify an optimal ¢ under the
restriction that it be a real scalar. This yvields a simple scheme for
incorporating ¢ into the solution process. We have the linear system,

~ ~

c{J — al) Ay = —r, which we rewrite asg

Fal A

(J — al) Ay = — —%— r

~ A

The LU factors of (J — al) are retained from step to step, and the
residual is multiplied by 1/c before the solve is done. It is then
simple to vary c on every step to compensate for matrix error.

The derivation of the strategy used to select ¢ is long and will
not be repeated here. Instead, we look at gome of the highlights. For
a scalar problem, y’ = Ay, one can show that when the step size ig

consistently increasing, a value of ¢ < 1 will reduce the size of TR
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Similarly, when the step size is decreasing, ¢ > 1 will reduce b. Since

the nominal value for c¢ is near one, we write c as

n

for a real value s. It ig then shown that for any given Xe , the value

for s which minimizes Ip! is

A 2
= g P L tm(A) "
s = Re(a) + & - Re(X)

It 1is then found that the argument for A that produces the largest [p[
is arg(ir) = =n/2. Assuming tht X = iy is purely imaginary in order to
reduce the complexity of the task produces a conservative estimate for

the worst case A as

It is not possible to choose a single value to minimize

p(B) = max |u|
i

when J has n eigenvalues, Ai' To determine whether p(B) will ©be
increasing or decreasing with y over the whole range of eigenvalues, we

look at the boundaries of the spectrum. Let
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One can show by algebraic arguments that if s.< 2, then ||

1

increases as !A[ increases and we minimize Iﬂl by using the largest
~

value of ]AI, lAmaxl and set s = 3 If 8, > 2a, then [#] decreases as

1-
]A[ increases. We use the smallest value of [A[, lAminl’ and set g= S, .
It is quite likely that neither condition holds since we know s = So-
In this case one balances between the largest and smallest ]AJ and uses

A
s = 2.

& suitable wvalue for ¢ is thus determined from the range of the

gpectrum of J.

Sgction 6.b.  Dynamic Uses of Relative Matrix Error

When a BDF method is implemented, one must decide how to terminate
the iteration on the collocation condition and when to update matrices.
Many implementations update the iteration matrix whenever step size or
order is changed. When using a fixed step size formula, this implies
that the only error in the iteration matrix is due to changes in the
Jacobian of ODE. Termination of the iteration is typically decided
using ratios of successive corrections. A lack of convergence is due to
a step size too large or ODE Jacobian error.

In Section 4.c., the Asymptotic Absolute Stability model assumed a
linear constant coefficient system and fixed order and step size., The
analysis allowed us to choose the Pk{ECk+1]2 SIBDF as a reasonable
method to implement. The implementation used in the test code STRUT for
general mnonlinear differential equations varies the step size and the
order at each step. Because this differs significantly from the
theoretical assumptions, experimentation was mneeded to verify the

practicality of the idea.
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Our approach to the SIBDF uses estimates of the eigenvalues of the
relative error matrix, B, to indicate the need for new correction
matrices before the step is attempted. Although there is no termination
decision since m=2 ig the fixed number of corrections (see Section
4.d.1), a p(B) estimate below the m=1 limit will be used to Justify

making onlvy one correction whenever ossible,
g Y P

6.b.i. Requesting a New Correction Matrix or Jacobian

We postpone discussing how the matrix error estimates are obtained

until Section 6.c¢. There are two estimators,
A—l Ea)
REG =~ p(B) = p(G 7 (G-G))

approximatin the largest eigenvalue of the relative error matrix
PP & & g

assuming J = J and
A-l fal
REJ =~ p(G ~(J-J))

approximating the largest eigenvalue of the relative error of the
Jacobian.

At the end of each step, the order and step size are selected by an
algorithm similar to those proposed by Krogh [34]. The value of REG is
predicted. The implementation in STRUT uses a modified version of the
AAS limits presented in Section 4.c. The order 6 predictor is not used.
The minimum ]pl = p(B) for predictors of order zero and one predictor

are more conservative. The following array is called STARLE.
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+ Table 16. The array STABLE (k,m) used in STRUT

Values of k
o) 1 2 3 4 5
m
1 0.35 0.30 0.143 0.067 0.032 0.016
2 0.50 0.45 0.387 0.258 0.179 0.126

If REG > STABLE(2,k), indicating that more than two corrections
will be needed to keep the method stable, STRUT will form a new
correction matrix before the next step is taken. There 1is still the
question as to whether a significant change in the local behavior of the
ODE has occurred since 3 was obtained or whether changes in order or
step size caused the error in —a-l(G—é). Hindmarsh has wused the
technique of using the old Jacobian when forming a new iteration matrix
if order and step size changes account for at least a 30% change from ;.
[Hindmarsh, personal communication, 1982}. He has seen evidence in the
use of the sparse matrix code LSODI of the benefit of this strategy.

With the estimator REJ, STRUT attempts to measure directly how much
3 differs from a J* defined by a Mean Value Theorem. If REJ is less
than the STABLE(1,k) value, the old 3 is judged sufficiently accurate,
S0 E is formed using the old 3 and the updated coefficient, ; (provided,

of course, that the user has been willing to provide the extra n2

storage locations for the old Jacobian).

6.b.ii Reducing the Number of Corrections

At the beginning of the step, the order has already been selected

at the end of the previous step. The value REG is tested against
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STABLE (k,m) to select the number of corrections to perform, m=1 or m=2.
A value of REG larger than the 2 correction limit isg unlikely since the
value was predicted at the end of the previous step and such a value
would have caused a new matrix to be formed. Should this occur, though,
two corrections are performed and a new correction matrix formed to
reduce Iul before the next step is attempted.

There is a close relationship between the size of the largest
eigenvalue of the relative error matrix and the rate of convergsance
should the corrector be iterated as described in Section 6-c¢ (Eqn. 6-3).
The rate of convergence is used by most of the current production BDF
codes to pgain assurance that the corrector iteration has solved the
implicit equation to a sufficient accuracy. A rate of at least 0.2 isg
commonly required. The analysis of Asymptotic Absolute Stability showed
an order dependent relationship between stability and fp[, hence that
using a single bound would not be effective for the SIBDF.

We found experimentally that using the rate of convergence
estimators was impractical for the needs of STRUT for three reasons:

1) Unreliable. Noise in the computation of the residual is

typically magnified by the large condition of the correction matrix into
the corresponding Ay.

2) Crude. The norm provides only a crude upper bound on the
eigenvalue. Overestimating this value results in a loss of efficiency
for our implementation of the SIBDF due to requesting correction
matrices much more often than Necessary.

3) Expensive. A two iteration method (PECEC) is needed to
i+l

estimate |Ay ”/“Ayi” or a two residual method (PECE) is needed to

estimate ”ri+1”/”ri” it these estimators are to be formed at each step.
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Though we selected P{ECJZ for implementation, PEC steps are frequent in
STRUT,

The essence of the matter is that the algorithms in STRUT attempt
to predict error rather than respond after the trouble has been

observed.

6.b.1i1 Reducing Function Evaluations - PFCC Steps

When a two correction method is to be attempted at the current

step, a small wvalue of REJ suggests that the error in the correction

~

matrix is due to a discrepancy between a and dk/h' Thus iterative
improvement ([13], P. 49-54) might have an effect similar to that of a
correction using a new function evaluation. The typical correction

scheme ig:

(0)

y ' =p
£0F = £(p) — p’
1
) gy y(0 4y
D o £y )~ pr - —glf v Pp)

We rewrite the second residual using a Mean Value Theorem
0 * 1
ey < (D) ¢ 5* 4y

as
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1) o

- 3 - H;k 1) ayD — g Ay

~

[0~ ey = (o~ eny] ayD)

]

* A
IfJ is sufficiently near cJ, we can use

(6-2) r(l) = (c; —-—E—) Ay(l)

to generate the second residual. The linear system is then solved for
Ay(z).

The decision on when c3 = J* is sufficently small is made in an
order dependent manner by using the STABLE array. It must be the case
that REG > STABLE(k,2) to force two corrections., If REJ < STABLE(k, 1},

then the PECC is performed with (6-2) used to generate the second right

hand side,

6.c. Estimation of the Relative Matrix Error

The Asymptotic Absolute Stability model for the SIBDF Testricts the

A—l A
eigenvalues of the correction matrix, B = -—¢ (G — ). Thus an
implementation of the SIBDF must control these values to remain stable.
There are estimates of IB] available from the ratio of the norms of

*
successive corrections. Let J be the matrix guaranteed by a Mean Value

Theorem satisfying

£ = B Meay™ - £™ 4 oY A"
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In forming the correction, Aym, we have

m 6k m
G Ay & =r =—[f(y)—p‘—~h(y—p)]

5
*
- —TITI) ay™ + ™

* -
-~ [6 - @] ay™
* x °
k
with 6 = J - = L. Alternatively, one has
* I A_
e R W RN

If one 1ig willing to perform two corrections, lower bounds are

available for the norm of B* = T - G_IG* from norm of successive
corrections.
+1
ay™ ) 2
(6-3) T = I3 = |n|
lay™|

The norm of the matrix which was the basis of Klopfenstein's analysis,
(G—é)G_l, can, then, be assessed by the ratio of norms of successive
residuals.

Unfortunately, an upper bound on the spectral radius of B i« nieeded
for any stability decisions and, as we observed earlier, the norm
approach provides too crude an estimate of the spectral radius, We

therefore estimate directly the largest eigenvalue of B.
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A scheme that has proven effective is to estimate the error in B
assuming that the ODE Jacobian is correct. Recalling the form chosen
for the correction matrix with J =7J, ¢ = c(J—al), we developed an
estimate of the maximum eigenvalue of

1 N ..l A
B = o (0 — al) [(1-e)T ~ (& — ca)l]
in Section 6.a in the process of obtaining a good value for the scalar
parameter ¢ using estimates of [A [ and IA . I of the ODE Jacobian.
max min

Given ¢, we compute using Eqn. 6-1 the value

(6-4) lul]  a
J=

as an estimate of the spectral radius of B.

A power method in real arithmetic, based on the algorithm of
Franklin ([14}, pp. 238-239), is performed to estimate the magnitude of
the possibly complex eigenvalue Amax' Similarly, an inverse power
method 1is wused to estimate IAminI' These are expensive Procedures and
are used sparingly.

We estimate separately the absolute error of the Jacobian, Limit

consideration to autonomous systems

y' o= f(y)

* al
and examine the difference of a J spamming several time steps and the J

~

currently used in G. Let
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*
J Ay = Af

where Ay = y¢ Je o= y(xpast) and Af = y (Xcurr) — ¥y (x ). The Ay

x
curr past

is chosen large enough to allow differences to be formed that will not
be dominated by round off error.' We must store two n-vectors of past
information, but it is hoped this Ay will reveal the current action of
the Jacobian. The effect of a torcing function in fix,y) is being
ignored, but one can argue that for stiff problems, this is not a
serious consideration. A forcing function would be ‘holding the step
size down for accuracy if it were contributing significantly to the
derivative and the pProblem would not be stiff. |

A

One estimates the absolute error in J by

| a8 -5 ay [ / Jay

I

| "3y ay | / Jayl

| a5 — ¢ 6 +aT) ay | / Jay]

I

A

which has the same cost ag a backsolve/forward substitution since GAy
must be formed from the LU factors of the correction matrix. This

absolute error is then taken relative to the size of ¢ producing the

estimate

AE — JA
(6-5) RES - JAF = Joy|

lel ay)
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The relative error of G is then estimated as the sum of Eqn. 6-4 and

Egn. 6-5

(6-6) REG = |u|| . + REJT
J=I
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Chapter 7. Conclusions

The Semi-Implicit BDF form an effective alternative family of
variable order, wvariable step size formulas for solving stiff ODEs.
When compared to the BDF, they have the additional cost of estimating
eigenvalues of the Jacobian to produce estimates of p(B). The benefit
is better control over the linear algebra needs of the algorithm,

The Asymptotic (h-w) Absolute Stability model presented in 4.4
relates the order of predictor to the amount of tolerable relative
matrix error. Since the tolerance of relative matrix error decreases
strongly as the order of the formula increases, we conclude that more
care must be taken with the higher order formulas. Since relative
matrix error is related to the convergence rate when the BDF are
iterated, BDF implementations may benefit from Incorporating an order
dependent test on convergence.

The  Asymptotic (h-e) Absolute Stability results showed that
performing two corrections substantially increases the amount  of
tolerable relative matrix Error over a one correction method, but more
than two is not justified. We therefore chose to implement the m=2
correction method. When more than two corrections would be required,
the matrizx error is reduced by forming a new correction matrix.

The stabilty models and example performance also clearly show the
benefit of using a predictor of order one lower than corrector. Though
the justification of the lower order predictor in the Adams fixed number

of correction method 1is different, STRUT uses Shampine and Gordon's

implementation of the

PkECk+lE

for the Adams-Bathforth-Moulton predictor/corrector and the
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x [Eckﬂ]
for the SIBDF.

Implementation of the SIRDF differs from the BDF in that no
convergence estimates are needed. Instead, the SIBDF must estimate
p(—é-l(G—é)). Through experimentation we have verified a reasonable
approximation scheme requiring only estimates of the range of the
spectrum of the Jacobian. The benefit is better control over the linear
algebra needs of the algorithm.

Another implementation choice for the code STRUT was to wuse the
variable coefficient representation of the underlying formulas to
ernhance stability. This ilmplies the coefficient in the residual changes
on the steps following a change in step size which introduces error in
the correction matrix unless it is frequently reformed. The AAS theory
provides guidelines for the amount of tolerable error. The scalar c
proved an effective matrix modification technique to mitigate the effect
of both step size and order changes during the integration process
without forming new correction matrices,

We feel the demonstrated strengths [52 and Appendix Al of the
approach are:

1) Savings in matrix formations/factorizations at the expense
of some matrix/vector multiplies with matrices held as LU factors.

2) Separating the decision about the need for ODE Jacobians
from that about the need for a new correction matrix. STRUT alwavs useg
exactly one Jacobian on linear, constant coefficient problems.

3) Predicting stability behavior helps in many wayvs to reduce

the number of steps needed to complete the integration.
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Appendix A. Numerical Results for STRUT. ISODE. 1SODA and DCO3A

The following results are an extension of those presented in [52].
They document the performance of the codes LSODE (written by A.C.
Hindmarsh {25]), LSODA (LSODE modified by L. Petzold [41]), Dco3a
(written by A.C. Curtis [9]) and STRUT (written by the author). All are
variable order, wvariable Step size codes. The results DPresented are
only a subset of those run and are intended only to demonstrate the
viability of the ideas present in this dissertation.

LSODE implements an Adams and BDF predictor-corrector scheme with
predictor the same order as corrector. Functional iteration is used on
the Adams corrector; a Newton-like iteration is wused on the BDF
corrector. The BDF code has Provisions to handle dense or banded
Jacobians. A new Jacobian is formed with each correction matrix. The
user must select between the Adams or BDF methods.

LSODA is a modification of LSODE that automatically selects Adams
or BDF depending on internally generated diagnostics of the problem
behavior. The Adams corrector is still iterated, but is forced through
at least two iterations each step to yield an estimate of the Lipschitz
constant which is used for stiffness detection following the idea of
Shampine [447.

DCO3A is from the Harwell Library. It implements an iterated BDF
and is intended for stiff ODEs and mixed algebraic differential
equations . It has provisions for handling sparse matrices as well as
dense. DCO3A separates the request for iteration matrices from that for
ODE Jacobians which can provide a savings.

STRUT implements the SIBDF with m=2 corrections unless the relative

matrix error estimator indicates an m—1 correction methed is possible.
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It contains the code STEP by Shampine and Gordon [48] which is a
PkEGk+lE Adams implementation, STRUT performs automatic me thod
selection between the Adams and SIBDF based on estimates of the
eigenvalues of the ODE Jacobian.

A selection from the Stiff Test Set [12] are Presented for absolute
error tolerances of tha-and 10_6. They exercise the method selection
properties of LSODA and STRUT. Runs were made with both true Jacoblans
and differenced Jacobians.

A selection from the Non-Stiff Test Set [26] is also Presented for
absolute error tolerances of 10_4 and 10_6 to examine performance on a
wider selection of problems. Since no Jacobians are provided with thig
test set, differenced Jacobians were used throughout. LSODA and STRUT
automatically select method. LSODE was run as an Adams method. We
additionally forced STRUT and LSODE to run as SIBDF and BDF codes,
respectively. This was expected to exercise the matrix error estimator
in STRUT and the applicability of the AAS analysis which assumed how and
would be applied to on non-stiff problems where h would be far from
large. This also provides a more reasonable comparison with the

performance of DCO3A which has no Adams method implemented.
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Subject to the code computing a solution within the accuracy that
has been requested by the user, we would like to minimize work. We

identify work as:

1. Overhead

a. Computing the wvariable step coefficients and updating the
modified divided difference table in STRUT. Interpolating stored data
on  step size changes and updating the Nordsieck vector in LSODE, LSODA
and DCO3A.

b. Estimating the error

¢. Choosing step size and order

d. Monitoring the stability of the numerical solution for the
SIEDF code in STRUT. (The Adams code in STRUT uses a PECE and this ig
not required.) Monitoring the corrector convergence in LSODE, LSODA and
DCO3A.

©. Deciding when to switch methods in LSODA and STRUT.

2. Number of evaluations of the differential equation

If Stiff,

3. Number of evaluations of the ODE Jacobian

4. Number of 1U decompositions of the correction matrix

5. Number of backsolves/forward substitutions uged
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The following measures were tabulated for performance evaluation:

Error:
The code LSODE was run with tolerance 10_4 times the
requested accuracy to generate 'true solution’ values at
15 geometrically  spaced points in the integration
integration. The absolute error was computed at thege 15
points and the maximum value is printed for each ecode.

Step: Number of steps taken

NFE: Number of evaluations of the differential equation

NG: Number of factorizations of the correction matrix

NJ: Number of evaluations of the ODE Jacobian

TIME: Total CPU time on NSF San Diego Super Computer Cray X-MP/48

NEDF: Number of steps taken using the SIBDF/BDF method

BSOL:
Number of backsolves/forward substitutions (and
matrix/vector multiplies uging the existing Ly

decomposition by STRUT)

Also of interest:

K The order of predictor used on the final step
H Step size used on the final step
EndTol

If the code 1increased the wuser’'s requested error
tolerance, then thisg changed wvalue isg printed, else

blank.
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Selected Problems from the Stiff Test Set

Class A and Class B are linear, constant coefficient problems.
STRUT is given Space to store both the torrection matrix and the ODE
Jacobian  and requires only one Jacobian to complete the entire
integration. DCO3A also distinguishes iteration matrix updates from
Jacobian updates and uses only one Jacobian. An interesting problem
from this set ig BS because it has 4 dominant eigenvalue near the
imaginary axis. The BDFs are known to perform poorly there as evidenced
by the performance of LSODE and DCO3A. Both LSODA and STRUT do net
because they were able to get past the unstable lobe in the left half of
the h stability plane using an Adams method. When the switech to BDF
and SIBDF methods occurred, the step size was large enough to be beyond
this stability restriction. LSODE and DCO3A were trapped between the

origin and the lobe.

Stiff Set No. BS Tolerance= 1.0e-04 System Size=4 Diffed. J's = &
Code Error Step NFE NG NJ K EndH EndTol Time NEDF BSOL

STRUT 1.8e-03 239 444 9 1 3 2 4e+00 5.5e-02 55 97
LSODA 8.2e-04 318 620 9 9 4 1.8e+00 5.2e-01 44 71
LSODE 1.6e-03 2393 3639 146 146 5 9.9e-03 5.6e-01 2393 3639
DCO3A 1.2e-03 2458 92759 57 14 8.6e-03 4.9e-01 2458 2759
Stiff Set No. B5 Tolerance— 1.0e-04 System Size=4 Diffad. J's =

Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 1.8e-03 239 438 g 13 2.4e+00 .5e-02 55 97
LSODA 8.2e-04 318 620 9 9 4 1.8e+00 le-01 44 771
LSODE 1.7e-03 2350 2716 142 142 5 7.8e-03 .3e-01 2350 2716
DCO3A 1.2e-03 2460 2760 65 149, 2e-03 -9e-01 2460 2760

£

Stiff Set No. BS5 Tolerance= 1.0e-06 System Size=4 Diffed, Jf's = ¢
Code Error Step NFE NG NJ ¥ Endy EndTel Time NBDF BSOL

STRUT 1.8e-05 453 855 8 1 4 1.0e+00 9.4e-02 73140
LSODA 9.7e-06 633 1247 8 8 4 7.0e-01 9.32-01 74 125
LSODE 3.6e-05 2615 3920 156 156 5 9.9e-03 6.1e-01 2615 3920
DCO3A 2 .6e-05 722 828 42 159 7e-01 1.5e-01 722 828
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Stiff Set No,
Code Error
STRUT 1.8e-05
LS0DA 9.7e-06
LSODE 3.6e-05
DCO34A 2.6e-05

Another
coupling from

coupling from

Stiff
Code

STRUT
LSODA
LSODE
DCO3A

Set No.

Error
2.0e-04
6.3e-05
1.5e-04
7.2e-05

Stifr
Code

STRUT
LsSopaA
LSODE
DCO3A

Set No.

Error
2. 0e-04
6.3e-05
1.5e-04
7.2e-05

Stiff
Code

STRUT
LsSoDpaA
LSODE
DCO3A

Set No.

Error
2.82-06
1.2e-06
4. 5e-06
4.1e-06

Stiff
Code

STRUT
LSODA
LSODE
DCO3A

Set No.

Error
2 Be-06
1.2e-06
4.5e-06
4.1e-06

B> Tolerance= 1.0e-06

Step
453
633

2621
722

NFE
849
1247

NG NJ K Endy

8
8

14 1. 0et+00
8 4 7.0e-01

2997 158 158 5 6.8e-03

833

42

15 9.7e-01

System Size—4

EndTol

interesting pair of problems is ¢1,

fast to smooth components,

smooth components to fast.

Cl Tolerance= 1.

Step
76
118
100
110

Cl Tolerance= 1

Step
76
118
100
110

Cl Tolerance-= 1.

Step
155
220
178
186

Cl Tolerance= 1.

Step
155
220
178
186

NFE
123
212
195
192

NFE
119
212
119
197

NFE
275
422
302
258

NFE
271
422
206
263

NG

9
10
19
18

NG

9
10
19
18

NG
10
10
24
18

NG
10
10
24
18
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and (5,

Diffed, J's = f
Time NBDF BSOL
9.3e-02 73 140
9.2e-01 74 125
5.9e-01 2621 2997
1.5-01 722 833

representing moderata

representing

strong

Oe-04 System Size=4 Diffed. J's = ¢
NJ K EndH EndTol Time NBDF BsoL
L 0 6, 4etr00 2.5e-02 47 93
10 2 1.1e+01 2.3e-01 43 55
19 3 3.6e+00 2.2e-02 100 195
1l 3 2.2e+00 2.7e-02 110 192
.0e-04 System Size=4 Diffed. J's = f
NJ K EndH EndTol Time NBDF BSOL
1 0 6.4e+00 2.5e-02 47 93
10 2 1.1e+01 2.4e-01 43 55
19 3 3.6e+00 2.0e-02 100 119
13 2. 2e+00 2.7e-02 110 197
0e-06  System Size=/ Diffed. J’s = ¢
NJ K EndH EndTol Time NBDF BSOL
10 5.1e+00 4. 6e-02 67 132
10 5 1.4e+00 4.0e-01 63 98
24 2 2.5e+00 3.7e-02 178 302
159 6e-01 3.4e-02 186 258
Oe-06 System Size=4 Diffed, J'e = F
NJ K EndH EndTel Time NBDF RBSOL
10 5.1e+00 4.6e-02 67 132
10 5 1.4e+00 3.9e-01 63 98
242 2.5e+00 3.4e-02 178 206
1l 5 9.6e-01 3.4e-02 186 263



Stiff Set No. G5 Tolerance= 1.0e-04 System Size=4 Diffed, J’s = t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 1.8e-03 319 469 14 10 0 2.8e+00 1.2e-03 1.0e-01 288 410
L50DA 1.9e-03 352 518 40 40 2 2.6e-01 -3e-01 321 453
LSODE 7.%9e-04 285 480 28 28 5 4.5e-01 .9e-02 285 480
DCO3A 6.5e-04 332 470 55 4 5 7.2e-01 .7e-02 332 470

(oA NN W) |

Stiff Set No. (5 Tolerance— 1.0e-04  System Size=4 Diffed. J's = £
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 1.3e-02 323 463 21 11 O 3.0e+00 1l.4e-02 1.1e-01 292 461
LSODA 1.9e-03 352 518 40 40 3 5.6e-01 5.3e-01 321 453
LSODE 7.9e-04 284 366 30 30 & 5.6e-01 5.6e-02 284 366
DCO3A 6.5e-04 332 490 55 4 5 7.2e-01 6.7e-02 332 490

Stiff Set No. €5 Tolerance= 1.0e-06 System Size=4 Diffed. J's = t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 2.4e-05 731 1039 32 13 3 3.9e-01 2.4e-06 2.3e-01 657 929
LSODA 1.5e-05 591 831 49 49 3 2. 4e-01 8.4e-01 533 808
LSODE 3.1e-05 575 968 62 62 4 2. 6e-01 1.2e-01 575 968
DCO3A 1.2e-05 588 891 61 34 2.4e-01 1.2¢-01 588 891

Stiff Set No. (5 Tolerance— 1.0e-06 System Size=4 Diffed. J's = §
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 3.0e-05 672 933 32 11 2 4.2e-01 2.3e-05 2.2e-01 598 881
LSODA 1.5e-05 591 931 49 49 3 2 4e-01 8.4e-01 533 808
LSODE 3.1e-05 565 712 63 63 4 4 4e-01 1.1e-01 565 712
DCO3A 1.2e-05 589 896 64 35 2.9e-01 1.2e-01 589 8os

D3 and D4 represent nonlinear systems with real eigenvalues. The
BDF and SIBDF do not have significant stability limitations as evidenced
by ending step size. The convergence tests of the BDF will be
exercised, The linear stability theory of the SIBDF is tested on
nonlinear problems. D3 has a change in dominant eigenvalue from -40,000

3
to -290. D4 has the dominant eigenvalue change only from -3.5%10° to

—3.8*103.
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Stiff
Code

STRUT
Ls0DA
LSODE
DCO3A

Stiff
Code

STRUT
LSODA
LSODE
DCO3A

Stiff
Code

STRUT
L.50DA
LSODE
DCO3A

Stiff
Code

STRUT
LSODA
LSODE
DCO3Aa

Stiff
Code

STRUT
L.S0ODA
LSODE
DCO3a

Stiff
Code

STRUT
L.50DA
LS0ODE
DCO3A

Set No.

Error
1l.4e-04
8.0e-05
2.6e-04
1.3e-04

Set No.
Error
.bGe-04
.0e-05
.6e-04
.3e-04

[l (C - R

Set No,

Error
?2.4e-06
1.9¢-06
3.4e-06
2.9e-06

Set No.

Error
2.4e-06
1.%e-06
3.4e-06
1.8e-06

Set No.

Error
4. 6e-04
5.7e-05
1.3e-04
1.8e-04

Set No.

Error
4.6e-04
5.7e-05
1.3e-04
1.8e-04

D3 Tolerance= 1.
Step NFE NG
95 162 10
108 181 g
120 254 27
133 196 17

D3 Tolerance= 1,
Step NFE NG
95 158 10
108 181 9
120 146 27
138 211 17

D3 Tolerance= 1
Step NFE NG
231 373 13
207 358 13
242 460 39
230 337 42

D3 Tolerance= 1.
Step NFE NG
231 365 13
207 358 13
242 304 39
232 348 40

D4 Tolerance= 1
Step NFE NG
34 73 g
37 61 6
16 36 6
19 35 8

D4 Tolerance= 1.

Step NFE NG
34 64 g
37 61 6
16 18 6
19 43 8

.0e-06

.De-04

Oe-04  System Size-4

NJ K EndH EndTol
1 0 5.5e+01

2 5.2e+00

2 7.0e+00

1 1.2e+01

NN NN

9
27
2

Oe-04 System Size~—4

NJ K EndH EndTol
1 0 5.5e+01

2 5.2e+00

2 7.0e+00

2 2.9e+00

B RN N

9
27
2

System Size=4
NS K EndH EndTol
2 0 8.0e+00
13 1 1.1e+01
39 2 3.2e+00
31 4.7e+00

£ ooy

Oe-06 System Size=4
NJ K EndH EndTol
2 0 8.0e+00
12 1 1.1e+01
39 2 3.2e+00
3 3 1.4e+00

LR~ RO

System Size=3

NJ K EndH EndTol
3 3 1.0e+01

1.2e401

1.2e401

9.3e+00

eV R

6 4
6 4
2 4

Oe-04
NJ K EndH

3 3 1.0e+01
1.2e+01

System Size=3
EndTol

& 4
6 4 1,
2 4 9. 3e+00
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.6e-02
.7e-01
.5e-02
.3e-02

.6e-02
.7e-01
.3e-02
.4e-02

.2e-02
.0e-01
0e-02
.6e-02

1
1
2e+01 2.
4

Diffed. J's = ¢
Time NBDF BSOL
41 82
41 46
120 254
133 196

Diffed. J's = F
Time NBDF RSOL
41 82
41 46
120 146
138 211

Diffed. J's = ¢
Time NBDF BSOL
123 204
85 113
242 460
230 337

Diffed. J's = f

Time NBDF BSOL
le-02 123 204
.0e-01 8BS 113
-7e-02 242 304
.6e-02 232 348

Diffed. J's = ¢

Time NBDF BS0OL
.3e-02 20 56
.le-01 16 18
.2e-03 16 36
.6e-~03 19 35

Diffed. J's = £

Time NBDF BSOL
.2e-02 20 56
.le-01 16 18
8e-03 16 18
.8e-03 19 43



Stiff Set No. D4 Tolerance= 1.0e-06 System Size=3 Diffed. Jrs = ¢
Code Error Step NFE N¢ NJ K EndH EndTel Time NBDF BSOL

STRUT 2.3e-06 42 72 10 3 2 3.4e400 1.5e-02 32 73
LSODA 2.1e-06 47 78 6 6 4 4.6e+00 1.2e-01 26 35
LSODE 1.7e¢-06 34 73 10 10 4 4. 7e+00 6.5e-03 34 73
DCO3A 1.4e-06 32 48 10 1 4 4 %e+00 6.3e-03 32 48

Stiff Set No. D4 Tolerance— 1.0e-06 System Size=3 Diffed. J'g = £
Code Error Step NFE NG NJ K EndH EndTol Time NBDF RSOl
STRUT 2.De-06 42 63 10 3 2 3 .4e+00 .5e-02 32 73
LSODA 2.le-06 47 78 6 6 4 4. 6e+00 .2e-01 26 35
LSODE 1.7e-06 34 43 10 10 4 4.7e+00 .0e-03 34 43
DCO3A 1.4e-06 32 52 10 14 4, 9e+00 Ae-03 32 52

D

E3 and E4 represents a nonlinear system whose eigenvalues have borh
real and imaginary parts. The size of the imaginary part in E3 is only
-001%+.01i, which is not the dominant eigenvalue. E4 is a modified
version of a problem due to Krogh. Here the dominant eigenvalue is —103
and the complex one ranges from 84101 to .19+291 to 10101 in the range

of the integration.

Stiff Set No. E3 Tolerance— 1.0e-04 System Size=3 Diff'd J's = ¢
Code Error Step NFE NG NJ K EndH EndTol Time NEDF BSOL
STRUT 6.3e-04 94 201 20 8 4 2.7e+01 1.0e-04 3.6e-02 77 233
LS0DA 1.3e-03 122 187 16 16 5 1.8e+01 1.0e-04 1.7e-01 95 132
LSODE 6 _0e-04 98 180 17 17 4 1.7e+01 1.0e-04 1.6e-02 98 180
DCO3A 1.7e-03 114 195 26 2 4 2.1e+01 1.0e-04 2.1le-02 114 195

Stiff Set No. E3 Tolerance= 1.0e-04 System Size=3 Diff'd J's = f
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 7.3e-04 83 158 19 9 4 1.9e+01 1.0e-04 3.2e-02 66 210
LSODA 1.3e-03 122 187 16 16 5 1.8e+01 1.0e-04 1.7e-01 95 132
LSODE 6.0e-04 98 129 17 17 4 1.7e+01 1.0e-04 1.5e-02 98 129
DCO3A 1.7e-03 114 203 26 2 4 2.1e+01 1.0e-04 2.1e-02 114 203

Stiff Set No. E4 Tolerance= 1.0e-04 System Size=4 Diff'd J's = ¢
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL

STRUT 1.1e-03 255 389 25 70 3.0e+02 1.0e-04 8.2e-02 213 389
1.50bA 7.5e-04 239 324 28 28 3 1.5e+02 1.0e-04 7.0e-01 196 237
LSODE 3.0e-03 223 410 34 34 3 1.9e+02 1.0e-04 4.0e-02 223 4190
LGCO3A 1.9e-03 234 354 49 31 2.5etP: 1. 06-0% & Fo-03 234 549
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Stiff
Code

STRUT
L50Dba
LSODE
DCO3A

Stiff
Code

STRUT
LSODA
LSODE
DCO3A

Stiff
Code

STRUT
LS0DA
LSODE
DCO3A

Stiff
Code

STRUT
LS0DA
LSODE
DCO3A

Stiff
Code

STRUT
LSODA,
LSODE
DCO3A

Set No.

Error
1.1e-03
7.5e-04
3.0e-03
1.9e-03

Set No.

Error
1l.le-05
2.2e-05
2.1e-05
3.0e-05

Set No.

Error
1.1e-05
2.2e-05
2.1e-05
3.0e-05

Set No.

Error
5.4e-05
l.1e-05
2.5e-05
5.4e-05

Set No.

Error
5.7e-05
1l.1e-05
2.4e-05
5.4e-05

E4 Tolerance= 1.

Step
254
239
223
234

E3 Tolerance= 1

Step
153
228
236
188

E3 Tolerance= 1.

Step
155
228
236
188

E4 Tolerance= 1.

Step
572
981
476
438

E4 Tolerance= 1.

Step
596
981
476
439

NFE
361
324
274
378

NFE
301
374
411
298

NFE
273
374
309
306

NFE
825
1988
795
660

NFE
786
1988
560
678

NG
25
28
34
49

NG
23
27
34
34

NG
24
27
34
34

NG
28
30
59
55

NG
31
30
39
56

Ce-04 System Size=4

NJ K EndH EndTol
7 0 3.0e+02 1.0e-04
28 3 1.5e+02 1.0e-04
34 3 1.9e402 1.0e-04
51 3.0e+02 1.0e-04

.0e-06 System Size=3

NJ K EndH EndTol
11 3 1.6e+01 1.5¢-08
27 5 1.3e+01 1.0e-06
34 4 6.9e+00 1.0e-06
2 51,2e401 1.0e-06

Ce-06 System Size=3
NJ K EndH EndTol
13 5 1.8e+01 1.5e-06
27 5 1.3e+01 1.0e-06
34 4 6.9e+00 1.0e-06
2 5 1.2e401 1.0e-06

Oe-06 System Size=4
NJ K EndH EndTol
7 2 7.2e+01 1.0e-06
30 3 1.1e+02 1.0e-06
59 3 1.0e+02 1.0e-06
4 5 8.2e+01 1.0e-06

Oe-06 System Size=4
NJ K EndH EndTel
8 0 6.6e+01 1.0e-06
30 3 1.1e+02 1.0e-05
59 3 1.0e+02 1.0e-06
4 5 6.5e+01 1.0e-06
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8.
6.
Big
4,

3
3.
3.
3.

5.
3.
3.
3.

~ 0o N

~ 0O N

Diff'd J's = f

Time

2e-02
Se-01
9e-02
6e-02

212
196
223
234

NBDF BSOL

389
237
274
581

Diff’d J's = ¢

Time

2e-02
le-01
3e-02
3e-02

Diff’'d J's
NBDF BSOL

Time

2e-02
Oe-01
7e-02
3e-02

Diff'd J’'s
NBDF BSOL

Time

.9e-01
.4e+00
.3e-02 476
.%9e-02

116
177
236
188

118
177
236
188

533
185

438

NBDF BSOL

295
267
411
298

= f

306
267
309
306

= t

974
253
795
958

Diff'd J's = f

Time

.%e-01
.3e+00
.1le-02
.%e-02

557
185
476
439

NEDF BSOL

951
253
560
984



Problems from the Non-Stiff Test Test

We now examine performance on some problems from the non-stiff test
set. All the BDF codes are using differenced Jacobians. We present the
results of the switching codes STRUT and LSODA which begin the
integration using the Adams method. Nothing was done to prevent them
from changing to BDF based on their internal logic.

LSODE was run initially as an Adams code. The Harwell code DCO3A
is only a BDF, so it was decided to examine the performance of LSODE as
a BDF, STRUT forced to use BDF after 3 steps and DCO3a. The cost is
higher when using a code intended for stiff problems on non-stiff
problems. We felt this would exercige many of the assumptions made in
writing STRUT which applied the (h-w) AAS results to yield algorithms
that would have to work on problems with small step size.

A5 represents a scalar problem but the Jacobian is not autonomous ,
This could pose a problem for the matrix error estimator in STRUT which
estimates error in the Jacobian by changes in f assuming that f depends

only on vy,

Non-Stiff Set No. A5 Tolerance= 1.0e-04 System Size=1 Diffed. J'sg=t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL

STRUT 1.le-05 34 70 0 0 8 2.3e+00 5.4e-03 0 0
LSODA 3 .4e-04 32 69 0 0 4 1.6e+00 2.5e-02 32 8]
LSODE 1.4e-04 31 34 0 0 6 1.8e+00 2.7e-03 &l 34
Run as BDF Codes:

STRUT 1.4e-03 44 79 4 1 49 3e-01 1.1e-02 40 101
LSODE 3.0e-04 45 65 9 9 4 9.8e-01 4. 4e-03 45 65
DCO3A 8.3e-04 46 60 0 0 4 9.5e-01 4.0e-03 46 60

110



Non-Stiff Set No. AS Tolerance=1.0e-06 System Size= 1 Diffed, J’g—t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL

STRUT 1.0e-06 54 110 0 0 8 1.0e+00 7.8e-03 0 Q0
LSODA 2 .6e-05 60 125 0 0 4 4.9e-01 4.0e-02 60 0
LSODE 1.2e-06 53 58 0 07 7.2e-01 4.6e-03 53 58
Run as BDF Codes:

STRUT 3.0e-05 73 117 6 1 4 4.0e-01 1.8e-02 69 139
LSODE 2.7e-05 80 104 10 10 5 4_.7e0-01 7.2e-03 80 104
DCO3A 3.3e-05 84 104 0 05 4.8e-01 6.7e-03 84 104

C3 and C4 represent the discretization of the heat equation using
finite differences with grid sizes of 10 and 51 points, respectively,
This yields a problem with a smooth wvariation in the spectrum of
eigenvalues, not isolated large or small eigenvalues. This should be a
tough test on the matrix error estimator using power method results for

only the largest and smallest eigenvalues,

Non-Stiff Set No. C3 Tolerance=1.0e-04 System Size=10 Diffed. J’'s=t
Code Errer Step NFE NG NJ K EndH EndTol Time NBDF BSOL

STRUT 2.6e-04 39 91 3 1 2 2.5e+00 1.7e-02 15 30
1LSODA 1.1e-04 89 186 16 16 2 2.3e-01 7.7e-02 6 46
LSODE 4.2e-04 129 218 4] 01 2. 2e-01 1.5e-02 129 218

Run as BDF Codes:

STRUT 3.5e-04 40 64 4 12 2.8e+00 .he-02 36 63
1LSODE 2.2e-04 51 161 10 10 4 2.2e+00 .0e-02 531 161
DCO3A 2.6e-04 29 88 13 14 2.0e+00 2.5e-02 59 88

BN

Non-Stiff Set No. €3 Tolerance-1.0e-06 System Size=10 Diffed. J’s=t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL

STRUT 2.7e-06 80 168 3 1 3 1.2e400 2.5e-02 i9 39
LS0DA 1.6e-06 109 232 0 0 2 3.0e-01 1.0e-01 109 0
LSODE 1.4e-05 206 222 #] 02 1. 3e-01 2.2e-02 206 222
Run as BDF Codes:

STRUT 3.2e-06 83 107 6 1 3 1.3e+00 4.8e-02 79 141
LSODE 5.3e-06 89 245 14 14 5 1.3e+00 3.4e-02 89 245
DCO3A 2.7e-06 100 136 19 1 5 1.3e+00 4.0e-02 100 126
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Non-Stiff Set No.

C4 Tolerance=l,

Oe-04 System Size=51 Diffed. J's—t

Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 5.5e-04 35 125 3 1 2 2.1e+00 6.92-02 15 28
LSODA 1.1le-04 89 180 16 16 2 1.7e+00 3.9e-01 1 40
LSODE 8.8e-04 109 195 O 01 1.3e+00 2.7e-02 109 195
Run as BDF Codes:

STRUT 5.8e-04 36 101 5 1 2 4 0e+00 1.2e-01 32 59
LSODE 4.3e-04 45 5312 9 9 4 2.7e+00 1.2e-01 45 512
DCO3A 2.6e-04 59 129 13 1 4 2.0e+00 2.0e-01 59 217

Non-Stiff Set No. C4 Tolerance=1.0e-06 System Size=51 Diffed, J's-t
Code Error Step NFE NG NJ K EndH EndTol Time NEDF BSOL

STRUT 6.2e-06 65 190 3 1 3 1.5e+00 9.7e-02 21 43

LSODA 1.6e-06 116 238 9 9 2 1.8e-01 3.6e-01 17 26

LSODE 3.8e-05 433 487 0 0 4 4.7e-02 L.de-01 433 487

Run as BDF Godes:

STRUT 7.le-06 71 135 5 1 3 1.5e+00 1.9e-01 67 123

LSODE 7.6e-06 81 760 13 13 5 1.1e+00 2.0e-01 8l 760

DCO3A 2.7e-06 100 177 19 1 5 1.3e+00 3.1le-01 100 313

D3 is the middle range orbit problem. D4 is a slightly more

eccentric orbit. Orbit problems are good for testing the step size and

order selection algorithms of a variable order, variable step size code.

Non-Stiff Set No. D3 Tolerance=1.0e-04 System Size=4 Diffed. J's=t

Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 8.8e-02 154 329 0 07 1.4e-01 2.3e-02 0 0
L50DA 4.5e-02 169 387 0 04 9.5e-02 8.7e-02 169 0
LSODE 2.6e-01 170 214 0 0 3 9.5e-02 1.7e-02 170 214
Run as BDF Codes:

STRUT 6.9¢-02 177 255 4 34 9.2e-02 6.5e-02 173 350
LSODE 8.8e-02 220 432 34 34 4 7.le-02 4.1e-02 220 432
DCO3A 9_8e-02 240 360 42 25 7.5e-02 4.4e-02 240 360
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Non-Stiff Set No. D3 Tolerance=1.0e-06 System Size=4  Diffed. Jfg—t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 3.1e-04 261 540 0 0 8 6.0e-02 3.8e-02 0 0
LSODA 1.4e-04 280 613 0 06 6.2e-02 1.4e-01 280 0
LSODE 1.3e-03 335 366 0 06 5.7e-02 3.2e-02 335 1366
Run as BDF Codes:
STRUT 4.8e-03 389 592 3 34 5.3e-02 l.4e-01 385 639
LSODE 2.3e-03 404 626 35 35 5 4.5e-02 6.8e-02 404 626
DCO3A 1.2e-03 463 696 64 1 5 4.6e-02 8.4e-02 463 695
Non-Stiff Set No. D& Tolerance=1.0e-04 System Size—4 Diffed. J'sg—t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 1.7e-01 210 444 0 0 7 8.58-02 3.1le-02 0] 0
LSODA 4.2e-02 225 524 0 0 4 9.9e-02 1.2e-01 225 0
LSODE 1.6e-01 213 275 0 04 9.4e-02 2.2e-02 213 275
Run as BDF Codes:
STRUT 1.4e-01 236 376 9 8 2 5.0e-02 8.9e-02 232 a7
LSODE 9.9e-02 292 600 51 51 4 9.2e-02 5.5e-02 292 500
DGCO3A 1.2e-01 322 488 63 25 1.1e-01 6.0e-02 322 848
Non-Stiff Set No. D4 Tolerance=1.0e-06 System Size=4 Diffed. J’g=t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 7.9e-04 355 734 0 0 8 4.9-02 5.2e-02 0 0
LS0ODA 7.6e-04 376 831 0 06 5.1e-02 1.%-01 376 0
LSODE 2.5e-03 393 439 0 05 6.2e-02 4.0e-02 393 439
Run as BDF Codes:
STRUT 9.0e-04 513 749 3 34 5.2e-02 1.8e-01 509 772
LSODE 3.7e-03 534 863 52 52 5 4.3e-02 9.3e-02 534 863
DCO3A 2.4e-03 609 791 85 25 4.6e-02 1.0e-01 609 1487

E2 and E3 are examples of problems ocecurring originally as single
second order equations; both are nonlinear, E2 is the Van der Pol
equation. E3 is Duffing's equation and is one of the few mnonautonomous

systems in the problem set.
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Non-Stiff Set No. E2 Tolerance=1.0e-04 System Size=2 Diffed. J'get

Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL
STRUT 2.2e-04 201 413 0 0 8 7.4e-02 2.6e-02 0 0
LSODA 4.8e-04 283 623 0 04 6.7¢-02 1.0e-01 283 0
LSODE 1.0e-03 279 325 0 04 6.5-02 2.3e-02 279 1325
Run as BDF Codes:

STRUT 3.0e-03 294 487 12 12 3 5.4e-09 8.7e-02 290 639
LSODE 5.2e-04 308 464 32 32 5 5.3e-02 3.7e¢-02 308 464
DCO3A 1.2e-03 331 458 61 15 6.4e-02 3.7e-02 331 458

Non-Stiff Set No. K2 Tolerance=1.0e-06 System Size—=2 Diffed. J'g=t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSQL

STRUT 3.6e-06 346 703 0 0 8 4.3e-02 4d.be-02 0 0
LSODA 1.0e-05 434 943 0 05 4.4e-02 1.5-01 434 0
LSODE 2.8e-05 495 S544 0 0 6 4.8e-02 4.2e-02 495 544
Run as BDF Codes:

STRUT 7.3e-05 581 715 1 142 8e-02 1.5e-01 577 788
LSODE 1.8e-0Q5 604 6§23 49 49 5 2.8e-02 6.8¢-02 604 823
DCO3A 4 .0e-05 653 791 72 15 2.9e-02 6.7¢-02 653 791

Non-Stiff Set No. E3 Tolerance=1.0e-04 System Size~2 Diffed. J’'g=t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL

STRUT 8.2e-05 142 289 0 0 8 1.5e-01 1.9e-02 0 0
LSODA 1.5e-03 156 331 0 06 1.5e-01 9.0e-02 156 0
LSODE 3.4e-03 173 180 0 05 1.4e-01 1.5¢-02 173 180

Run as BDF Codes:

STRUT 4.5e-03 201 330 22 4 4 1.0e-01 5.9-02 197 414
LSODE 7.2e-04 207 266 16 16 5 1.le-01 2.3e-02 207 266
DCO3A 1.0e-03 224 268 25 1 51.1e-01 2.5e-02 224 726

Non-Stiff Set No. E3 Tolerance=1.0e-06 System Size=2 Diffed. JF's=t
Code Error Step NFE NG NJ K EndH EndTol Time NBDF BSOL

STRUT 2.3e-06 220 445 0 0 7 8.4e-02 2.9e-02 0 0
1LSODA 9 .0e-06 218 449 0 08 1.0e-01 1l.1e-01 218 0
LSODE 5.9e-05 306 321 0 06 7.0e-02 2.7¢-02 306 321
Run as BDF Codes:

STRUT 2 .0e-05 479 630 & 34 4,1e-02 1.3e-01 475 4§27
LSODE 1.6e-05 427 536 27 27 5 5.%2e-07 4.8e-02 427 536
DCO3A 1.8e-05 480 631 50 15 5.3e-072 5.4e-02 4BO 1422
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Appendix B. u-Plane Stability Plots for he—owo

The following plots were presented originally in [35] and are
repeated here for conpleteness, See Section 4.d for development and

discussion.
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Figure B3. Asymptotic (h-+w) Absolute Stabilicy
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Figure B5. Asymptotic (h—w) Absolute Stahility
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Appendix C.

p-Plane Stability Plots for Finite hx

As discussed in Section 4.e,

only the scalar generalized difference

equation (SGDE) can be easily analyzed for the case of nonzero matrix
error coupled with finite, nonzero values of the step size. Stiil, the
behavior of Absolute Stability for the BDF is mimicked by the SGDE. For
example, the lower order PkECk+1 methods contain the origin within the
region of stability. The origin in the g-plane corresponds to the BDF
solved exactly, and the low order BDFs are A-stable.

We begin with the two step corrector (of order one) using the one

step predictor (of order zero), PlEC
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The second order corrector, PZECB’ reveals stability when the
corrector is solved exactly as predicted by the BDF analysis.

Figure G4, P,EC; Scalar SIBDF Method with [t =1

Stability Limitation in the #-plane

o

_

argiin

[ I SRR DR RS

Q
urs

=

Figure C5. P,EC, Scalar SIBDF Method with [ha{=5

Stability Limitation in the u-plane

bowi

<73

AL o ot At s i AR o st o]

R b g k<~‘:"‘im::‘I-"('J‘QFJJEF—*

=}
h
i
s
1
a

RERL Avig

=®

120



Figure C6. P, EG, Scalar SIBDF Method with [hi|=25
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With the PBEC4 method, we see for IhA|=l, that the origin is not

within the

eigenvalue,

carved out for the third order BDF corrector.

stability region when,arg(A)=90o, 1.8

the purely imaginary

This corresponds to the lobe in the left half Plane that is

Figure C7. P,EC, Scalar SIBDF Method with |hi|-1
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For small hX, when A ig purely imaginary, i.e. ]hA} = 1 and arg(hy)
= 900, we have no region of stability at all with the fourth order

corrector. " As the order of the COrrector continues to increase, the

lack of ‘p-stability corresponding to small values of h) becomes more

dramatic .
Figure C10. P EC. Scalar SIBDF Method with [haf=1
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For small hi, when ) is purely imaginary, i.e. fh/\] = 1 and arg(h)
= 900, we have no region of stability at all with the fif th order
corrector. VWhen arg(h)) = 1080, near the imaginary axis, we do not have
a stable method when # =0, the case of the BDF. As with the third
order corrector, though, nonzero values of matrix error will vyield a4

stable PSEC6 method.

Figure C13. P EC. Scalar SIBDF Method with |hA[=1
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Figure Cl4. P_EC, Scalar SIBDF Method with [hA|-5
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