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1 Introduction

The computer has become at once the microscope and the telescope of sci-
ence. It enables us to model molecules in exquisite detail to learn the secrets
of chemical reactions, to look into the future to forecast the weather, and to
look back to a distant time at a young universe. It has become a critically
important filter for those tools of science like high-energy accelerators, tele-
scopes, and CAT scanners that generate large volumes of data which must be
reduced, transformed, and arranged into a picture we can understand. And
it has become the key instrument for the design of new products of our tech-
nology: gas turbines, aircraft and space structures, high-energy accelerators,
and computers themselves.

The story of modern scientific computing begins with the opening of the
computer era in the 1940s during World War II. The demands of war provided
the motivation and money for the first developmentsin computer technology.
The Automatic Sequence Calculator built by H. H. Aiken at Harvard, the
relay computers by George Stibitz at Bell Telephone Laboratories, the Eniac

*This work has been supported by the National Science Foundation under an Ed-
ucational Infrastructure grant, CDA-9017953. It has been produced by the HPSC
Group, Department of Computer Science, University of Colorado, Boulder, CO 80309.
Please direct comments or queries to Elizabeth Jessup at this address or e-mail
jessup@cs.colorado.edu.
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2 Overview

by John Mauchly and J. Presper Eckert at the Moore School of the University
of Pennsylvania, the Edvac growing from the Eniac effort and inspired by
ideas of John von Neumann were products of this time. They were used
almost exclusively for numerical computations, including the production of
mathematical tables, the solution of equations for the motion of projectiles,
firing and bombing tables, modeling nuclear fission, and so forth. But it was
not all numerical computing, the deciphering of codes by Alan Turing on the
Colossus computers at Bletchley Park in England is an important example
of non-numerical computing activities in this period. The machines of this
early period operated at speeds ranging from about one arithmetic operation
per second to about one hundred operations per second.

Immediate problems of war did not provide the only motivation for com-
puter development in this early period. Goldstine, von Neumann, and others
recognized the importance of computers for the study of very fundamental
problems in mathematics and science. They pointed to the importance of
computers for studying nonlinear phenomena, for providing “heuristic hints”
to break a deadlock in the advance of fluid dynamics, and for attacking
the problem of meteorological forecasting. And computers themselves moti-
vated new kinds of investigations, including Turing’s work on fundamental
questions in logic and the solvability of problems, and von Neumann’s on
self-reproducing automata. The possibility of solving systems of equations
far larger than had ever been done before raised new questions about the
numerical accuracy of solutions which were investigated by Turing, Golds-
tine, von Neumann, Wilkinson and others. While great advances have been
made, these questions, these problems remain. This is not a failure of the
promise of the computer but a testament to the fundamental nature of these
questions.

In the following sections we take a broad look at scientific computing
today. The aim is to capture your interest, to stimulate you to read further,
to investigate, and to bring your own talents and energy to this field.

2 Large-scale scientific problems

In 1987, William Graham, who was then the director of the Office of Science
and Technology Policy, presented a five-year strategy for federally supported
research and development on high-performance computing. Subsequently,
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as a part of this strategy, a detailed plan for a Federal High Performance
Computing Program (HPCP) was developed.! It provided a list of “grand
challenge” problems: fundamental problems in science and engineering with
potentially broad economic, political, or scientific impact, which could be
advanced by applying high-performance computing resources. The grand
challenge problems are now often cited as prototypes of the kinds of problems
that demand the power of a supercomputer.

Here is a slightly shortened list of the grand challenge problems as from
the 1989 report on the HPCP by the Office of Science and Technology Policy.

Prediction of weather, climate, and global change The aim is to
understand the coupled atmosphere-ocean biosphere system in enough detail
to be able to make long-range predictions about its behavior. Applications in-
clude understanding carbon dioxide dynamics in the atmosphere, ozone deple-
tion, and climatological perturbations due to man-made releases of chemicals
or enerqy into one of the component systems.

Challenges in materials science High-performance computing provides
invaluable assistance in improving our understanding of the atomic nature of
materials. Many of these have an enormous impact on our national economy.
Examples include semiconductors, such as silicon and galliuvm arsenide, and
high-temperature superconductors, such as copper oxide ceramics.

Semiconductor design As intrinsically faster materials, such as gallium
arsenide, are used for electronic switches, a fundamental understanding is re-
quired of how they operate and how to change their characteristics. Currently,
it s possible to simulate electronic properties for simple reqular systems, how-
ever, materials with defects and mixed atomic constituents are beyond present
computing capabilities.

Superconductivity The discovery of high temperature superconductivity
in 1986 has provided the potential for spectacular energy-efficient power trans-
mission technologies, ultra sensitive instrumentation, and new devices. Mas-
sive computational power is required for a deeper understanding of high tem-

! Approximately $800M was proposed for this program in 1993.
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perature superconductivity, especially of how to form, stabilize, and use the
materials that support it.

Structural biology The aim of this work is to understand the mecha-
nism of enzymatic catalysis, the recognition of nucleic acids by proteins, an-
tibody/antigen binding, and other phenomena central to cell biology. Compu-
tationally intensive molecular dynamics simulations, and three-dimensional
visualization of the molecular motions are essential to this work.

Design of drugs Predictions of the folded conformation of proteins and of
RNA molecules by computer simulation is a useful, and sometimes primary,
tool for drug design.

Human genome Comparison of normal and pathological molecular se-
quences is our most powerful method for understanding genomes and the
molecular basis for disease. The combinatorial complexity posed by the ex-
ceptionally long sequence in the human genome puts such comparisons beyond
the power of current computers.

Quantum chromodynamics (QCD) [In high energy theoretical physics,
computer simulations of QCD yield computations of the properties of strongly
interacting elementary particles. This has led to the prediction of a new phase
of matter, and computation of properties in the cores of the largest stars.
Computer simulations of grand unified “theories of everything” are beyond
current computer capabilities.

Astronomy The volumes of data generated by radio telescopes currently
overwhelm the available computational resources. Greater computational power
will significantly enhance their usefulness.

Transportation Substantial contributions can be made to vehicle perfor-
mance through improved computer simulations. Framples include modeling
of flutd dynamical behavior for three-dimensional fluid flow about complete
aircraft geometries, flow inside turbines, and flow about ship hulls.
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Turbulence Turbulence in fluid flows affects the stability and control, ther-
mal characteristics, and fuel needs of virtually all aerospace vehicles. Under-
standing the fundamental physics of turbulence is requisite to reliably model-
ing flow turbulence for the performance analysis of vehicle configurations.

Efficiency of combustion systems To aitain significant improvements
in combustion efficiencies requires understanding the interplay between the
flows of the various substances involved and the quantum chemistry that
causes those substances to react. In some complicated cases the quantum
chemistry required to understand the reactions is beyond the reach of current
supercomputers.

Enhanced oil and gas recovery This challenge has two parts: to locate
as much of the estimated 300 billion barrels of oil reserves in the US as possi-
ble and to devise economic ways of extracting as much of this oil as possible.
Thus both improved seismic analysis techniques and improved understanding
of fluid flow through geological structures are required.

Computational ocean sciences The objective is to develop a global ocean
prediction model incorporating temperature, chemical composition, circula-
tion and coupling to the atmosphere and other oceanographic features. This
will couple to models of the atmosphere in the effort on global weather as well
as having specific implications for physical oceanography.

Speech Speech research is aimed at providing communication with a com-
puter based on spoken language. Automatic speech understanding by com-
puter is a large modeling and search problem in which billions of computa-
tions are required to evaluate the many possibilities of what a person might
have said.

Vision The challenge is to develop human-level visual capabilities for com-
puters and robots. Machine vision requires image signal processing, texture
and color modeling, geometric processing and reasoning, as well as object
modeling. A competent vision system will likely involve the integration of all
of these processes.
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Thus there is no shortage of problems for today’s supercomputers. At a
future time, when we have petaflop computers (10'® floating-point operations
per second), we can be sure there will be no shortage of problems for them
either. The solution of old problems raises new problems. That is the nature
of science, its challenge and its mystery.

Most of the grand challenge problems involve modeling a physical system
in a computer and using this model to create a simulation of its behavior.
Others involve reduction and analysis of experimental data on a very large
scale. Even the modeling problems involve data analysis and reduction on
a large scale because running the simulation generates large files of data for
analysis. Frequently, data analysis requires representation of the data in the
form of pictures, graphs, and movies — a fascinating and rapidly growing
activity known as scientific visualization. To get a closer look at a modeling
problem we focus briefly on an important problem from the atmospheric
sciences.

2.1.1 Computer simulation of the greenhouse effect

Global warming has been the subject of growing international attention. This
problem is being studied by computer simulations that help us understand
how changing concentrations of carbon dioxide in the atmosphere contribute
to global warming through the greenhouse effect. A study of this type re-
quires modeling the climate over a period of time. Studies by Washington
and Bettge at the National Center for Atmospheric Research provide a typi-
cal example. A climate model known as the general circulation model (GCM)
is used to study the warming which would be caused by doubling the concen-
tration of carbon dioxide over a period of 20 years. The computations they
describe were done on a Cray-1, now a relatively old computer, with a peak
speed of about 200 Mflops.? The scientists report:

“The model running time was 110 seconds per simulated day.
For two 19-year simulations, over 400 computational hours were

required to complete the experiment.”

The effects the GCM attempts to take into account are illustrated in figure 1.

ZMflop is an abbreviation for a “megaflop,” 10° floating-point operations per second.
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Figure 1: Schematic of the physical processes included in the GCM. This figure is
adapted from the article by Washington and Bettge with their permission.

The atmosphere is a fluid and so the partial differential equations that
govern the behavior of fluids are the mathematical basis of the GCM. Com-
puter solution of these equations is done by a “finite difference” algorithm in
which derivatives with respect to spatial coordinates and time are approxi-
mated by difference formulas in space and time. Thus a three-dimensional
mesh in space is created, as illustrated in figure 2. Solution of the prob-
lem involves starting with some set of initial conditions, for which values
are assigned to the variables at each mesh point, and stepping forward in
time updating these variables at the end of each time step. There are some
eight or nine variables at each mesh point that must be updated, including
temperature, wind velocity, CO5 concentration, and so forth.

The mesh is the key for understanding why speed is so important. The
mesh used in the computations was three dimensional with about 2000 points
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Figure 2: Hlustration of a three-dimensional mesh.

to cover the surface of the earth and nine layers spaced at different altitudes:
altogether about 18,000 mesh points. A moment’s thought will make it ap-
parent this is an extremely coarse mesh. The surface of the earth is 2.1 x 10®
sq. mi.; i.e., 100,000 sq. mi. per mesh point. Colorado with a land area of
103,595 sq. mi. rates one surface mesh point! Quite clearly we would like
greater accuracy, and this means more mesh points. But if we double the
density of points in each of the three directions we increase the number of
mesh points by a factor of 8, essentially an order of magnitude increase in
computational demand. And so this computation which took 400 hours for
around 18,000 mesh points, would take over 3000 hours, and we would still
have only 3 or 4 surface points for Colorado.

3 The scientific computing environment

The scientific computing environment consists of high-performance worksta-
tions, supercomputers, networks, a wide range of software, and technical
literature. In this section you will find some pointers to this material.

High-performance workstations have peak speeds of 10 to over 100 Mflops;
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Machine Manufacturer | LINPACK
(Mflops)

SUN SPARC10/40 || SUN Microsystems 10.0
IBM RS/6000-350 | IBM 19.0
IBM Power2-990 IBM 140.0
DEC 5000/240 Digital Equipment 5.3
HP 9000/735 Hewlett-Packard 41.0
SGI Indigo R4000 || Silicon Graphics 12.0
SGI Crimson Silicon Graphics 16.0

Table 1: A short list of high-performance workstations, and their performance on

the LINPACK benchmark.

the supercomputers have peak speeds of 500 Mflops to over 100 Gflops.?
High-resolution color monitors with over 10° pixels provide excellent tools
for pictorially representing data from scientific simulations. In table 1 there
is a short list of high-performance workstations with the name of the machine,
followed by the name of the manufacturer, followed by the performance in
Mflops on the LINPACK Benchmark. [Dongarra 94]. This benchmark is
based on the speed of solving a system of 100 simultaneous linear equations
using software from LINPACK [Dongarra et al 79]. The peak performance of
workstations in this table could be as much as five to ten times the LINPACK
performance number.

Table 2 provides a short list of supercomputers, with the name of the
machine series, the name of the manufacturer, and the Theoretical Peak Per-
Jormance [Dongarra 94].*

As with the workstations, the machines in this list come in various models
and configurations; the performance data is for the largest system listed in
Dongarra’s report. Note here, in contrast with the previous table, a theo-
retical peak performance figure is given; in an actual computation the per-
formance could fall to one-fifth or one-tenth the performance figure given

3Gflop is an abbreviation for a gigaflop, 10° floating-point operations per second (flops).

*Dongarra’s definition of these values: “The theoretical peak performance is determined
by counting the number of floating-point additions and multiplications (in full precision)
which can be performed in a period of time, usually the cycle time of the machine.”
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Machine Manufacturer Number of | Theor Peak
Processors (Gflops)

CM 5 Thinking Machines 16,384 2,000
Cray Y-MP Cray Research 16 15
Cray T3D Cray Research 2,048 307
IBM ES/9000 | IBM 6 2.7
IBM 9076 SP2 || IBM 128 32
Intel iPSC/860 | Intel 128 7.7
Intel Paragon Intel 4,000 300
KSR2 Kendall Square Research 5,000 400
MP-2 MasPar 16,384 2.4
NEC SX-A Nippon Electric Company 4 22

Table 2: A short list of supercomputers and their theoretical peak performances.

here. Roughly speaking, the speed advantage of a supercomputer over a
high-performance workstation is a factor of 1000. The price difference is
roughly the same or slightly higher.

The National Science Foundation (NSF) supports five supercomputer cen-
ters available to scientists and students for research and education:

e Cornell Theory Center, Cornell University, Ithaca, NY.
¢ National Center for Atmospheric Research (NCAR), Boulder, CO.

¢ National Center for Supercomputer Applications (NCSA), University of Illi-
nois, Champaign, IL.

o Pittsburgh Supercomputing Center, Carnegie Mellon University and the
University of Pittsburgh, Pittsburgh, PA.

e San Diego Supercomputer Center, University of California at San Diego,

San Diego, CA.

The facilities at these centers can be accessed via worldwide networks. Cen-
ters usually have facilities to accommodate on-site visitors, and they run
workshops on a wide range of topics in scientific computing. In addition to

CUBoulder : HPSC Course Notes
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these NSF centers there are other supercomputer centers at universities and
national laboratories which provide network access to their facilities. These
include:

o Arctic Region Supercomputing Center, University of Alaska, Fairbanks, AK.

o Army High Performance Computing Research Center, University of Min-
nesota, Minneapolis, MN.

o Advanced Computing Research Facility, Argonne National Laboratory, Ar-
gonne, IL.

o Center for Computational Science, Qak Ridge National Laboratory, Oak
Ridge, TN.

e Lawrence Livermore National Laboratories, Livermore, CA.
e Los Alamos National Laboratory, Los Alamos, NM.

o Massively Parallel Computing Research Center, Sandia National Laborato-
ries, Albuquerque, NM.

¢ Maui High Performance Computing Center, Kihei, Maui, HI.

o Research Institute for Advanced Computer Science, NASA Ames Research
Center, Moffett Field, CA.

All of the supercomputers listed in table 2, except the NEC SX-A, are avail-
able at one of these centers.

Communication networks are a vital part of the supercomputing environ-
ment. The Internet is the worldwide system linking many smaller networks
running the TCP/IP protocol. In May 1994 the Internet consisted of 31,000
networks, connecting over two million computers, and was growing at the
phenomenal rate of one new network every 10 minutes [Leiner 94].

The National Science Foundation Network (NSFNET) is one of the most
important components of the Internet, linking the the supercomputing cen-
ters in a network known as the backbone, which can be reached from other
networks linking universities and other research organizations. Among these
other networks are WESTNET in the Rocky Mountain states; NEARNET
in the New England states; SURANET in the southern states; and MIDNET

in the midwestern states.
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The bandwidth of the NSFNET backbone has been 44.7 megabits/sec but
a new backbone is under construction with a bandwidth of 155 megabits/sec.
Communication networks with bandwidths in the gigabit /sec range are emerg-
ing. NSF and the Defense Advanced Research Projects Agency (DARPA)
are supporting five testbed research projects on communication networks op-
erating at gigabit/sec rates. Included in these research projects is a study
of distributed computation on a very large scale: ocean and atmospheric cli-
mate models will simultaneously run on separate computers exchanging data
across a network which includes the Los Alamos National Laboratory and
the San Diego Supercomputer Center.

Software to support scientific computing is available on the Internet from
the supercomputing centers and other sources. There is a particularly valu-
able resource for software known as Netlib. It is a library of numerical soft-
ware available by e-mail or ftp from one of two centers in the U.S.A. A copy
of machine performance information as shown in the two tables above, and
short descriptions of these machines are also available from Netlib. Informa-
tion about Netlib can be obtained via e-mail to

netlib@research.att.comor netlib@ornl.gov
The body of your mail message should contain just the line
help

Also, you can access Netlib directly with anonymous ftp. For Europe there
is a duplicate collection of Netlib in Oslo, Norway with Internet address
netlib@nac.no; and for the Pacific region there is a collection at the Uni-
versity of Wollongong, NSW, Australia with the following Internet address
netlib@draci.cs.uow.edu.au.

There is a relatively new network tool called Mosaic now widely used for
browsing and retrieving information on the Internet. With this tool the user
can read documents located at another Internet site. These are hypertext
documents so the user can navigate through them by clicking on highlighted
keywords. High quality graphics images and animations can be included
in these documents. Menus facilitate other operations including retrieving
entire documents and programs. Mosaic was developed at NCSA and is
available from them at no charge by anonymous ftp at ftp.ncsa.uiuc.edu.
A commercial version known as Netscape was recently produced.
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Another important resource is represented by technical publications: jour-
nals and conference proceedings. The following lists tends to focus on com-

puter related publications, especially those concerning parallel computing
and supercomputing, rather than applications. However an increasing num-
ber of articles concerning the application of computers to problems in physics,
chemistry, and biology are finding there way into these publications. Some
of the journals are:

ACM Transactions on Mathematical Software
Computers in Physics

Computer Physics Communications

Computer Methods in Applied Mechanics and FEngineering
IEFEFE Transactions on Parallel and Distributed Systems
International Journal of Parallel Programming
International Journal of Supercomputer Applications
Journal of Computational Physics

The Journal of Supercomputing

Methods in Computational Physics

Parallel Computing

SIAM Journal of Scientific Computing

Supercomputing Review.

Some of the regularly held conferences that issue proceedings are:

Annual Symposium on Computer Architecture (IEEE Computer Society)
Distributed Memory Computing Conference (IEEE Computer Society)
Frontiers of Massively Parallel Computation (IEEE Computer Society)

International Conference on Supercomputing (ACM)
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Workstation Clock | SPECmark | LINPACK | Theor Peak
MHz Mflops Mflops

SUN SPARC10/40 40.0 60.2 10.0 40
IBM RS6000-350 41.6 4.2 19.0 34
IBM Power2-990 71.5 260.4 140.0 286
DEC 5000/240 40.0 35.8 5.3 40
HP 9000/735 99.0 167.9 41.0 200
SGI Indigo R4000 50.0 60.3 12.0 —
SGI Crimson 50.0 63.4 16.0 32

Table 3: Some typical workstations and performance data. The SPECmark value
is the ratio of the average speed of floating-point operations for the given machine
to the average speed of floating-point operations for a VAX 11/780 on a set of
benchmark programs. The LINPACK value is the speed in solving a system of
100 linear equations in double precision arithmetic. Theor Peak stands for the
theoretical peak performance.

¢ International Conference on Parallel Processing (ACM)

International Parallel Processing Symposium (IEEE Computer Society)

SIAM Conference on Parallel Processing for Scientific Computing (SIAM)
e Supercomputing (IEEE Computer Society)

e Supercomputing in Europe

Visualization (IEEE Computer Society).

4 Workstations

The workstation is the desktop “supercomputer,” small enough to fit on a
desk but with peak speeds in the range of about 10 to 100 Mflops. Table 3
lists some popular workstations with performance figures. The actual speed
of operation and the peak speed can differ substantially, as is illustrated by
the data in this table: the speed on the LINPACK benchmark is substan-
tially below the peak speed of these systems. Careful tuning of a program
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is necessary to get close to peak speed, and for some computations this is
simply an unreachable goal. In some cases, best performance requires pro-
gramming parts of the computation in assembly language: the compilers for
high-level programming languages cannot always produce the best results.

Normally, a workstation is connected to a network giving it access to
additional computing resources which include other workstations, storage
devices, printers, and still more powerful computing systems. Thus it serves
the scientist as a primary computing resource and as a link to a wide array of
other resources. The price of a workstation ranges from about $15K to about
$100K. The high-end machines are faster and include high quality graphics,
multiple processors, and large memories.

The architecture of scientific workstations has undergone a period of rapid
development since the early 1980s when they first appeared. From that time
to the present, clock rates have increased to about 200 MHz; pipelining of in-
structions and arithmetic, and parallel functional units have been introduced;
and a variety of caching mechanisms have been developed to overcome mem-
ory access delays. In a ten year period the speed of these machines has
increased by about two orders of magnitude. In the following paragraphs we
discuss some of the architectural features now found in popular workstations.

4.1 RISC architecture

Many workstations use a RISC (Reduced Instruction Set Computer) archi-
tecture [Patterson 85]. It is characterized by a relatively small set of simple
instructions, pipelined instruction execution, and cache memory. The prin-
cipal goal of this architecture is an execution speed of one instruction per
clock cycle: with a 40 MHz clock an execution speed of 40 mips® is the goal.
In contrast, the acronym CISC is used for architectures with larger and more
complex instruction sets: the DEC VAX 11/780 with about 256 instructions
is a CISC system; the DEC 5000 with 64 instructions is a typical RISC
system.

The move towards RISC systems was stimulated by recognition that bet-
ter performance could be achieved with a simpler and smaller instruction set.
Studies of programs executed on CISC machines showed that more complex

®mips is an abbreviation for “million instructions per second,” 10° instructions per

second.
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Instruction

Fl DI FO EX SR

Stream

Figure 3: Pipelined execution of instructions. The steps are: FI, fetch instruction;
DI, decode instruction; FO, fetch operand; EX execute instruction; SR store re-
sult. Since this pipeline has five segments, it can be operating on five instructions
simultaneously. While the FI segment is fetching an instruction, the DI segment
is decoding the previous instruction, and so on down the pipe.

instructions were not heavily used. This was attributed to the observation
that the more complex instructions were too specialized and not needed for
many computations, also it was difficult for compilers to recognize when they
could be used effectively. By reducing and simplifying the instruction set, in-
struction decoding time was reduced, and space on the chip was saved. This
provided more space for cache and cache management. Particularly impor-
tant was the fact that simple instructions, all taking about the same amount
of time to execute, made it possible to execute instructions in a pipeline.

Using a pipeline makes it possible to execute one instruction per clock
cycle. The idea of pipelined instruction execution is easy to understand by
analogy to the automobile assembly line. In the automobile assembly line
the work to be done is divided into a series of steps each requiring the same
amount of time, say 7 seconds, so the rate of production of autos is one auto
per 7 seconds. Similarly, in the instruction pipeline the work of executing an
instruction is divided into steps as illustrated in figure 3. In this pipeline,
which has five steps, we expect to gain a factor of five in speed over execution
without pipelining.

The speedup promised by a pipeline cannot always be attained. For ex-
ample, branch instructions can cause a problem because the next instruction
after the branch is not known until the branch test is executed. Thus a branch
interrupts the smooth flow of instructions through the pipe. Since branches
occur frequently in code they could seriously degrade performance. To deal
with this problem RISC systems use a delayed branch that delays fetching
the next instruction after the branch by a fixed number of clock cycles. This
causes a bubble in the pipe that can be filled by an instruction that would
be executed regardless of the direction the branch takes. Whether or not the
bubble can be filled depends on the program, and if it cannot, there will be
a degradation of performance.
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RISC systems usually have a separate floating-point pipelined coproces-
sor, and some RISC systems contain multiple functional units allowing over-
lap of operations: the IBM RS6000 series and the Intel i860 are examples.
Therefore, with these systems it is possible to achieve a performance even
higher than one instruction per clock cycle, often referred to as superscalar
performance. For example, overlap of floating-point add and multiply in the
IBM RS6000 system allows evaluation of a x b+ ¢ in one clock period, giving
a peak speed of 50 Mflops with a 25 MHz clock. Moreover, in one clock
cycle this system is capable of executing four instructions simultaneously:
a branch, a condition-register instruction, a fixed-point instruction, and a
floating-point instruction. Including the possibility of overlap of floating-
point add and multiply, this system can execute five instructions per clock
cycle.

H Operation H Single ‘ Double H
add 0.75 x 1077 | 0.75 x 1077
subtract 0.75 x 10=7 | 0.75 x 1077
multiply 1.01 x 1077 | 1.26 x 1077
divide 3.00 x 107 | 4.79 x 1077

Table 4: Time for arithmetic on DEC 5000/240, units are seconds.

4.2 The DEC 5000 workstation

One system we use in the HPSC laboratory is a DEC 5000/240 series system
with a 40 MHz clock for the CPU. The memory subsystem, [/O controller,
etc. operate with a 25 MHz clock [DEC 91]. Tt uses a MIPS® processor
and floating-point coprocessor.
arithmetic operations give the results shown in table 4. The system can
have from 8 to 480 Mbytes of DRAM memory” with a bandwidth of 100
Mbytes/sec. Our systems are configured with 24 or 32 Mbytes.

Measurements of the time for elementary

SMIPS Computer Systems, Inc., Sunnyvale, CA.
“In this section, the following abbreviations are used: Mbytes for megabytes (10 bytes),
Gbytes for gigabytes (10° bytes), and nsec for nanoseconds (10~? seconds).
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H Operation H Single ‘ Double H

add 2 2
subtract 2 2
multiply 4 5

divide 12 19

Table 5: Cycle time for arithmetic in MIPS R3010 coprocessor

The processor subsystem has a 4 Gbytes virtual address space, 2 Gbytes
of which are available to user processes. It has a 64 Kbyte cache memory
for data and another 64 Kbyte cache memory for instructions. One word (32
bits) can be accessed from each cache in each processor cycle (25 nsec). A
single memory read from a noncached address requires 690 nsec. Thus the
time for a reading an operand from memory is about 28 times longer than
reading it from cache.

The DEC 5000, as for most scientific workstations, can be augmented
with 2D and 3D graphics options. The DEC PXG 3D Accelerator module
includes an Intel 1860 chip as a geometry engine and a scan converter chip to
compute pixel values. The resolution of the display is 1280-by-1024 pixels.
Double buffering and 24 image planes are provided with this module. The
PXG system uses a 16 in. or 19 in. color Trinitron monitor. Peak speeds
(for PXG Turbo+) are 436 x 10® vectors/sec and 106 x 10° polygons/sec: a

“vector” is 10 pixels long; a “polygon” is a triangle, 100 pixels in area.

4.2.1 The MIPS R3000 and R3010 processors.
The CPU of the DEC 5000 is a MIPS R3000 processor and R3010 floating-

point coprocessor. The user address space is 2 Gbytes. The coprocessor
conforms to the ANSI/IEEE Standard for floating-point arithmetic.

The processor has 32 general purpose registers of 4 bytes each, and the
coprocessor has 16 registers for floating-point numbers of 8 bytes each. Arith-
metic instructions are register-register; e.g., add contents of register rl to
contents of register r2 and store result in register r3. Explicit move instruc-
tions move data between memory (cache) and registers in the processor or
coprocessor, and between registers in the processor and coprocessor.
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Times for arithmetic in the coprocessor are shown in table 5. Multiply and
divide operations can be overlapped to some extent with other operations but
not with each other; e.g., it is possible to execute a double precision floating-
point addition and multiplication together in 5 cycles. For more information
on these processors, see [Kane 88].

5 Supercomputers

The word “supercomputer” came into use in the late 1960s when radically
new and powerful computers began to emerge from university and commercial
laboratories. Since then it has symbolized the most powerful computers of
the time.

Table 2 provides some information on the speeds of current supercomput-
ers. The performance data given in the table provide only a rough estimate
of performance. Performance depends strongly on the characteristics of the
problem being solved, and hand tuning of the software can have a significant
effect on performance. Because of the cost of supercomputers and the de-
sire to solve increasingly large problems on them, the issue of squeezing the
most out of these machines has received a lot of attention. New algorithms,
tools, and techniques to improve their performance are constantly being de-
veloped, and research in programming languages to simplify writing effective
programs is a continuing activity.

The high speed of supercomputers is the result of two factors: very fast
logic elements and parallel architectures. Many people believe that the speed
of logic elements is reaching the limit imposed by laws of physics and that
parallel architectures are the key to supercomputers of the future. A parallel
architecture allows many parts of a computation to be done simultaneously.
This feature is what really distinguishes these computers from earlier ma-
chines of the computing era. It is also the reason why supercomputers pose
such an interesting challenge to the algorithm designer and why their perfor-
mance depends so strongly on the problem being solved.

5.1 Parallel architectures

The common notion of a parallel computer or multiprocessor is a collection
of processors that are connected together in a manner that lets them work
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together on a single problem, the idea is ten processors working together on
a problem can get the job done ten times as fast as one of them working
alone, and ten-thousand of them can get the job done ten-thousand times as
fast, and so on. Of course, it doesn’t happen quite that way.

Not all computational jobs can be divided up neatly into independent
parcels in such a way as to keep all processors busy. Furthermore, one pro-
cessor may need a result from another processor before it can proceed with
its computation. Some jobs divide neatly while others do not; some require
little interprocessor data communication while others require a lot. The fol-
lowing examples illustrate how hard it can be to keep the processor workloads
balanced. In presenting these examples, we assume we are working with a
distributed-memory multiprocessor. In this type of machine, a processor has
direct access to its own memory only. Processors are required to send and
receive messages to share data.

5.1.1 Evaluation of an integral

If the problem we have is to evaluate an integral, say

/ab/cdf(x,y)dxdy ,

then an obvious way to proceed is to divide the domain of integration into n
smaller rectangles, r;, in such a way that the original problem is broken into
subproblems, thus

[ [ edeas = [ [ repdedy + "
[ sawdeay < )
ot //Tnf(:zﬁ,y)dxdy : (3)

The computation represented by each term on the right can be done by a
different processor. After all of these computations have been done, the n
results must be brought together to form the sum. At this point, commu-
nication is needed. Clearly we can reduce communication by reducing the
number of rectangles covering the domain of integration, but then we reduce
the parallelism in the computation.
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It we divide the region of integration into equal subareas it might seem
that we will keep all processors equally busy. Not necessarily so! The in-
tegrand may change its value very rapidly in some regions compared with
others. To maintain accuracy we will need to use smaller integration steps in
some regions than others. If we know this in advance, we can try to divide
the work more or less evenly. If we don’t know it, we can use an adaptive
scheme to adjust the integration step during the computation. In the latter
case, we could find that one processor is doing most of the work and a thou-
sand others are idle. If we want to do some sharing of the work, we will need
additional communication to find out which processors can accept work and
to tell them what to do.

So in this relatively simple example we see in one circumstance, a rela-
tively smooth integrand, the job divides up nicely into parcels and there is
little communication. But when the integrand is not smooth there may be
difficulty in dividing the work evenly, and there may be additional commu-
nication costs.

5.1.2 Molecular dynamics

Imagine we have n molecules interacting with each other as in a fluid. The
forces between them are such that at very short distances of separation the
molecules repel each other strongly. At intermediate distances, they attract
each other. Beyond a certain distance, say several molecular diameters, they
hardly interact at all. We are interested in tracing the motion of the molecules
of the fluid. In a problem like this n may be in the hundreds of thousands
or more.

The computation we must do can be described informally as follows.
Newton’s laws tell us the differential equations we must solve, numerical
analysis gives us a choice of algorithms to use to solve these equations. We
choose an algorithm and start its execution at time 0 with each molecule at
a certain point in space, moving with a certain velocity. We compute the
force on each molecule from all of the others within a specified distance, i.e.,
its neighbors. We then compute new values for the position and velocity of
each molecule at time ¢t 4+ ¢6¢ and repeat the process to compute new values
for the intermolecular forces, position, and velocity at time ¢ + 26¢, and so
on. In this way, we generate the solution stepwise in time until the final time
of interest has been reached.
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An obvious idea for doing the computation in parallel is to assign each
processor to one or more molecules. The processor computes the new position
and velocity of its molecules at each step and communicates them to the other
processors. New positions must be computed for every molecule so the new
forces between the neighboring molecules can be determined. Distributing
the new values for all n molecules between all of the processors involves
enormous amounts of communication. In message-passing multiprocessors,
the time to communicate a floating-point number is much larger than the time
to perform a floating-point operation, and the algorithm we’ve described will
not be able to make efficient use of the machine without careful balancing of
computation and communication.

To reduce the communication, we could have each processor communicate
only with those processors holding molecules in the neighborhood of its own
molecules. But determining what processors hold molecules in the neighbor-
hood of a given molecule is itself a major problem. As the molecules move,
the population of neighbors changes. To implement this new algorithm, each
processor will have to keep track of its neighbors somehow or will have to
institute a search at each step. Maintaining a list of neighbors would involve
redundant, non-parallel computation, and a search would require extra in-
terprocessor communication. Minimizing this overhead presents a difficult
problem.

Yet another approach would be to assign processors to specific regions of
space rather than to specific sets of molecules. However, it’s not immediately
obvious that this organization of the problem solves the difficulties encoun-
tered with the earlier ones. As each particle moves, we must keep track of the
region and, hence, processor to which it is assigned. Again, we’ll either need
more computation or communication for bookkeeping purposes. Whatever
the approach, organizing an efficient parallel computation for this problem
is going to take some careful thought. It is a computation which can cause
difficult load-balancing and communication.

5.1.3 Types of parallel computers

We can identify two distinct types of parallel computers according to whether
they obey instructions asynchronously or synchronously. We can further
classify them according how they communicate information: by sharing a
common memory space or by sending messages to each other. And we can
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classify them according to the physical nature of the interconnection network.

Parallel computers in which individual processors execute instructions
asynchronously and send messages to each other are probably the easiest to
understand at a logical level. These computers are labeled MIMD, which
stands for multiple instruction, multiple data streams. The Intel computers
iPSC/2, iPSC/860, and Paragon are of this type. Each processor executes
its own private set of instructions. The Intel computers are also distributed-
memory computers. Messages are passed between the processors by send and
receive commands. There are mechanisms for causing the processor to enter
a wait state in which it waits until receiving data from another processor.
Programming these computers at a low level, that is, specifying the individ-
ual send and receive commands, is difficult and various languages have been
developed attempting to simplify it: Linda, developed at Yale University by
Gelernter [Carriero & Gelernter 89], and DINO, developed at the University
of Colorado by Schnabel, Rosing, and Weaver [Rosing et al 91], are two ex-
amples. A group known as the High Performance Fortran Forum (HPFF)
has been developing a version of Fortran, High Performance Fortran (HPF),
which aims to support parallel programming (see [Koelbel et al 94]).

Parallel computers in which individual processors execute instructions
asynchronously but share a common address space include machines like the
Cray Y-MP and C-90, the IBM SP1 and SP2, the Silicon Graphics Challenge,
and the Convex FExemplar. They are often referred to as shared-memory
computers. These are also MIMD computers. They tend to be easier to
program than the MIMD message passing computers referred to above, but
they are not without their own set of difficulties. Clearly, if two processors
are able to read and write into the same memory location some kind of
synchronization is needed to insure the reads and writes are done in the
correct sequence. Managing this synchronization adds to the complexity of
programming these machines.

The other class of parallel computers in which processors operate syn-
chronously is typified by the Maspar MP1 and MP2. In these computers
there is a single sequence of instructions obeyed by all of the processors, each
acting on its own data. They are labeled SIMD, standing for single instruc-
tion, multiple data streams. The first real parallel computer, the Illiac IV,
finished in about 1970,® was in this class. A trivial example, matrix addition

8Now in the Computer Museum in Boston.
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C = A+ B, illustrates the nature of an SIMD computation. We store the
matrices so that each element is on a separate processor. If we have n? pro-
cessors connected to form a square mesh, we could map elements A;; and B;;
to processor p;; located in row ¢ and column j of the mesh for n x n matri-
ces A and B. With this distribution, a single add instruction performed in
unison on all processors produces the sum. The result is left distributed one
element per processor; in particular, processor p;; holds element ;. Using
this parallel algorithm, matrices of order 100 require only the time for one
addition, not 10,000 additions.

SIMD machines do not share memory, rather they have a distributed
memory, one memory module for each processor, and communication of data
is by message passing. Like computation, message passing is generally done
in parallel. For example, suppose we wish to compute the matrix product
(' = AB on the square mesh with A;; and B;; initially in processor p;;. As
part of this computation, all processors in column j of the mesh must access
all elements in column j of matrix B. Every processor in the square mesh
has four neighbors (north, east, west, and south). One way to make sure all
processors receive the proper elements of the matrix B is to have each pro-
cessor send its element to its north neighbor. Fach processor then receives an
element from its south neighbor, performs the proper multiplication with its
element of A, then passes the received element of B on to its north neighbor.
During this data exchange, the processor at the top or northernmost position
in the column passes the elements of B to the processor at the bottom or
southernmost position in the column. In this way, the elements of column j
of B can cycle through column j of the processor mesh, and all n columns
of processors can cycle their elements in parallel.

This partial matrix multiplication algorithm description demonstrates one
way in which the processors of a SIMD multiprocessor can cycle data in lock
step. It is also possible to broadcast data from one processor to all others
or to exchange data by other special algorithms which take advantage of the
way processors are physically interconnected in a particular machine.

In addition to the square mesh mentioned above, interconnection pat-
terns include buses, hypercube structures, two-dimensional square meshes,
switches of various kinds, rings, and combinations of these mechanisms. Bus
systems, where processors are attached to one central piece of hardware or
bus for message passing, are limited to about thirty processors at most. The
others can accommodate much larger numbers of processors.
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As we approach the physical limits of how fast processors can operate,
machine design has begun to concentrate on increasing the number of pro-
cessors in a multiprocessor. Two conflicting factors limit this number. First,
the performance of a message-passing computer is determined in part by
the distance a message must travel from a given processor to any other
processor in the machine. This suggests that, for efficient message pass-
ing, a multiprocessor should have each of its processors connected to every
other processor in the machine. In such a machine, a message would always
travel from the sending processor directly to the receiving processor with-
out being transferred through intermediate processors. As we added more
processors, however, this completely-connected machine would encounter the
second limiting factor—the maximum number of processors possible is lim-
ited by the number of interprocessor connections (physical wires) required.
A completely-connected machine with p processors requires p—1 connections
per processor or a total of p(p — 1)/2 connecting wires.

Other processor interconnection patterns are more amenable to increased
processor number. In a ring interconnection, for instance, every processor
is connected to only two others. But while the number of ring-connected
processors can be almost arbitrarily large, processors diametrically opposite
each other in an p-processor ring would have to pass messages through about
p/2 processors to communicate. Some multiprocessors have used an inter-
connection scheme known as a hypercube: with p processors each has log, p
interconnection wires and a message need pass through no more than log, p—1
intermediate processors between its source and destination. This scheme has
the advantage of a relatively short path length, measured in terms on the
number of processor-processor connections that a message must traverse to
reach its destination. However, it has the disadvantage that the number of
wires connected to each processer increases with p. Some multiprocessors
connect processors in a two-dimensional mesh: with p processors, assuming
p = m?, the mesh has m rows and m columns. In this scheme the number
of wires connected to a processor is 4, assuming the edges at the top and
bottom and left and right are joined, regardless of the value of p. Thus the
number of wires connected to a processor does not grow with p as it does
with a hypercube. On the other hand the path length grows as m = ,/p,
thus messages in the mesh have longer paths than in a hypercube. However,
the delay suggested by a longer path can be made almost insignificant by a
technique called wormhole routing. In this technique a short header message
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is sent first and it sets a switch in each processor along the path, enabling
the body of the message to pass through without delay.

The notion of scalability 1s important in characterizing parallel comput-
ers. As we pointed out earlier we would like the speed of a computer to
increase in proportion to the number of processors; that is, if we double the
number of processors then we double the speed of the computer. In practice
this isn’t exactly true for a number of reasons, some of which have been de-
scribed above. But if the computer is designed in such a way that its speed
does increase, at least approximately, in proportion to the number of proces-
sors, and its complexity in terms of the number of interconnecting wires also
increases in proportion to the number of processors, we say the computer is
scalable. Our preceding discussion suggests that parallel computers in which
the processors are organized in two-dimensional square meshes are scalable.

5.2 A virtual parallel computer

Over the years systems which allow the interconnection of a set of work-
stations in such a way as to enable them to act as a distributed memory
multiprocessor have been developed. The most successful of these is a sys-
tem developed by Dongarra and his coworkers, called PVM (Parallel Virtual
Machine). In addition to the fact that this system enables anyone with work-
stations networked together, on an Ethernet say, to have a multiprocessor,
it also enables them to make a single workstation look like a multiprocessor,
insofar as programming is concerned.

PVM is not restricted to workstations, versions have been built for the
Intel iPSC/860 and Paragon, Thinking Machine Corporation’s CM-5, Cray
computers, and Convex computers. Thus PVM can serve as a common lan-
guage for a number of parallel computers and in this way improve the porta-
bility of parallel programs. Furthermore, it can serve as as a platform for a
heterogeneous multiprocessor consisting of, say, a Paragon, a CM-5, and a
group of workstations.

The PVM software and documentation can be obtained by anonymous
ftp at netlib.att.com, and the PVM manual is now available as a book
[Geist et al 95].

From the programmers point of view, PVM consists of a library of proce-
dures for C programs or Fortran programs to support interprocessor commu-
nication by message passing. Experience with PVM and a number of related
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works has led to an unofficial standard for message passing known as MPI
(Message-Passing Interface), created by the Message Passing Interface Forum
[Gropp et al 94]. It specifies the syntax and semantics for message-passing
procedures callable from C or Fortran programs.

6 Further reading

This has been a very brief treatment of the important and rapidly developing
field of scientific computing. The intent was, as we said earlier, to get you
interested to study it further. Here are a few suggestions for further read-
ing. Books by Hockney and Jesshope [Hockney & Jesshope 88], Almasi and
Gottlieb [Almasi & Gottlieb 89], and Leighton [Leighton 92| discuss parallel
computers, their architectures, and programming. For the broad history of
computing see books by Williams [Williams 85] and Augarten [Augarten 84].
For the history of scientific computing see the book by Nash [Nash 90] The
work on the greenhouse effect by Washington and Bettge is described in
[Washington & Bettge 90]. The federal high-performance computing pro-
gram is described in [HPCC 89]. A description of High Performance Fortran
is in [Koelbel et al 94]. A simple introduction to the Internet is given in the
book by Krol [Krol 92]; see also the August 1994 issue of the Communications
of the ACM for a number of articles on the Internet and related topics.

More complete descriptions of the architecture, performance, and applica-
tions of supercomputers can be found in the following chapters of this book.
There you will find further references to the topics touched on here.
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