"~ CALIFORNIA SOFTWARE €O
CALIFORNIA SOFTWARE CO.
* CALIFORNIA SOFTWARI €O

Abstract:

SCRUNCH
NUMERICAL COMPUTATIONS

ON VERY SMALL MACHINES

Kris Stewart
Dept. Mathematical Sciences
San Diego State University
San Diego, CA 92182

SCRUNCH is a suite of 9 numerical analysis routines coded in
BASIC for microcomputers providing solutions to many typical
computations. Part 1 of this paper discusses general
aspects of numerical computations on memory-limited
computers with specific data for the routines in SCRUNCH.
Part 2 provides support for each individual routine. A
separately available appendix (in the the form of listings
or 5" diskette) contains the source code of the numerical
routines along with test drivers for each.

This paper is presented to the faculty of
San Diego State University
in partial support of the degree
Master of Science in Computer Science

Approved by

»mmw—mwaAégé%HQZWiﬁi%;;&,mwwm“w__L, Vernor Vinge, Chairman
_~"M“J<£2_Mm "_Mfé%% F. David Lesley

M) LA~ Arnold L. Villone

EL CERRLTO

CALIFORNIA SOFTWARE
1979

Source code and SCRUNCH COPYRIGHT 1979 by Chris Stewart
California Software is the sole licensee

Duplication of any or part of the diskette or paper is prohibited
without written permission from the author or the publisher.

Disclaimer of Warranties and Limitation of Liabilities.

California Software makes no expressed or implied waranties on any
kind with regard to the programs and/or documentation supplied in this
package. In no event shall California Software be liable for
incidental or consequential damages in connection with or arising out
of the furnishing, performance or use of any of these programs.

PUBLISHER'S NOTES

Kris Stewart contacted me in October of 1977 to discuss her
Masters degree project and wondered about its publication. She wanted
to know if I was interested. I immediately recognized the fact that
published academic work which resulted in the production of real and
usable software would be a major breakthrough for the users of the
small and powerful machines we call microcomputers. Besides being
immediately useful to students and teachers of numerical analysis,
these programs represent quality programming at its best and can only
be an encouragement to other academicians to seriously consider
incorporating their work into this growing environment.

John C. Dvorak
Berkeley, April 30, 1979

AVATLABILITY OF SOURCE CODE

SCRUNCH is provided with a 5" Northstar compatible diskette on which
the documented source code is provided.

For those who must have listings they are available as a separate
publication for $20.

Also CBASIC and MBASIC diskettes will be available for $20.

For ordering information, write:
CALIFORNIA SOFTWARE
BOX 275
EL CERRITO, CA 94530

Part 1. Numerical Computing on Very Small Machines

This paper is primary documentation for SCRUNCH, a package
of numerical analysis routines providing solutions to the basic
problems

Ordinary differential equations using RKF45 [1]
Adaptive quadrature using SIMP [2]
Optimization (function of one real variable) using FNM [1]
Root-finding (function of one real variable) using ZEROIN [2]
Spline interpolation using SPLINE and FNS [1]
Linear equations using DECOMP and SOLVE [1]
Least squares solution of an over—determined system

of linear equations using HECOMP and HOLVE [3]
Singular value decomposition of an m by n matrix using SVD [1]
Symmetric eigensystem using SYMEIG [3]

The routines in SCRUNCH are all coded in BASIC and were developed
and tested on a CROMEMCO Z-80 microcomputer in an IMSAI box using
North Star Disk and BASIC with 32K of 250 ns memory. This system

is also equipped with a North Star Floating Point Board (FPB-A) and
a Canada Systems Real Time Clock for accuracy and timing comparisons.

Each routine begins with a long initial segment of remarks,
defining the routine, input and output parameters, dimension
requirements and internal variables. All the routines will
fit and execute properly in 24K memory systems. On 24K systems,

a few of the longer routines (RKF45, SVD) may require the initial
segment of remarks be deleted before medium to large sized drivers
can be added in front.

References:

The routines in SCRUNCH are translations of state-of-the-art
FORTRAN routines taken from two excellent introductory numerical
analysis texts and an unpublished set of course notes.

[1] Computer Methods for Mathematical Computations
by George E. Forsythe, Michael A. Malcolm and Cleve B. Moler
Prentice-Hall, Inc. 1977

[2] Numerical Computing: an Introduction
by Lawrence F. Shampine and Richard C. Allen, Jr.
W. B. Saunders Company 1973

[3] Matrix Eigenvalue and Least Squares Computations
by Cleve B. Moler
Computer Science Department, Stanford University
March, 1974 (unpublished course notes used with
permission of the author)

General form of SCRUNCH routines:

The nine routines in SCRUNCH were all coded in BASIC by
the author and a serious attempt was made to keep the parameter
lists, and input and output information consistent. Therefore
the user should find it easy to go from one routine to the next.

The 9 routines each have a long initial segment of comments
designed to allow them to stand-alone. This paper defines the
methods used, but the general user should be able to obtain all
the information he needs to use the routine from the initial
segment of remarks.

The following information is specified for each routine:

Variables which the user must initialize before calling
the routine.

Variables which the routine sets after being called.

All arrays and vectors which the routine uses to perform the
numerical solution. These must all be dimensioned
by the user in his driver.

All variable names used intermally in the routine.
' Note: the routine will change these values and
usually they shouldn't be changed by the
user in between calls to the routine.

Any necessary user-written defined function to be used
by the routine (SIMP, FNM, ZEROIN).

Any necessary user-written subroutine to be used by the
the numerical routine (RKF45).

3.

This paper is intended to support the routines in SCRUNCH
which run in BASIC on a memory-limited, small computer. It is
not intended to be a text on numerical analysis in general, but
should be of great value to anyone with a good background in
numerical analysis who wants to use a microcomputer to perform
the computations. If a microprocessor is available, it can
also be used as a dramatic and responsive class room tool
for an introductory undergraduate numerical analysis course.
The theory behind the original FORTRAN routines is available ,
in the above references (although some details for the
routines taken from [3] will be provided since these are
unpublished notes).

Mathematical Software:

The choice of these three sources was made because the
original authors employed consistent attitudes towards
high-quality mathematical software when writing the FORTRAN
routines, making the translation into BASIC straightforward.
High-quality mathematical software is taken to mean software :
that is well-documented (both commented in the code and in
auxilliary documentation) and user-—oriented. The routines
should always execute, and even when a correct answer is not
obtained, the numerical routine itself should provide the
user with diagnostics indicating that the result provided
is not to be trusted, hopefully along with an indication of
what caused the problem to go sour.

The user should be required to provide only a
minimal amount of information to specify the problem
to be solved. For example, the ordinary differential
equation solver, RKF45, written by H. A. Watts and
L. F. Shampine [1], only asks the user to specify the
mathematical definition of the initial value problem to be
solved and error tolerances which should be met by the code
in performing the numerical solution. The code takes care
of selecting an initial step-size, monitoring its estimated
error as the solution progresses and adjusting the step-size
accordingly, and checking for trouble spots in the numerical
solution. The code will set a flag to indicate to the user
that either the numerical solution was successfully advanced, 1
or trouble was encountered (in which case an indication of
the cause is given).

Test drivers:

A complete set of test drivers for each of the numerical
routines in SCRUNCH has been provided. All the test drivers
begin with an initial segment of remarks which define the
problem being solved. These routines are admittedly North Star
dependent since the I/0 statements make use of the formatting
available with North Star BASIC. They should still be of
practical value to a casual user as a model to follow when
setting up and using the numerical routines. The test drivers
are each in a separate file on the diskette provided with
SCRUNCH. Before using them, the proper numerical routine must
be APPENDed to the end of the driver. For 24K systems, it is also
necessary to delete the leading set of remarks from RKF45 and
SVD before they can be APPENDed.

SCRUNCH Test Problem solved -
routine driver additional remarks
RKF45 ORBIT 3-body orbit problem of APOLLO
capsule about Earth and Moon.
SIMP DAWSON Find where Dawson's integral
FNM attains its maximum.

NOTE: FNM should as usual begin
at stt. 1000, but SIMP should be
renumbered to begin at stt. 3000
before APPENDing.

ZEROIN CATEN Find maximum tension in a wire
suspended between 2 towers.

SPLINE THERMO Given voltage and temperature
FNS data at specific points, use SPLINE
to interpolate at other points.

DECOMP ELECNET Find the potentials at the junctions
SOLVE of a given electrical network.

HECOMP BEVHEC Find the 3rd degree least squares
HOLVE fit for the voltage of a thermocouple

junction as a function of temperature.

SVD BEVSVD Solves same problem as BEVHEC, but
gives more information on the
design matrix.

SYMEIG VIBRAT Mechanical vibration frequencies
of a spring-mass system.

RKF45 SHOOT Non-linear two point boundary value

ZEROIN problem using shooting method.
NOTE: RKF45 should begin at stt.
1000, but ZEROIN should be
renumbered to begin at stt. 5000
before being APPENDed.

Considerations due to the language BASIC:

1. There are variable name limitations and all variables are
global (except in defined-functions). Since BASIC only allows
a letter or a letter and a number for variable names, it was
decided to sacrifice some readability in the BASIC code so as
to minimize the letters used internally by the routines. For
example, in RKF45 many variables were needed to keep track of ,
errors and to select step-size. The code uses EO,E1,E2,E3,E4 [
for errors and r0,T1,T2,T3,T4,T5,T6,T7,T8,T9 for step—-size
computations and, since they are globals, the user is asked
not to use these in between calls to the routine.

2. All dimensioning must be done by the user. Since space is
considered one of the big limitations on small computers, \
this isn't too big a nuisance. The initial remarks 1
precisely describe the requirements of each routine. |

3. The numerical routines must specify statement numbers for
auxilliary subroutines and use specific function names for
routines to be written by the user. Following is a list of
those routines in SCRUNCH that require user-written routines
and the form they should have:

SCRUNCH routine User-supplied auxilliary routine

RKF45 subroutine yprime input (X1,Y1) output (Y2)

This subroutine must begin at statement
#500 and should evaluate the system of
first order differential equations.

SIMP DEF FNY (x)
Defined-function to evaluate the integrand.

FNM DEF FNF (x)
Defined-function to evaluate the function
whose minimum is sought.

ZEROIN DEF FNF (x)
Defined-function to evaluate the function
whose root is sought.

Space considerations:

All of the routines will fit in 24K of memory along with the
North Star DOS and BASIC (which occupy about 15K). The following
table gives the size of each routine on the diskette provided to
the user, the size when the initial remarks are deleted, and the
additional space needed for the routines to run (i.e. for vectors
and temporary storage). It was found that in putting together
the routines with some test drivers [ORBIT,BEVSVD,SHOOT],
these remarks needed to be deleted in order to have the test
driver and the numerical routine fit in 24K. It is suggested
that the 24K user keep the routines and their remarks intact
(since these remarks are very helpful when trying to get
a problem running), but make a duplicate copy of the routines
without the remarks for use in memory-restricted enviromments.

Additional tests were run to find that when using the full
32K memory, the largest system of linear equations that could be
handled was a 45 by 45 system and the largest system of ordinary
differential equations was about 150 (very time consuming, though).

Additional
Length Length Delete stt. space needed to
Routine (bytes) w/o rems 1010 thru - run the driver
RKF45 8990 5900 1760
ORBIT 2810 670
SHOOT 2200 1900 for RKF45
200 for ZEROIN
SIMP 4050 2065 1500
FNM 2450 1450 1330
DAW SON 2200 1700 for SIMP
300 for FNM
ZEROIN 3700 1700 1490
CATEN 1350 225
SPLINE 3800 2350 1500
& FNS
THERMO 2100 675
DECOMP 4500 2900 1350
&SOLVE
ELECNET 2500 450
HECOMP 3700 2400 1440
&HOLVE
BEVHEC 3800 1600
SVD 7850 5750 1570
BEVSVD 3500 2450 10-145;505-620 1700
SYMEIG 4550 3225 1390

VIBRAT 2250 1100

Accuracy considerations:

The first consideration when discussing accuracy is chat
any numerical routine will be limited by the specific machine
and language it has been implemented in. In the SCRUNCH
package, the driver PRECIS has been provided. It is a very
short routine that will compute an estimate of the unit
roundoff of the system. The unit roundoff is the smallest
number, U0, that can be represented in the machine such that

1.0+ U00 > 1.0

The value actually computed by PRECIS will be within a few
powers of 2 of this number, but this is all that 1is necessary.
The routines use UO in a conservative manner to forestall the
user asking for more accuracy than his system can deliver and
to prevent overflows and divide checks in numerical computations.
The routines provided on the diskette all have UO set for
8-digit BASIC on the developmental machine. The user should
run the routine PRECIS to verify that the approximate unit
roundoff of his system is comparable to the value listed
below. If it is way off (i.e., by 10, 100), the user is
advised to edit the routines and insert his estimate UO.

For this purpose, the routines which use UQO are listed below
along with the statement number where UO is defined.

Note: The 8-digit value for UO = 2.98e-b, guarantees that
asking for relative and absolute error tolerances in all the test
driveirs of l.e~6 should be deliverable on this equipment.

For the developmental system, the following values were found:

Software Unit roundoff

%% yglue set in SCRUNCH #***%*
North Star 8-digit BASIC 2.98 e -0Uo

North Star l4-digit BASIC 2.84 e ~14

Statement number where approximate

SCRUNCH routine unit roundoff UO is defined
RKF 45 1780
SIMP 1520
FNM 1356

ZEROIN 1520

Timing Considerations

A variety of timing results are provided here. The CL2400
Real Time Clock from Canada Systems, Inc. was used to get integral
numbers of seconds for executing the test drivers provided for each
numerical routine. The North Star Floating Point Board (FPB-A) used
by the North Star 8-digit and 14-digit FP BASIC to perform BCD
arithmetic in hardware substantially improves execution times for
computationally bound numerical problems. A good example is the
performance of RKF45 in the test driver ORBIT, with and without the FP
Board (Fig. 1, 2, 3 and 4). The time to take an interval step is cut
in half when the FP BASIC is used with 8-digit precision and the
14-digit FP BASIC timings are about the same as the 8-digit FP BASIC
timings even though a full extra 6 digits of accuracy are being
delivered. Notice that it wasn't necessary for the code to reset the
error tolerances for the l4-digit FP BASIC run. All the test drivers
were run using the 4 sets of North Star software and very similar
results were obtained for the improvement of computation times, 1i.e.
the 14-digit FP BASIC always beat the 8-digit BASIC and was comparable
to the 8-digit FP BASIC. So if you need the accuracy provided by 14
digit arithmetic, the Floating Point Board is invaluable.

Following is a comparative table of execution times for the
entire test driver, i.e. from the first statement to the END. This
shows that solving a numerical problem is not all computation, since
for most of the drivers the decrease in time using the FP BASIC is not
as dramatic as in the computationally-bound ORBIT. All test drivers
asked for error tolerances of l.e-6 (except the linear algebra
routines which don't have error tolerances).

Time to compute in seconds using 8-digit BASIC

Driver without FPB with FPB
ORBIT 578 325
DAWSON 218 147
(time for FNM to find missing end point of integration)
207 139

(time for SIMP to integrate to this end point)

6 4
CATEN 6 4
VIBRAT 60 45
ELECNET 15 14
BEVHEC 30 30
BEVSVD 43 36
THERMO 36 33
SHOOT 101 70
(time for ZEROIN to find missing slope)

84 57

(time for RKF45 to integrate the entire interval)
12 8

FIGURE 1, This test uses Horih Stsr 9-disil BASIC

THREE EODY OREIT FROBLEFH
TEST DRIVER FOR RKF45 - THE ODE S0LVER

3 Y1 ¥ FLAG TIME TO COMPUTE
L0000 1,72000000000 FD000000000 3 o

ERROR RESET — KEL.= 0000030396 ARS.,= 0000010000
000 1643714000 ' '

e SO0 FFOG00 & 7
e GO0 000 2 4
<5009 DEO0 2 7
10000 YO0 2 &
120090 BLEEAETE00 2 12
1.4000 o 1000 19040 B 2 36
169090 — 221PEEEL0 =B | 2 145
18000 = AUDEGTLT00 = 4 2 1
209990 ~e 34176999 - ¢ e 10
242000 = e) $J00 — e BGBIFIES RIRY o 7
244009 ~FETVE0 400 — e UFEITE0N00 2 5
28900 ~1.08Y5784000 09 b %
28000 ~1.19Y0978000) Z 5
3.0000 ~1.2907874000 ¥ i A
342000 ~1.25446596000 0 e 3
Ae4000 ~1.190581270090 Y Z 4
3+6000 Wifﬁﬁéébr%”“‘ 0 o 4
38000 73 oUUO g 2 &
40000 = 4
43000 2 ¥
404000 Z &
4. G000 4 ia
4 o BO00 ‘LNﬂ%?G?ifﬁ 2 LS
G000 . ﬁ’:: FRES0TO0] 22
D000 i o 10
7

7

& 4

i’ 4

-

THE IRIY VAL UES AGA TR

ik

B

o ¢
.Ul\):)l‘U T3

L S N

ROUNHDGOFF 18 2.9

FIGURE 2. This test uses North Stsr 8-didit Flosting Foint BASIC

THREE EODY OKEIT FROELEM
TEST DRIVER FOR RKF45 - THE OLE SOLVER

X 71 Y2 FLAG TIME T0 COMFUTE

+0000 1.2000000000 00000000090 3 1
ERROR RESET REL+= 00000303954 AES .= 0000010000
20090 1.1643714000 — 2042720000 2 b
4000 1.0661772000 ~e3801 237700 i 4
+ 6000 + 7196411200 -+ 3082030300 2 3
+8000 7401472600 ~+ 57170053800 2 5
1.0090 5403134600 -+5537131109 2 4
1.2000 3528291200 ~+ 43144562400 2 7
1.4000 1551093000 —+ 1370150900 2 19
1.6009 -+2219831400 = 31207071090 2 77
1.8000 -+3802072500 -+ 54566484200) !
2.0000 -+ 5634170300 —.63118602090 2 &
2.2000 - 7557334400 = 6627320000 2 4
2.4000 -+9370589300 -+ S7817173200 2 5
2.6000 -1.0893767000 =+ 47320756300 2 2
2.8000 -1,1990958000 -+ 30031465600 2 2
3.0000 -1,2557853000 -.1004555200 2 3
3+2000 -1.25465710090 « 1086723800 2 2
3+4000 -1.1958100000 3077976100 2 2
3.6000 -1.0844251000 +4781263900 2 3
3.,8000 ~ 73051159500 0021551600 2 2
4.,0000 ~ 7484175600 6641021809 2 2
4.,2000 -+ 8560806200 0423555400 2]
4.,4000 -+ 3736371600 34085545090 2 4
4,6000 -+ 2163277100 2996831000 2 19
4.8000 + 164499353300 1536849000 2 85
3.0000 3579697000 +4380718409 Z i3
5.2000 + 0528566400 + 3557804300 2 &
5.4000 747487591090 ¢ 537034138600 2 4
S5.6000 F260675100 + 5040773200 2 =
5.8000 1.0710530000 + 3738455800 2 2
6.0000 1,167137100¢ + 19564886749 2 2
FINAL OUTFUT FOINT SET FOR FERIOD, 71572 SHOULD BE THE IWITIAL VALUES AGAIN
6.1722 « 2001701000 -.00017568439 2 5
ERROR TOLERANCES USED REL .= 00000304 AEG= 20000100
TIME TG COMFUTE ENTIRE OREIT IS 325 SECONRDS

APPROXIMATE MACHINE UNIT ROUNDOFF IS 2.98E-08

A

FIGURE 3. This tesl uses Horih

PR

PP o q
PRILIRORIRIRIRIIIRVRY] ol

-
<>
<

45]
<

A

e S

PRV

o S idEky

LV {36

PEuIVRVEY

R

e SUUY

i e

FEPR IR

7 TN T
&

o

el

©

o
.,

RN
SSIRIEY]
GO0
2,0000
D00
G000
EEH]
0090
G000
200
YO 00
5000
Gu00

B e
IRVRERY

s

'y

R
Z 4 1=

G

g

1

Lrd T
<~ -
2
u

[

PR
F e GURY

e
1300

L0000

fe 900

FIGURE 4.

Thie

tecst uses

Nor th

THREE BODY ORRIT FROELEH

TEST DRIVER FOR

X

+0000

2000

4000

6000

+ 8000
1.0000
1.2000
1.4000
1.6000
1.8009
2.0000
2.2000
2+4900
2.8000
2.8000
3.0000
3.2000
3+4000
3.6000
3.8000
4.0000
4,2000
4.4000
4.6900
4,8000
S.0000
5.2000
5+4000
S+6000
5.8000
6.0000

FINAL
5.1922

ERROR TOLERANCES

71

1,2000000000
1,1643714287
1.,06617712090
LF196414350
401477197
V5453139064
L3528295073
V1551094518
-, 2219799345
~.38019%0041
-~ 563402323
~ 7557103645
- F370257153

-1.0895333342
-1.1%503884 11
-1.,2557153853
-1.2545740335
-1,1957161188
-1.0843223023

- F30403835
-.7483089221
-, O5597 48594
=~ 3730360353
-.2161894463
1648104437
« 3600976071
«OS29513550
« 7473520769
7260951585
1.0710383341
1.16707704205

QUTFUT FOINT SET FOR

-}
2.
1.20006465638

REF45

UskEn

- THE OLE

F

&
fo A A
LO000000000
P
- 204270051
B ——
=30 l1237519
e EASITIATION ST
Lo0EIDITFE4E
ey g WA s
a7 L7 a0s 2
o W
- L OOGF132612
I
-+ 43144606253
T R ot
- 1370155779
- 1IN THT Y D
+SlEVSVT L LS
- Ef L AR
¢ JHE64
o i
+ O

. * ot &

-

cSE3FI15405
0471084358
SO405083418
L27911913218
JAT4EYT 1447
vA3B4 3T ETY
fOG60404133
SO NAEYT AL
fO0 G2
fB37EFTTEEDE
L 156G984678E

FERIODN

393

<>
(“) B
<
i
Crd

REL .=

TIME TO COMFUTE ENTIRE OREIT IS5

AFFROXIHMATE MACHINE UNIT ROUNDOFF I

Ster

Vi

405

o
o]

S0LVER

Fl.aG

3
-~

[T I U O B OO 0% B D G T DO O I O T 0 S S DR B G T A pa PRI PRI PRI R PO B

b3

Y2 SHOULI

SECONDS

Z.04E-14

TIME

HERES-

14-digit Flosting Foint

T4

COMPUTE

BEASIC

AGHTH

13.

Part 2. Specific support for the routines in SCRUNCH

Part 2 supports the individual numerical routines
in SCRUNCH. Since each routine has an initial set
of remarks detailing specific implementation
considerations, Part 2 avoids duplicating this
information and the user is asked to read these
remarks for more details, i.e. exact definitions
of variables used and all dimensioning requirements
which the user must take care of in his driver.

For each routine in the package, the following
information is specified in Part 2:

1. Input and output parameters. There are many
variables used internally by each routine, and
the user is cautioned to avoid using any
of the internal variables in writing a driver.

2. The numerical method employed.
3. Any user-written auxilliary routines required.

4. A brief outline of how to use the routine.
As in (1) above, the user may need to consult
the initial remarks of the routine for a
description of alternate flag returns from the
routine and their meaning.

14.

Numerical solution of a system of first order differential
equations.

subroutine RKF45 input (X,Y,N,X0,E0,E1,Gl)
output (X,Y,EO0,E1,Gl)

The original FORTRAN version of RKF45 was written by

H. A. Watts and L. F. Shampine
Sandia Laboratories
Albuquerque, New Mexico 87185

and is presented in Chapter 6 of [1].

RKF45 uses two Runge-Kutta formulas developed by E. Fehlberg.
One is a fourth order formula, the other a fifth order formula.
Using them together allows an error estimate to be computed
which the code can use to adjust its step-size. This method is
intended to be used on non-stiff, or mildly stiff differential
equations. Should the differential equations become too stiff
for RKF45 to handle, a built in test will detect this, set a flag
and return control to the user. Several other tests are built
intc the code. Estimated error at each step is used to adjust
the step-size for the next step.

The user must write a subroutine of the form:

subroutine yprime input (X1,Yl) output (Y2)

to evaluate Y2 = F (X1,Y1) which specifies the
right hand side of the system of first order differential
equations.

To use RKF45, the user need only:

0. dimension the N-vectors Y,Y0,Yl,Y2,K1,K2,K3,K4,K5
1. initialize the number of differential equations, N
2. specify the initial point, X, and initial function

values in the N-vector, Y
3. specify relative and absolute error tolerances,
EO and El, respectively.
4., set the initialization flag, Gl=l.
5. tell the code how far to advance the solution by setting XO.
6. GOSUB 1000

If Gl=2 on return, indicating that everything went well,
then X and Y have been overwritten with the updated solution
values and the user need only set the end point, X0, to some
point further along in the numerical solution and GOSUB 1000
again. (All other input parameters have been set on return
by RKF45 in order to continue integration).

15.
Numerical integration of a function of one real variable.
subroutine SIMP input (T1,T2,A0) output (YO,Yl,Al,A2)
The original FORTRAN version of SIMP was written by
Lawrence F. Shampine and Richard C. Allen, Jr.
Numerical Computing: an introduction

W. B. Saunders Company 1973

The underlying integration method is Simpson's rule which
integrates the quadratic polynomial through three points to give:

x=b . b-a a+t+b
int f(x) dx = -—— * (f(a) + 4f(——) + £(b)) .
X=a 6 2

Simpson's rule has an error expression on the order of the
length of the interval, b-a, to the fifth power and therefore isn't
accurate enough to apply directly to a standard quadrature problem.
The additive property of integration can be used to split the
interval up into many smaller intervals, on which Simpson's rule
can give good results. Notice the error made on each of the
intervals can be made small by simply making the interval small.

The code SIMP is an iterative, adaptive implementation of
the composite Simpson's rule. The iterative part gives the code
an estimate of the error made by first integrating over a small
subinterval, then dividing this subinterval into 2 sub-sub-intervals
and integrating over each separately. Adding the results from
integrating the two sub—-sub intervals gives a more accurate
answer than the original subinterval, and their difference gives
an estimate of the numerical error. Since the iteration step can
be used to estimate the error being made on any of the subintervals,
the code knows how well it is doing and if, at some particular
point in the integration process, smaller subintervals need to be
used to get the desired user-specified accuracy, the code detects
this and further refines the grid used only in the vicinity of
the trouble spot. Where the integration can proceed successfully
using the larger subinterval, this larger one will be used.
Therefore, the code is adaptive, locally changing the grid size
to accomodate the error requested by the user.

The user must write a defined-function
DEF FNY (x) to evaluate the integrand
To use SIMP:

0. Dimension the 30-vectors L,H1,H2,H3,H4,H5,H6,H7,H8

and the 5-vector L1

Define the interval of integration (T1,T2)

Specify the error you are willing to tolerate AO

GOSUB 1000

If the code sets flag A2=1, then the integral is in YO

S~ W

16.

Optimization of a function of one real variable.

function FNM input (GO,Gl,EQ)

The original FORTRAN version of the function FNM is from

Computer Methods for Mathematical Computations
by George E. Forsythe, Michael A. Malcolm
and Cleve B. Moler Prentice-Hall, 1977

The original routine was written in ALGOL by R. P. Brent
and was presented in his book

Algorithms for minimization without derivatives
by R. P. Brent
Prentice-Hall, 1973

The function FNM attempts to find a global minimum of a
unimodal function of a single real variable, given an initial
interval in which the minimum must lie. Let XBAR be where £
attains its minimum. A unimodal function is one which is strictly
decreasing for X <= XBAR and strictly increasing for X >= XBAR.

It need not be smooth. The method of search employed uses a
combination of a golden-section search and, once the interval

of uncertainty has been reduced, successive parabolic interpolation.
FNM is an interval oriented code that continually shrinks the
interval of uncertainty (GO,Gl) until the following holds at x:

abs (x-gmid) <= 2.*U0O*abs(x) - (GO-Gl)/2. gmid = (GOHG1)/2.
The user must write a defined-function
DEF FNF (x)
to evaluate the function whose minimum is sought.
To use FNM:
1. Specify search interval (GO,G1)
Specify allowable error EO

3. The value returned by the function FNM is the location
of the minimum.

NN

Note: There are no flags to indicate how well the function did
because it is guaranteed to find a global minimum for
unimodal functions. If the user-provided function is
not unimodal, then FNM will give at least the value of
a local minimum of the function. The user should check
the value returned by FNM, and if it is equal to one of
the original end points, GO or Gl, then it is likely
that a different initial interval should be provided by
the user on which the function is more nearly unimodal,
and call in FNM again.

17.

Root finder for non-linear equations

subroutine ZEROIN input (V1,V2,C1,C2) output (V1,GO)

The original FORTRAN version of ZEROIN was presented in

Numerical Computing: an introduction
by L. F. Shampine and R. C. Allen, Jr.
W. B. Saunders Company, 1973

The method employed by ZEROIN is a combination of bisection
and the secant rule. The initial user-supplied interval (V1,V2)
is repeatedly shortened to a small interval (V1,V2) by using the
secant rule whenever possible, but resorting to bisection anytime
secant generates a spurious point. At all times, the interval
(V1,V2) will contain the root. This shortening of the interval
of uncertainty is continued until the following stopping criterion
is met:

abs (V1-V2)
_____________ = C2 * abs(Vl) + C1

The final interval of uncertainty (V1,V2) in which the root must
lie has collapsed to a size specified by the user in the relative
error tolerance, C2, and the absolute error tolerance, Cl.

The best estimate of the root is placed in V1 by the code.

The user must write a defined-function

DEF FNF (Xx)

to evaluate the function whose root is sought.

To use ZEROIN:

1. Specify initial interval of search (V1,v2)
2. Specify absolute error tolerance Cl

and relative error tolerance c2
3. GOSUB 1000

4. 1f GO=1 (or possibly if GO0=2) then the root is in V1

18.

Numerical interpolation using cubic splines

subroutine SPLINE input (X0,FO,N) output (B0,C0,DO)

function FNS input (x)

The original FORTRAN version of SPLINE and FNS (SEVAL) are from:

Computer Methods for Mathematical Computations
by George E. Forsythe, Michael A. Malcolm and Cleve B. Moler
Prentice-Hall, 1977

The subroutine SPLINE uses the N data points given in the
vectors, X0 and FO, to construct the cubic spline interpolating
through these N points. This cubic spline is defined by
the three N-vectors of coefficients, BO, CO, DO in the
following manner:

2 3
s(x) = FO + BO (x-X0) + CO (x-X0) + DO (x-X0)
i i i i i i i

where the index i defines the interval in which x lies by:

X0 <= x <= X0
i i+i

Once the subroutine SPLINE has constructed the coefficients
and placed them into the vectors BO, CO and DO, the defined-function
FNS can be repeatedly called upon to evaluate the cubic spline
S(x) for any value of x.

To use SPLINE and FNS:

Dimension the N-vectors X0,F0,B0,C0,DO0
Initialize N and the N data points (X0,F0)
GOSUB 1000 to get spline coefficients
Invoke FNS (%) for any value of X desired.

w M= O

Note: Normally the user will go through steps 1 and 2 only once
and repeatedly use the defined-function FNS for different
arguments.

19.

Numerical solution of systems of linear equations

subroutine DECOMP input (A,N) output (A,KO0,IO)

subroutine SOLVE input (A,IO0,WO,N) output (WO)

The original FORTRAN versions of DECOMP and SOLVE are from:

Computer Methods for Mathematical Computations
by G. E. Forsythe, M. A. Malcolm and C. B. Moler
Prentice-Hall, 1977

The subroutines DECOMP and SOLVE are used to solve the
system of linear equations

AX =8B .

The subroutine DECOMP forms the LU decomposition of
the N by N matrix A using Gaussian elimination with partial
pivoting. The subroutine SOLVE can then be used to find the
N-vector of unknowns, X, corresponding to a given right
hand side, B.

To use DECOMP and SOLVE:

0. Dimension the N-vectors WO,I0 and the N by N array A
1. 1Initialize N and the N by N array A
2. GOSUB 1000
3. Check condition number KO.
(A rough test is don't call SOLVE if KO > 1./U0)
4. Put the right hand side in WO

5. GOSUB 2250 (SOLVE puts the answer in WO)

In general, one goes through steps 1,2,3 once and
repeatedly through steps 4 and 5.

20.
Linear equations, continued.

The subroutine DECOMP decomposes the N by N input matrix A
into its LU factorization using Gaussian elimination with partial
pivoting. The upper triangular matrix U is stored in the upper
triangular part of the original matrix A. Information about
a permuted version of a lower triangular matrix I - L is
is stored in the lower triangular portion of the original A,
and the pivot information is stored in the N-vector I10. This
computation is done in such a manner that

(permutation matrix based on 10) * A=L *U

Gaussian elimination with partial pivoting is a very stable
first-step for solving linear systems.

A by-product of the decomposition is KO, which is an
estimate of the condition of the matrix A. Condition of a
matrix corresponds to how nearly singular the matrix is,
and relates how errors in the original data will be propagated
in the numerical solution. The user should consult section
3.2 of Forsythe, Malcolm and Moler for a full discussion of
conditioning of a matrix. A rough rule to use is be wary of
using SOLVE if KO > 1./U0, where UO is the machine's approximate
unit roundoff.

Once the matrix A has been decomposed by DECOMP, the
subroutine SOLVE can be used to find the solution vector, X,
given a right hand side, B.

The manner in which SOLVE goes about this employs the LU
decomposition of A to make finding the unknowns a relatively
simple computation.

Given a right hand side, B, and the decomposition, LU:

solve the triangular system: L C=28 for the n-vector C
then solve the triangular system: UXxX=2¢C for the n-vector X
Solving triangular systems is simple, since it only involves
back substitution.

The n-vector X now is the solution sought, since

AX=L((UX)=LC=8B

21.

Least squares fit to a linear model equation

subroutine HECOMP input (A,M,N) output (A,U,Gl)
subroutine HOLVE input (A,U,M,N,B) output (B)

The original FORTRAN version of HECOMP and HOLVE is from

Matrix Eigenvalue and Least Squares Computations
by Cleve B. Moler
Computer Science Department Course Notes
Stanford University, March, 1974

An alternate reference for the numerical linear algebra is:
Introduction to Matrix Computations
by G. W. Stewart
Academic Press, 1973

The linear model is specified by

y(t) = x £ (t) +x £ (t) + ... + x f (t)
11 2 2 N N

where the f (t) are continuous functions. Given the data:
i

(t sy)9 i=l)2"'°)M
i1

the least squares solution for the unknowns x , i=1,..,N of the

linear model is gotten from solving 5
AX = B where A = (a) = (f (t))
ij j i
and B=(b) =(y). i=1,...,M; j=1,...,N.

1 1

Chapter 9 of [1] gives many more details on how to set up
a linear model, i.e. the construction of the design matrix A and the
definition of the right hand side data vector, B. The routine HECOMP
will decompose the M by N (with M > N) design matrix, A, using
Householder reflections. The routine HOLVE can then be
used to find the coefficient vector which for a given right
hand side data vector, B, best fits the model, i.e.

minimize the sum of squares of the components of A X - B

To use HECOMP and HOLVE:

0. Dimension the M-vectors B,U and the M by N array A

1. Initialize M,N and the M by N array A

2. GOSUB 1000 (to decompose A)

3. 1If GI<>1l, then set up right hand side, B

4. GOSUB 1760 (HOLVE puts unknowns in first N

components of B)
5. Compute residual of fit, which is the sum of squares
of the remaining M-N components of B.

22.
Least squares fits using Householder reduction, continued.

The following reference gives many details on solving
least squares problems. Chapter 19 presents operations counts
for Householder reduction vs. forming and solving the normal

T T

equations (AA)X=AB and comes to the conclusion
that the numerically stable orthogonal Householder reduction
takes twice as many operations, but the normal equations must be
solved using far more precision (about twice as many significant
digits) to even compare with HECOMP. Therefore, the safe
general method to use is HECOMP.

Solving Least Squares Problems
by Charles L. Lawson and Richard J. Hanson
Prentice-Hall 1974

Following is a brief justification (taken directly from
Cleve Moler's notes) of the algorithm used in his routines.
Theorem 4.1 is stated with proof since it actually constructs
the decomposition of the design matrix A. Corollary 3.1 is
without proof, and can be taken as a definition of a Householder
reflection. (Normally one defines the Householder reflection in
this way, and then proves that it has the desired properties).

: T
Moler's Corollary 3.1: Let,a = (@ ;8 gvesyd) bE gny Veclsr.
1 2 M
For any k=1,...,M, define
2 2
alfa = sign (a) * sqrt (a + ... +ta)
k k M
T
u=(0,...,0, a+ alfa ,a yusesd)
k k+1 M
beta = alfa * u = alfa * (alfa + a)
k k
T
then P = 1 - (1/beta) uu is a Householder reflection (and

therefore orthogonal and symmetric) which has the following
effects on the original vector a:

Pa=¢(, ««. ,a ,—alfa,O,...,O)
1 k-1
Furthermore, if b 1s any other vector, define

T
gamma = (u b)/beta

Then Pb=Db- gamma * u

Tn particuldr; 3f . D = ve ™ b = 0, then P b= b.
k M

23.

Least squares fits using Householder reduction, continued.

Moler's Theorem 4.1: Let A be any M by N matrix with MPN. Then

Proof.

there is an orthogonal matrix Q, which is
a product of Householder reflections

Q = P .. PP
N 21

so that

QA=R

is upper triangular.

The proof is the outline of an algorithm for actually
computing P1,P2,...,PN and R. Let Al=A and let a be the
*]
first column of Al. Use Cor. 3.1 to produce a Householder
reflection Pl so that Pl a is a multiple of el, the first
*1
unit vector. Let A2 = Pl Al. (Because of the special
structure of Pl, this does not involve a complete matrix
multiplication. Only 2*N*N multiplications are needed,
not N*N*N.) Now let a be the second column of A2. By
*2
Cor. 3.1, there is a Householder reflection P2 which zeroes
all but the first two components of a and which does not
. *9
alter the first column of A2. Let A3 = P2 A2. Continuing
in this way, after N-1 steps we have a matrix

AN = PN-1 ... P1 A

which is upper triangular except for its last column. Let

a be this last column. Let PN be the Householder reflection
*N

which zeros that last M-N components of a and which does

: ; *N

not alter any of the previous columns. Finally, we let

R = AN+l = PN PN-1 ... P1 A

24,
Singular value decomposition of an M by N matrix A

subroutine SVD input (A,M,N,G2,G3) output (W,U if G2=1,V if G3=1,Gl)

The original FORTRAN version of SVD is presented in:

Computer Methods for Mathematical Computations
by G. E. Forsythe, M. A. Malcolm and C. B. Moler
Prentice-Hall, 1977

The subroutine SVD is an extremely powerful numerical tool that
has a wide variety of applications in the field of over-determined
linear equations and least squares data fitting. It decomposes the
M by N matrix A into

T
A=U0UWYV

where U,V are orthogonal matrices of order M and N, respectively,
and W is an M by N upper diagonal matrix with all zeros in

the lower block. The theory behind the SVD is presented in the
above reference, but more details on the power of this routine
can be obtained from:

Solving Least Squares Problems
by Charles L. Lawson and Richard J. Hanson
Prentice-Hall, 1974

and Applied Linear Algebra - second edition
by Ben Noble and James W. Daniel
Prentice-Hall, 1977

It is recommended that the user look into these two
references since no attempt is made here to develop the
theory of the singular value decomposition.

To use SVD:

0. Dimension the N-vectors W,WO and the M by N matrix A.
1f the transformation matrices are desired, then
dimension V to be N by N and U to be M by N.
Initialize M,N and the M by N matrix A
2. Set G2=1 if the matrix U is desired.
Set G3=1 if the matrix V is desired.
GOSUB 1000
4., If Gl=0 then the singular values are in W and the
orthogonal transformation matrices U,V are set if requested.

—
.

w

25.
Singular value decomposition, continued.

The following theorem defines the significance of W, U
and V, and reveals the power of the SVD. (A detailed discussion of
applications of SVD may be found in the book by Lawson and Hanson).

Theorem 9.7 (Singular Value Decomposition) (Noble & Daniel, p.327)
Let the M by N matrix A have rank K. Then there exist numbers

W >=W >= ... >=W >0
1 2 K

the singular values, an M by M unitary matrix U = (U ,...,U),
1 M
and an N by N unitary matrix Vv = (V ,...,V), such that
1 N

T
A=UWYV

where W is the M by N matrix defined by

WI 0
W = Note: The O block matrices may be
0 0 null depending on the relative
sizes of M, N and K.

and WI indicates the K by K diagonal matrix with i-th entry, W .

-1 ' -1 T

Moreover, for 1 <= i <=k, U =W AV, and V =W AU,
i i i i i i
T T

are eigenvectors of A A and A A, respectively, both

2
associated with the eigenvalue W > O.

i

26.

Singular value decomposition, continued.

Three uses of the singular value decomposition:

1. One sees from the above theorem, that SVD produces the rank
of an arbitrary M by N matrix which is of great value when

trying to develop a linear model of some particular system to
use for least squares data fitting.

2. The SVD can be used to solve the least squares problem

AX=28B where A is M by N, B is an M-vector and
X is an N-vector.

T
a. Let A=UWYV
b. Apply U-transpose to original data vector, B
T
¢. Divide the i-th component U B by the i-th singular value, W .

i
d. Apply V to the resulting vector to obtain

where W is the Moore-Penrose inverse defined below.

+
3. The Moore-Penrose inverse, A , of an M by N matrix can be
obtained from the SVD using

+ + T
A = VW U
where
+ WI 0
w =
0 0
-1
and the K by K diagonal matrix WI, is made up of the W 's

i
(the reciprocals of the singular values of A).

27.

Numerical computation of eigenvalues and eigenvectors for a real
symmetric matrix

subroutine SYMEIG input (A,N,Fl) output (L,X0 if F1=1,A)

The original FORTRAN version of SYMEIG is presented in

Matrix Eigenvalue and Least Squares Computations

by Cleve B. Moler
Course Notes from Computer Science Department of
Stanford University, March 1974

An alternate reference for the numerical linear algebra is

Introduction to Matrix Computations
by G. W. Stewart
Academic Press, 1973

Since the user will probably not have access to the original
documentation contained in the Course Notes, an attempt will be
made here to define the algorithm employed by this subroutine.

The user should read the documentation for HECOMP and HOLVE first,
since some of the terms used here are developed there.

SYMEIG will find the eigenvalues, and optionally the
eigenvectors, of a real symmetric N by N matrix A.

To use SYMEIG:

0. Dimension the N-vectors L,W0 and the N by N matrix A.
If the eigenvectors are desired, then dimension
X0 to be N by N.

1. 1Initialize N and at least the lower triangular part

of the N by N matrix A

Set Fl=1 if you want the eigenvectors

GOSUB 1000

The eigenvalues are in L

If Fl=1 then the eigenvectors are in XO.

The k-th column of X0, i.e. XO(*,k) corresponds to L(k)

u SN
¢« o o e

28.

Symmetric eigensystem, continued.

The first step in the symmetric eigensystem problem is to
transform the symmetric N by N input matrix, A, to a tridiagonal
form using Householder reflections. Moler's Algorithm 6.1 replaces
the matrix A with the tridiagonal matrix, Al, where

Al = P P <o P AP P wssP
N-1 N-2 2 2 3 N=k

where the Householder reflection matrices, P , i=2,...,N-1 are not
i

explicitly computed as matrices, but the effect of their action on
the original A is produced and the scalar beta and N-vector u
which define P are stored in the upper triangular part of A.
Note these P , i=2,...,N-1 are the same Householder reflections

i
that would be generated by HECOMP in reducing A to right
triangular form. :

If the user has specified Fl=1 on input, indicating that the
eigenvectors are desired, the next step is to form the matrix X0
which will contain the eigenvectors. This matrix is simply

X0O=P ...P
2 N-1

which is recovered from information that was stored in the upper
triangular portion of the matrix A as the tridiagonal
transformation was being performed.

The third step in SYMEIG is the tridiagonal QR algorithm
to find the eigenvalues of the tridiagonal matrix Al, above.
The tridiagonal QR algorithm produces a sequence of orthogonal
matrices Q ,...,Q so that the matrix

1 N-1

Q el B Y aee §
N-1 1 1 N-1

is a tridiagonal matrix of the form:

11 e2 0 0 o i 0
e2 12 e3 O e 0
0 e3 13 e4 ... 0
0 i eN 1N

where the e 's are neglible, indicating that the 1 '"s are eigenvalues.
i i

