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Source code and SCRUNCH COPIB.IGtrT 1979 by Chris Stewart

California Software is the sole licensee

Duplication of any or part of the diskette or paper is prohibited
without written perroission from the author or the publisher.

Disclaimer of Warranties and Limitation of Liabilities.

California Software makes no expressed or inplied waranties on any
kind with regard to the programs and/or documentation supplied in this
package. In no event shal1 California Software be 11able for
incidental or consequential damages in connection with or arising cut
of the furnishing, perf ormance or use of an-v of these progra:s.
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Kris stewart contacted me in october of Lg77 ro dlscuss herMasters degree project and wondereo about its publication. She wantedto knov if I was interested. I irmediately iecogaized. the fact thatpublished acaderoic work which resulted in tire production of real andusable software woulci be a najor breakthrouih for the users of thesmal1 anci powerfui uachines we call mlc.o.orprrt.r". Besides being
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John C. Dvorak
Berkeley, April 30, L979



AVAIIABILITY OT SOUICE CODE

SCRUNCII ls provided with a 5" Northstar compatible dj-skette on which
the doctment.ed source code is provided.

For those who must
publlcation for $20.

have listings they are available as a separate

Also CBASIC and MBASIC diskettes will be available for 920. H
For ordering information, write:

C.ALIFORNIA SOFTWARE

BOX 275
EL CERRTTo, CA 94530
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Part 1. Numerical Couputing on Very Sma1l Machines

This paper is primary docuuentation for SCRUNCH, a package
of mrmerical analysis routines providing solutions to the basic
problems

Ordinary differential equations using RKf'45 t1l
AdapEive quadrature using SIMP 12)
Optimization ( f uncti-on of one real variable) using FNI'I [1]
Root-finding (funetion of one real variable) using ZEROIN [2]
Sp11ne interpolation using SPLINE and FNS t1I
Linear equations using DECOI1P and SOLVE t1l
Leasi squares soluEion of an over-deternined system

of linear equations uslng tiECOl'{P and HOLVE t3l
Singular value decomposition of an m by n matrix uslng SVD tl]
Symmetrie elgensysLeu using SYMEIG t3l

The routines in SCRUNCH are all coded ln BASIC and were developed
and Lested on a CROMEMCO Z-80 nicrocomputer in an IMSAI box using
North Star Disk and BASIC with 32K of 250 ns memory. This system
is also equipped with a North Star Floating Point Board (FPB-A) and
a Canada Systems ReaI Time Clock for accuracy and ttming comParisons.

Each routine begins with a long lnitial segoent of remarks,
defining the routine, input and output parameters, di-mension
requirements and internal variables. A11 the routines will
fit and execute properly in 24K memory sysLems. 0n 24K systems,
a few of the longer routines (RKI45, SW) nay require the initial
segment of rercarks be deleted before medium to large sized drivers
can be added in front.

References:

The routines in SCRUNCH are translations of state-of-the-artL
r0RTRAN routines taken from two excellent inEroductory nu0erical
anai-ysis texts and an unpublished set of course notes.

il] Computer Methods for l"lathematical Computations
by C,eorge E. Forsythe, l'lichael A. Ilalcolm and Cleve B. |1oler

Prentice-Hal1, Inc. 1977

i2j Numerical Computing: an Introduction
by Lawrence F. Shamplne and Rlchard C. Al1en, Jr"

W. B. Saunders Company 1973

i3] l"latrix Eigenvalue and Least Squares Computations
by Cleve B. l'1o1er

Computer Science DePartmentr Stanford Universiry
March, 1974 (unpublished course notes used with

permission of the author)
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C,eneral form of SCRIINCH routines:

The nlne routines in SCRLINCII were all coded in BASIC by
the author and a serious attempt was made to keep the parameter
lists, and input and ouEput informatlon consistent. Therefore
the user should find it easy to go from one routine to the next.

The 9 routines each have a long inltial segment of comments
designed to al1ow them to stand-alone. This paper defines the
methods used, buE the general user should be able to obtain all
the information he needs to use the routlne from the initial
segment of remarks.

The following infotltration is speclfied for each routine:

Variables which the user must initia1-ize before calling
the routine.

Variables ntrich the routine sets after being called.

A11 arrays and veetors which the routine uses to perforn the
rumerical solution. These must a1l be dinensioned
by the user in his driver.

A11 variable names used internally in the routine.
Note: the routine w111 change these values and

usually they shouldnr t be changed by the
user in between calls to Ehe routine.

Any recessary user-written defined functj-on to be used
by the routine ( SIllP, FNM' ZEROIN ) "

Any necessary user-written subroutine to be used by the
the numerical routine (RKf45).
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This paper is intended Eo support the routines in SCRIJNCH
which run in BASIC on a memory-limited, sma11 conputer. It ls
not intended to be a text on numerical analysis in general, but
should be of great value to anyone with a good background in
numerical analysis who wants to use a mlcrocomputer to perform
the computatj-ons, If a microprocessor is available, it can
also be used as a dramatic and responsive class room tool
for an introductory unciergraduate numerical analysis course.
The theory behin<l the orj-gina1 FORTRAN routines is available
in the above referenees (although some details for the
routines taken fron: [3] will be provided since these are
unpublished notes).

Mathematical Software :

The choice of these three sources was made because the
original authors employed consj-stent attitudes towards
high-quality rnathematical software when writing the FORTRAN
routi-nes, making the translation into BASIC straightforward.
High-quality mathemaEical softh/are is taken to mean software
that 1s well-docr:mented (both commented in the code and in
auxilliary documentarlon) and user-oriented. The routines
shoulci always execute, and even when a correct answer is not
obtained, the nrrmerical routine itself should provlde the
user with diagnosLics inciicating that the resulr provided
is not to be trusted, hopefully'a1ong with an indication of
what caused the probl-em to go sour.

The user should be required to provide only a
minimal amount of information to specify the problem
to be solved. For example, the ordinary dlfferential
equation solver, RKI45, written by H. A. l.jatts and
L, F. Shamplne If], only asks the user to specify the
mathematical oeflnlEion of the lnitial value problem to be
solved and error tolerances wtrlch should be met by the code
1n performlng the numerical solution. The code takes care
of selecti-ng an initial step-size, moni-toring its estimated
error as the solution progresses and adjusting the step-slze
accordingly, and checking for trouble spols in the numerical
solution. The code will set a flag to lndicate to fhe user
that either ttre numerical solution was successfully advanced,
or trouble was encounEered (in whlch case an indication of
the cause is given).
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Test drivers:

A couplete set of test drivers for each of the numericalroutlnes ln SCRLINCH has been provided. A11 the test drivers
begin with an initial seguent of remarks which define the
problem being solved. These routines are admittedly North star
dependent since the I/0 stateuents make use of the iormatting
available with North star BASrc. They should sti1l be ofpractical valtre to a casual user as a model to fol1ow whensetting up and using the numerical routines. The test drivers
are each in a separate file on the diskette provicied with
scRIlNCH. Before using them, the proper numerical routine must
be APPENDed t.o the end of the drj-ver. For 24K systems, it is also
necessary to delete the leading set of remarks from RKr,45 and
SVD before they can be AppEMed.

SCRT]NCH

routine
Test

driver
Problem solved -
addltional remarks

3-body orbit problem of A?OLLO
capsule about Earth and Moon.

Find where Dawsonr s integral
attains its maxiur.m.
NOTE: FNM should as usual begin
at stt. 1000, but SIMp should be
renumbered to begin at stt. 3000
before APPENDing.

Find maximum tension in a wi-re
suspended between 2 towers.

Given voltage and temperature
data at specific points, use SPLINE
to interpolate aE other points.

Find the potentials at the junctions
of a given electrical network.

Find the 3rd. degree leasE squares
fit for the volEage of a theraocouple
junctioa as a fuacEion of teullerature.

Solves saue problem as BEyffi,C, but
gives nore iuformation on the
design matrix.

Mechanical vibration frequencies
of a spring-mass system.

Non-linear two polnt boundary value
problem using shooting method.
NOTE: RKI'45 should begin at srr.
1000, but ZEROIN should be
rentrmbered to begin at stt. 5000
before being APPENDed.

RKF45 ORBIT

SlMP
FNI'I

DAWSON

ZEROIN CATEN

SPLINE
FNS

THERMO

DECO}'lP

SOLVE
ELECNET

H-LCOMP

HOLVE
BEVHIC

S\D

SYI'IEIG VIBRAT

RKT'45
ZEROIN

\

SHOOT

BEVS!D
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Considerations due to the language BASIC:

1' There are varlable name limltations and al1 variables are
g1oba1 (except in defined-functions). Since BASrc only a1lowsa letter or a letter and a number for variable names, it wasdecided to sacrifice some readabilit.y in the BASrc code so asto minimize the letters used internally by the routines. Forexauple, 1n RKr'45 many variables were needed to keep track oferrors and to select step-size. The code uses EOrEl rE2rE3rE4for errors and T0,TL rT2,T3,T4rT5,T6rT7 rTgrT9 for step_size-
coruputations anc, si-nce they are g1obals, the user is asked
noE to use these in between calls to the routlne.

A11 dimensioning must be done by the user. Slnce space isconsldered one of the big liruitations on sma1l computers,
this isnr t too big a nuisance. The lnltial reroarks
precisely describe the requirements of each routine.

The numerical routines must speclfy statement nr,rubers forauxill-iary subroutines and use specific function names forroutines to be writfen by the user. FolJ-owing is a 1i-st ofthose routines in sGRITNCH that require user-written routlnes
and the form they should have:

SCRUNCH routine User-supplied auxilliary routine

2

)

RKr'45

SIMP

FNM

ZEROIN

subroutine yprine input (Xl,yl) output (y2)

Thls subroutine must begin at sEatement
/1500 and should evaluate the system of
first order differentlal equations.

DEF FNY (x)
Defined-function to evaluate the integrand.

DEF FNF (x)
Defined-funcEion to evaluate the function
whose minlmum is sought.

DEF FNF (x)
Defined-function to evaluate the functlon
whose root is sough[.
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Space conslderations:

A11 of the routines will fit ln 24K of menory along wlth the
North Star DOS and BASIC (which occupy about 15K). The following
table glves the slze of each routlne on the di-skette provided to
the user, the size when the lnitial remarks are deleted, and the
addiEional space needed for the routines to run ( l.e. for vectors
and temporary storage). It was found that in putting together
the routlnes wlth some tes! drivers [ ORBIT,BEVSVD,SHO0T ],
these remarks needed to be deleted in order to have t.he test
drlver and the numerical routine fit in 24K. It is suggested
thaE the 24K user keep the routines and their remarks intact
(since these remarks are very helpful lihen trying to get
a problem running), but uake a dupllcate copy of the routirres
without the remarks for use in meuory-restricted envj.ronments.

Additional tests were run to find that when using the fu11
32K meuory, the largest system of linear equations that could be

handled was a 45 by 45 system and the largesE system of ordinary
dlfferential equations was about 150 (very Eime consuming, though).

Routine
Length
( bytes )

Length
vl o rems

Delete stt.
1010 thru -

Additional
space needed to
run the driver

RKF45
ORBIT
SHOOT

SIMP
FNM

DAWSON

ZEROIN
CATEN

SPLINE
& FNS

THEB.\10

HXCol.lP
&HOLVE

BE!1{EC

SVD

BEVSVD

SYMEIG
VIBRAT

8990
2810
2200

4050
245A
2200

3700
1350

3800

2100

4500

2soo

3700

3800

785 0
3500

4550
2250

5900

2065
1450

17 00

2350

29 00

2400

17 60

1490

r.500

iJ50

L44C

1570
10-r45; 505-620

670
1900 for RIG45
200 for ZEROIN

1700 for SII'IP
300 for FNI'I

z/.)

6i5

454

t-600

17 00

1500
1330

57 50
2450

3225 1390
1100

DECOiIP
&SOLVE
ELECNET
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Accuracy consj-derations :

The first consideration when discussing accuracy is chat
any numerical routine will be limlted by the specific machj-ne
anci language it has been lmplemented in. ln the SCRLI,ICH
pachage, the drj-ver PR-ELIS has beerr provided. It is a very
short routlne that will compute an estimate of the unit
roundoff of ttre system. The unit roundoff is the smaliest
nr:mber, U0, that can be represented in tire machine such that

1"0+u0>r.0
The value actually coroputed by pRECrs will be wittiin a few
powers af 2 of this nr.:.mber, but this is aI1 that rs necessary.
Tile routines use u0 in a conservatlve manner to forestail tire
user asking for more accuracy Ehan his system can deriver and
tc prevent overf lows and divide checks in nr-rmerical coruputations.
The rolltines provided on the disketre al1 have U0 set for
8-digir BASrc on the developmental rnachine. The user should
run 1-he routine PRECIS to verify that the apprr..rxi-zuate uuit
rc,undoff of his sysfern is comparabie to the value listed
belor*" if ii is way off (i.e,, by 1U, I00), Lhe user is
adviseC to edlt the routines an<i inserL his estimate U0.
For this purpose, the routines whrch use u0 are listed below
aiong with tne sLatement nunber where U0 is defineci.

Note: The 8-digir
askl"ng for relative and
drivers of 1.e-6 should

value for U0 = 2.96e-b, guarantees that
absol-ute error tolerances in all the test
be deliverable on tiris equipmenL.

For the developmental system, the forlowing values \dere found:

Software Unit roundoff

North Star 8-digir BASIC

North Star l -digiE BASIC

SCRU-NCH rout ine

***rr value set in SCRUNCH **:rr*
2.98 e -0o

2.84 e -Lc

SLatement number where approximate
unit roundoff U0 is deflned

17 80

L)LV

13 5C

1520

RKF45

SI}'1P

FNM

ZERO Iii
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Tluing Considerations

A variety of tining results are provlded here. The CL?4OO
Real Time Clock from Canada Systems, Inc. waa used to get lntegral
numbers of seconds for executing the test drlvers provlded for each
numerlcal routine. The North Star Floating Point Board (FPB-A) used
by the North Star 8-digtt and.14-digit FP BASIC to perform BCD

arithmetic in hardware substantialLy improves execution tiues for
computatlonally bound numerical problems. A good example Ls the
performance of RKF45 in the test driver ORBIT, with and without the FP

Board (Fig. Lr 21 3 and 4). The time to take an lnterval sEep is cut
in half when the FP BASIC is used with 8-digit precision and the
l4-dlgit FP BASIC timings are about the same as the 8-digit FP BASIC
tininga even though a full extra 6 digits of accuracy are being
delivered. Notice that it rrasn't necessary for the code to reset the
error tolerances for the 14-digit FP BASIC run. A11 the test drivers
were run using the 4 sets of North Star software and very slmilar
results were obtained for the improvement of computation times, i.e.
the l4-digit FP BASIC always beat the 8-digit BASIC and was comparable
to the 8-dlgit FP BASIC. So if you need the accuracy provided by 14
dlgit arl-thmetic, the Floating Point Board is invaluable.

Followlng is a comparative table of execution times for the
entire test drlver, i.e. from the first statement to the END. This
shows that solving a nr:merical problem is not all computation, since
for most of the drivers Ehe deerease in time using the FP BASIC is not
as drauatic as in the computationally-bound ORBIT. A11 test drivers
asked for error tolerances of 1.e-6 (except the finear algebra
routines which don't have error tolerances).

Time to coopute in seconds using 8-digit BASIC
Driver vithout FPB with FPB

ORBIT 578 325

DAWSON

( time

( tine

2L8 L47
for FNl.l to find uissing end point of integration)

207 r39
for SIMP to integrate to thls end point)

64

CATEN 6 4

45

L4

30

36

33

7A

VIBRAT 60

ELECNET L)

BEVHEC 30

BEVSVD

THERMO 36

SHOOT lOI
(time for ZEROIN to find missing

84
(tiroe for RKF45 to integrate the

t2

slope )

ent i- re inte rval )
8
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13.

Part 2. Specific support for the routines in SCRUNCH

Part 2 supports the indivldual numerical routlnes
in SCRIINCH. Since each routine has an lnltial set
of remarks detaillng specific lmplementatlon
considerations, Part 2 avoids duplicatlng this
lnfornatlon and the user ls asked to read these
remarks for more details, i.e. exact deflnitions
of varj-ables used and aLl dlmensioning requirenenta
which the user BusE take care of in hls driver.
For each rout.ine in the package, the followlng
information is specified in Part 2:

1. Input and outpuE parameters. There are many
variables used lnternally by each routine, and
the user is cauEloned t.o avoid using any
of the internal varlables in wrltlng a driver.

The numerlcal method euployed.

Any user-wrltten auxllllary routlnes requlred.

A brief outline of how to use the routine.
As ln (1) above, the user may need to consult
the initlal remarks of the routine for a

descriptlon of alternate flag rerurns from Ehe

routine and their meaning.

.,

3

4

I

I



L4.

Numerical solution of a system of first order differential
equations.

subroutine RKI45 input (X,Y,N,X0,E0,El,Gl)
output (XrY,E0,El,Gl)

The original FORTRAN version of RKf'45 was wrltten by

H. A. WaEts and L. F. Shampine
Sandla Laboratories
Albuquerque, New Mexico 87185

and is presented in Chapter 5 of tll

RKI45 uses Ewo Runge-Kutta formulas developed by E. Fehlberg.
One is a fourth order formula, the other a fifth order fornula.
Using them tcgether allows an error estimate to be eomputeci
which the code can use to adjusi its step-size. This raethcd is
inrended to be used on non*sEiff, or mi1d1y stiff differential
equations. Should the differential equations become too stiff
for RKF45 to handle, a built in test will detect this, set a flag
and return control to the user" Several other tests are built
inEo the code. Estlmated error at each step is used to adjust
the step-size for the next step.

The user must write a subroutine of the form:

subroutirre yprime input (Xl,Yl) output (Y2)

to evaluate
right hand side
equations "

Y2 = F (xl,Yl) which specifies the
of the system of first ord€r differential

To use RKI'45, the user need oiily:

0. dimension the N-vectors YrYOrYl ,Y2rK1 ,t(2rK3rK4,K5
f. initialize the number of differential equations, N

2. specify the iritial point, X, and initial function
valres in the N-Yector, Y

3. specify relative and absolute error toleraoces,
EO and E1, respectsively.

4. set the icitialization flag, G1:1.
5. tell the code how far to advance the solution by setting X0.
6. GOSUB 1000

If Gl=2 on return, inoicating that everyLhint went well,
then X and Y have been overwritten with the updated solution
valtres and Ehe user reed only set the end point, X0, to some
point further along in the numerlcal solution and GOSUB 1000
again. (A11 other input parameters have been set on return
by RKI45 in order to continue integration).

nL



15.

Nuuerlcal lntegratlon of a function of one real variable.

subroutlne SIMP input (T1rT2rA0) output (Y0,Yl,A1,A2)

The original FORTRAN version of SIIiP rcas wrltten by

Lawrence F. Shamplne and Rlchard C. Allen, Jr.
Numerlcal Com-putLog: an introductlon
lI. B. Saunders Company L973

The underlylng integration method ls Slmpsonr s rule which
integrates the quadratic polynomial through three polnts to glve:

x=b
int f(x) dx
x=a

b-a a*b
--- * ( f(a) + 4t( --- ) + f(b) )
62

S1-mpsont s rule has an error expresslon on the order of rhe
length of the interval, b-a, to the fifth pouer and therefore isntt
accurate enough to apply directly to a standard quadrature problen.
The additive property of lntegrat.j"on can be used to split the
interval up lnto maay smaller int.ervals, on whlch Simpson!s rule
can give good results. Notice Lhe error uade on each of the
intervals can be rnade small by sinply uaking the lnterval emall,

The code SIMP ls an iterative, adaptive i.mplementatlon of
the cornposite sinpsont s rule. The iterative part glves the code
an estiuate of the error nade by first lntegrating over a small
subinterval, then dividlng thle subinterval into 2 sub-sub-lntervals
and integrating over each separately. Adding the results from
integrating the two sub-sub lntervals glves a more accurate
ansrrer than the original subinterval, and their dlfference glves
an estlmate of the ntrmerical error. Slnce the lteratlon step cao
be used to estlnate the error being made on any of the sublntervals,
the code knows how well i.t 16 doing and lf, at soxBe partlcular
point in the integratlon procegs, snaller sublnEervals need to be
used to get the desired user-speclfied aecuracy, the code detects
Ehis and further refines the grld used only ln the vlcinlty of
Ehe trouble spot. where the lntegration can proceed successfully
using the larger sublnterval, thls larger one will be used.
Therefore, the code is adaptlve, locally changing the grld elze
to accomodate the error requesEed by the user.

The user must write a deflned-functlon

DEF FNY (x) to evaluate the lntegrand

To use SIMP:

0. Dlmension the 30-vectors LrH1rH2rH3rH4rH5rH6rH7rH8
and the 5-vector Ll

1. Deflne the interval of integratlon (T1,T2)
2. Specify the error you are wllling to tolerate A0
3. cosuB 1000
4. If the code sets flag A2=L, then the integral is in y0

I

i



Optlnization of a function of one real varlable.

function FNM inpur (G0,Gl,E0)

16.

routine was written in ALGoL by R. p

in hls book

The original FORTRAN version of the function FNM is frorq

Computer Methods for Mathematj-cal Computations
by George E. Forsythe, Michael A. Malcohu

and Cleve B. Moler Prentice-Ha11, L977

The original
and was presented

Brent

Algorithms for minimization without deri-vatives
by R. P. Brent

Prentice-Hal1, L973

The function FNM atEeupts to find a g1oba1 minftnr:ra of, a
unirnodal f,unction of e single real variable, given an rnitial-
interval in which the minimr.rm musl 1ie. Let XBAR be where f
attains its minim',rn. A unimodal function is one which 1s strictty
decreasing for X (= y'Br{R and strictly i.ncreasing for X )= XBAR"
It need no[ be smooth. The method of searctr employe<i uses a
combination of a golden-section search and, once the interval-
of uncertainty has been reduced, sucsessive parabolic interpolatron.
FNM is an interval oriented code that continually shrinks the
interval. of uncertainty (G0,Gl) until the following holds at x:

abs

The

EO

(x-gmid) (= Z.*U0*abs(x) - (GO-GL)/2. Cmid

user must write a defined-function

DEF FNE (x)

evaluate the func-tion witose miniuum is sought,

To use FNII

(c0+e r)12 "

I
2

J

Specify search interval
Specify a1lonab1e error
The va1tre returaed by the
of Ehe uini-utru.

(co,Gl)
EO

fuaction FNM is the location

Note : There are no fLags to indicate how well the function did
because it i-s guaranteed to find a globa1 minimun for
uninodal functions. tf the user-provided function is
not unixaodal , then FNI"I will give at least the value of
a local- minimum of the function. The user should check
the va1 r.re returneci by FNM, and if it is equal to one of
the original end points, G0 or Gl, then it 1s 1ike1y
that a different initial interval should be provided by
the user on which the function is more nearly unimodal,
and caLl- in FliI-{ again.



L7.

Root finder for non-llnear equations

subroutine ZEROIN input (V1,V2,Cl,C2) output (Vl,G0)

The original FORTRAN versi-on of ZEROIN rras Presented in

Numerical Computiug: an introduction
by L. F. Shampine and R. C. Allen, Jr.

W. B. Saunders Cornpany, 1973

The meEhod employed by ZER0IN is a combination of bisectlon
and the secant rule. The initial user-supplied lnterval (Vl'V2)
is repeatedly shortened to a small lnterval (V1,V2) by using the
secanE rule whenever possible, but resorting to bisection anytlme
secant generates a spurious point. At all times, the lnterval
(V1rV2) will contain the root. This shortenlng of the i.nterval
of uncertainty is continued until the following stopping criterlon
is met:

abs (V1-V2)
- (= C2 * abs(V1) + Cl

2

The final interval of uncertainty (Vl,V2) in which the root must
1ie has collapsed to a size speclfied by the user in the relative
error tolerance, C2, and the absolute error tolerance, Cl.
The best estimate of the root 1s placed in Vl by the code.

The user must wrlte a defined-function

DEr FNF (x)

t.o evaluate the function whose root is sought.

To use ZEROIN:

l. Specify inlrial interval of search (VI,V2)
2. Specify absolute error tolerance C1

and relative error tolerance C2

3. GOSUB lO00
4. If GO=l (or possibly lf C0=2) then the root is ln VI

ii



TheoriginalFORTRANversionofSPLINEandFNS(SEVAL)arefrom:

Cooputer Methods for Mathematical Computatiolu--
'ny George E' Forsytt'"' t'tf"ftael A' llalcolm and Cleve B' l"Ioler

PrenLice-ttral1 ' 1977

subrourine sPLINE input (x0,F0,N) output (B0,c0'D0)

function FNS inPut (x)

ehe N elaLa Points given in the
interPolating

defined bY

+B0

Note:

0nce the subroutine SPLINE has constructed the coefficients

andplacedthemintotheveccorsB0'C0andD0''thedefined-function
FNS can U" t*pt'iedly called upon ro evaluate tire cubic spline

S(x) for anY value of x'

2

(x*XO ) + C0 (x-x0 )
iii

where the i-ndex i defines the interval in which x lies by:

X0 (=x(=X0
i i+l

To use SPLINE aad FNS:

0. Dioension the N-r'ectors X0 'F0'80'C0'D0
1. Initialize N and the N data points (X0'F0)

2. C,OSUB 1000 to get spline coefficients

3. Invoke FNS (x) for any value of X desired'

Normally the user will go through steps I and 2 only once

and repeatedly t.l"" rttu Iefined-function FNS for differ:ent

argLlments.

I

I

18.

Numerlcal interpolaEion using cubic splines

f ollowing manner:

D0 (x-x0 )
I I

3

S(x) = F0
1 1

I
t
i

i
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subroutlne DECOI'{P input (A,N) ourput (A,KO,I0)

subroutine S0LVE lnput (A,I0,WOrN) output (W0)

The original FORTRAN verslons of DECOI"Ip and sol,vE are from:

Computer Methods for tlathematlcal Computatlons
by G. E. Forsythe, M. A. Malcolm and C. B. Moler

Prentlce-Hall, L977

The subroutines DECOMP and soLVE are used to solve the
system of llnear equations

AX=B

The subrouti"ne DECOMP forms the LU decomposltion of
the N by N natrix A using Gaussian erlmlnatlon with partlal
pivoting. The subroutine soLVE can then be used to find the
N-vector of unknosns, X, correspondlng to a glven rlght
hand side, B.

on the N-vectors W0 , I0 and the N by N array A
Inltiallze N and the
COSUB IOOO

N by N array A

Check condltion number K0.
(A rough test is donfr call SOLVE if KO > t./U0)

4
5 C,OSUB 2250 (SOLVE puts the ansuer tn W0)

Put the rlght hand slde ln W0

In general, one goes through sEeps Lr2r3 once and
repeatedly through steps 4 and 5.

Numerical solutlon of systeus of linear equatlons

To use DECOMP and SOLVE:



t

Linear equations, continued '

The subroutine DEC0I'IP decomposes the N by N inpuE matrix A-

inEo its LU factorization using Gaussian elirnination wlEh partlal

pivoting. The upper triangular matrix U is stored in the upper

triangular Part ti aflt original matrix A' information about

a penouted version of a lower tri-angular matrix I - L is

is stored in the lower rriangular portion of the original A'

and the pivot informatlon is "totud 
in the N-vector I0' This

computation is done in such a manner that

(perrnutation matrix based on I0) * A = L * U

Gaussian erimination with partiar pivoting is a very stable

firsE-step for solving linear systems '

A by-product of the decomposition is K0' which is an

estimate of the condition of the Eatrix A' CondiLion of a

matrix corresponds to how nearly singular the.maErix is 
'

and relates tror* errors in the nrigirrir data !ri1i be propagated

in the nunerical solution' The user should consult section

1.2 af Forsyrhe, ldalcolm and l"Ioler for a ful1 discussion of

condit.ioning of a ruatrix' A rough rule to use- is be wary of

usl.ngS0LVEifK0>1./U0,whereU0isthemachlne'sapproximate
unit roundoff.

Given a right hand side, B'

solve the triangular sYStelo:

then solve the triangular sYStem:

Solving triangular systeus is siuple'
baek substituti-on'

20.

and the decomPosiEi-on, LU:

L C = B for the urvector C

U X = C for rhe n-vector X

since it onlY involves

Once the matrix A has been decomposed by DECoI'1P, the

subroutine SOLVE can be used to find the solution vector' X'

given a right hand side, B'

The manner in which SOLVE goes about this employs the LU

decomposition of A to rnake finding the unknowns a relatively

simple comPutation'

The n-vector X now j-s the solution sought ' 
since

AX=L(UX)=LC=B

l



Least squares flt to a linear model equation

subroutj-ne IIECOMP input (A,MrN) output (A,U,Gl)
subroutine HOLVE input (A,U,MrN,B) output (B)

The original FORTRAN version of IIECOMP and HOLVE is frou

l"latrix Eigenvalue and Least Squares Computations
by Cleve B. I"lo1er

Computer Science Department Course Notes
Stanford University, March, L974

An alternate reference for the numerical linear algebra is:

Introduction to Matrix Computations
by G. W. Stewart

Acadeuic Press, L973

The linear model is specified by

y(t)=xf(t)*xf(t)+
11 22

+ (t)x
NN

where the f (t) are continuous functions. Glven the data:
i

(t ,y ), i=L,2,...,M
11

the least squares solution for the unknowns x ,
linear model is gotten from solving i

i=1, . . ,N of the

AX B where A=(a )=(f(t))
ij j i

and B=(b)=(v)
1i

i=l,...,M; j=l,...,N.

Chapter 9 of tI] gives many more details on how to set up
a linear mode1, i.e. the construction of the design matrix A and the
definition of the right hand side data vector, B. The routine IIECOT'IP
will decompose the M by N (with M > N) design matrix, A, using
Householder refl,ections. The routi-ne HOLVE can Ehen be
used Eo find the coefficient vector which for a given right
hanci side data vector, B, best fits the model, i.e.

minimize the sum of squares of the components of A X - B

To use HECOMP and HOLVE:

0. Dimension the M-vectors BrU and the t"l by N array A
l. Initialize M,N and ttre 1"1 by N array A
2. GOSUB 1000 (to decompose A)
3. If Gf<>l, then set up rlght hand side, B
4. GOSUB 1760 (HOLVE puts unknowns in first N

components of B)
5. Compute residual of fit, whlch is the sum of squares

of the remaining I'l-N components of B.

2L.
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The following reference gives many details on solving

least squares ptoil"*" ' Chapter 19 presents operations counts

for Householder reduction vs ' forming and solving the normal

TT
equations (A A) X = A B and comes to the conclusion

thatthenrmericalfystabfeorthogonalllouseholderreduction
takes Ewice as uany operations, but the normal equatioas m11t be

solved using far more precision (about twice as many significant
digits) to even "o*puu 

with liECOl'lP' Therefore' the safe

general metho<l to use is HEC01'1P'

Solving Least Squares Problems
by Chailes L' Lawson and Richard J' Hanson

Prentice-Ha11 Lgl4

Following is a brief justification (taken direetly from

Cleve Moler'" ,roi.") of ttre algorithm used in his routines'
Theorem 4. r is stated with proof since it actually constructs

the decomposition of the design matrix A' Corollary 3'l is

without proof, and can be taken as a definition of a Householder

reflection. (Normally one defines the Householder reflection in

this way, and then proves that il has the desired properties) '

T

L,loler's Corollary 3.1: Let a = (a )a " " 'a ) be any vector'
LZI"l

Least squares fits using Householder reductlon, continued'

For any k=I, . . . rM, define

alfa = sign (a ) * sqrt (a
1.(

22
+ ... + a )

k l'l

T

u = (0,...,0, a * a1 fa ,a
i-
K k+1 11

= aLf.a * (aIfa + a )
kk

,... ra )

bera=aifa*u

T

thenP= | - (l/beta) uu is aEouseholder reflecEion (and

Eherefore orthoSo a1 and s5rmmetric) shich has the following

effeets on Ehe ori-gina1 vector a:

Pa=(a ,a ,-alfar0r"'r0)
l.-1(I1

Furthermore, if b is any other vector' define

Then

In particular,

T

gamma = (u b)/beta

Pb=b-gama*u

if b = =b =0, [hen Pb=b
k14

lL
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Least squares fits using Householder reductlon, continued.

Molerfs Theoreu 4.1: Let A be any M by N matrix with !DN. Then
there is an orthogonal matrix Q, which is
a product of Householder reflections

a
N 2L

so that

QA=R

is upper trlangular.

Proof. The proof is the outllne of an algorithn for actually
coroputing P1,P2,...,PN and R. Let Al=A and 1et a be the

*1
first column of A1. Use Cor. 3.1 to produce a Householder
reflectlon Pl so that Pl a is a multiple of el, the first

*1
unit vector. Let A2 = p1 A1. (Because of the speclal
structure of P1, this does not involve a complete uatrlx
mulEiplicatlon. Only 2*N*N multiplicatlons are needed,
not N*N*N.) Now 1et a be the second column of lA. By

*2
Cor. 3.1, there ls a Householder reflection p2 whlch zeroes
all but the first two components of a and which does not

*2
alter the first column of. A2. Let A3 = p2 A2. Contlnulng
in this way, after N-l steps we have a matrix

AN = PN-l ... Pl A

which is upper triangular except for its last coltrmn. LeE
a be this last column. Let PN be the Householder reflectlon

*N

.which 
zeros that last M-N components of a and which does

*N
not alter any of the previous coltrmns. Finally, we 1et

R = AN*l = PN PN-l ... pl A

PPP
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Singular value decoropositlon of an M by N matri-x A

subroutine SVD input (A,M,N,Gz,G3) output (W,U if G2=1,V if G3=lrGl)

The original FORTRAN version of SVD is presented in:

Computer Methods for Mathematical Computations
by G. E. Forsythe, M. A. Ilalcolm and C. B. Moler

Prentice-Ha11, L977

The subroutine S\D is an exLremely powerful ntrmerical tool that
has a wide variety of applications in the field of over-determi-ned
linear equations and least squares data fitfing. It decomposes the
11 by N matrix A into

T

A=UWV

where urv are orthogonal matrlces of or:der M and N, respectively,
and W is an 1"1 by N upper diagonal noatrj-x with all zeros ln
the lower block. The theory behind the svD is presented in the
above reference, but more details on the power of this routine
can be obtalned from:

Solving Least Squares Problems
by Charles L. Lawson and Richard J. Hanson

Prentice-Ha11, L974

and

It is recommended that the user look into these Ewo

references sj-nce no attempt is made here to develop the
theory of the singular value decomposition.

To use SlD

Applied Linear Algebra -
by Ben Noble and James W.

Prentice-Ha11, L977

second edition
Daniel

0 Dimension the N-vectors W,I{O and ttre 1"1 by N matrix A'
If the transformatlon natrices are desired, then
dimension V to be N by N and U to be t'1 by N.
Initialize ll,N and the l'1 by N matrix A

Set G2=l if the maErix U is desired.
Set G3=l if the matri-x V is desired.
C.OSUB 1OOO

If Gl=0 then the singular values are i-n W and the
orthogonal transformation matrice6 U,V are set if requested.

I
2

3

4



Singular value decompositlon, cont.lnued.

The following theorern defines the signlficance of W, U

and V, and reveals the power of the SVD. (A detailed discusslon of
applications of SVD rnay be found ln the book by Lawson and Hanson).

Theoreu 9.7 (Singular Value Decomposition) (Noble & Daniel, p.327)

Then there exlst nr;mbersLet the M by N matrlx A have rank K.

I.J )= IlJ )= ... )= w > 0
L2K

the singular values, an I'1 by M unitary Eatrix U = (U ,...rU ),
1 l'1

and an N by N unitary matrlx V = (V , ... rV ), such that
1N

T
A=UWV

where H is rhe M by N uatrix defined by

I.Jr0
W = Note: The 0 block matrlces may be

0 0 null dependlng on the relatlve
slzes of M, N and K.

and WI lndicates the K by K dlagonal matrix with l-th entrY, W.

1

l'loreover, f or I (= i (= k, U

-1
=W AV

i.i

-1 T

and V W AU,

T

are eigenvectors of A A respectively, both

> 0.

25
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Singular valtre decomposition, eontlnued.

Three uses of the singular value decomposition:

1. One sees from the above Eheorem, that SVD produces the rank
of an arbitrary l'1 by N oatrix which is of great value when
trylng to develop a linear model of some particular system to
use for least squares data fitting.

2. The S!'D can be used to solve the least squares problem

where A is M by N, B is an M-vector and
X is an N-vect.or.

T
a. Let A=UWV
b. Apply U-transpose to original data vector, B

T

c. Divide the i-th conponent U B by the i-th singular value, W.

l-

d. Apply V to the resulting vector to obtain

T
UB

where W is the Moore-Penrose inverse defined below.

+

3. The Moore-Penrose inverse, A , of an M by N matrix can be

obrained from the SVD using

+
A

+T
vi.J u

where
+HIO

w

-1
and the K by K diagonal matrix WI, is made trp of the W. 's

1

(the reclprocals of Ehe singular values of A).

00

26.

AX=B
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Numerical couputatiOn of eigenvalues and elgenvectors for a real
symmetric matrix

subroutine SYI"IEIG input (A,N,Fl) output (L,X0 if F1=1,A)

The original FORTRAN version of SYMEIG is presented in

I"latrix Eigenvalue and Least Squares Computations
by Cleve B. l"loler

Course Notes from Computer Science Department of
Stanford UniversitY, l{arch L974

An alternate reference for the numerical linear algebra 1s

Introduction to l'latrix Computations
by G. W. Stewart

Academic Press, L973

Sincetheuserwillprobablynothaveaccesstotheoriginal
documentation contained in the Course Notes, an attempt will be

uade here to define the algorithm employed by rhis subroutlne.
The user should read the doctmentation for H-ECOI''IP and HoLVE first,
since some of the terms used here are developed Ehere.

SYI"IEIG will find the elgenvalues, and oPtionally the

eigenvectors, of a real symmeEric N by N matrix A'

To use SYIIEIG:

0. Dimenslon the N-vectors LrW0 and the N by N roaErix A'
If the eigenvectors are desired, then dlmenslon
X0tobeNbYN.

l. Initiallze N and at least the lower Erlangular Part
of the N bY N matrlx A

2. Set F1=1 if you want the eigenvectors
3. msuB 1000
4. The eigenvalr-es are in L
5. If Ft=1 then the eigenvecEors are in X0'

Thek-thcolumnofX0,i.€.x0(*,k)correspondstoL(k)



Symmetric eigensystem, eontinued.

The first step in the symmetric eigensystem problern is to
transform the symmetric N by N input matrix, A, to a tridiagonal
form using Householder reflections. Moler's Algorithm 6.1 replaces
Ehe maErix A with the tridiagonal matrix, A1, where

where the Householder reflection matrices, P. , i=Zr...,l.I-1 are not
a

explicitly computed as matrices, but the effect of thelr action on
the original A is produced and the scalar beta and N-veetor u
which define P are stored in the upper triangular part of A.
Note Ehese P , i=2,... rN-l are the sarae Householder reflections

i
that would be generated by HECOI'IP in reducing A to right
triangular form

If the user has specifie<i FI=l on input, indicat.ing that the
eigenvectors are desired, the next step is to form the matrix X0
which w111 contain the eigenveetors. This matrix 1s simply

Al=P P

N-l N-2
... P A P P ... P

2 2 3 N-l

P

N-1

which is recovered froru infornation that was stored in the upper
triangular portion of the matrix A as the tridiagonal
transformation was being performed.

The third step in SYI'{EIG is the tridiagonal QR algorithm
to find the eigenvaltres of the tridiagonal matrix Al, above.
The tridiagonal QR algorithm produces a sequence of orthogonal
matrices Q ,...,Q so that the matrix

I N-l

a
N-1

Q ATQ

X0=P
2

1 I
...4

N-l

is a tridiagonal matrix of the form:

1l
e2
0

e2OO
12e3e
e3 13 e4

0

0
0

eN0 i*
where the e t s are neg1ib1e, lndicatlng that the 1 t s are eigenvalues.

1 l-

l

l:


