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Preface

1 The limitations of computers

In Wikipedia, numerical analysis is described as that part of mathematics where
algorithms for problems of continuous mathematics are studied (as opposed to
discrete mathematics). This means that it is especially dealing with real and
complex variables, the solution of differential equations and other comparable
problems that feature in physics and engineering. A real number has in principle
an infinite number of digits, but on a digital computer, only a finite number
of bits is reserved to store a (real) number. This memory restriction implies
that only rounded, approximating values of only finitely many real numbers can
be stored. The naive idea of the early days of digital computers was that they
would not make the same “stupid errors” that human computers sometimes
made, like transcription errors, reading errors, wrong signs, etc. This euphoria
was however soon tempered when it was realized that computers in fact make
errors in practically every calculation. Small errors indeed, but nevertheless a
lot of errors. And all these small errors can accumulate and grow like a virus
through the many elementary computations made which could eventually give
a result that is quite different from the exact one.

2 A birthday?

A careful analysis of this propagation of errors when solving a linear system
of equations was first published in a paper by John von Neumann and Her-
man Goldstine: Numerical inverting of matrices of high order, published in the
November issue of the Bulletin of the American Mathematical Society in 1947.
Because this was the first time that such an analysis was made, this paper is
sometimes considered to be the start of modern numerical analysis. Of course nu-
merical calculations were done long before that paper and problems from physics
and engineering had been solved earlier, but the scale and the complexity of the
computations increased drastically with the introduction of digital computers.
The “large systems” to which the title of the paper refers, would not be called
“large” at all by current standards. It is claimed in the paper that “serious prob-
lems can occur” if one wants to solve systems of more than ten equations. In a
subsequent footnote, it is suggested that it would probably be possible in the
future to solve systems of a hundred equations. If we know that the PageRank of
Google can be computed by manipulating systems of approximately ten billion
equations, then it should be clear we have come a long distance.

v
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3 Sixty years young “back to the roots of the future”

If the publication of the von Neumann-Goldstine paper is indeed the start of
numerical analysis, then November 2007 would be the moment that numerical
analysis can celebrate its sixtieth birthday. This inspired the scientific research
network Advanced Numerical Methods for Mathematical Modeling, a consortium
of numerical analysis groups in Flanders, to organize a two-day symposium at
the Department of Computer Science of the K.U.Leuven (Belgium) entitled “The
birth of numerical analysis”. The idea of this symposium was to invite a number
of speakers who were already active numerical analysts around the middle of
the twentieth century or shortly after and hence were co-founders of the modern
discipline. They came to witness about their experience during the early days
and/or how their respective subdomains have evolved. Back to the roots is an
important general cultural paradigm, and it is none the less true for numerical
analysis. To build a sound future, one must have a thorough knowledge of the
foundations. Eleven speakers came to Leuven on October 29-30, 2007 for this
event to tell their personal story of the past and/or give their personal vision of
the future. In the rest of this preface we give a short summary of their lectures.
Most of them have also contributed to these proceedings.

4 Extrapolation

The start of the symposium was inspired by extrapolation. In many numerical
methods, a sequence of successive approximations is constructed that hopefully
converges to the desired solution. If it is expensive to compute a new approxi-
mation, it might be interesting to recombine a number of the last elements in
the sequence to get a new approximation. This is called extrapolation (to the
limit). In the talk of Claude Brezinski, a survey was given of the development of
several extrapolation methods. For example for the computation of π, Christiaan
Huygens used in the seventeenth century an extrapolation technique that was
only rediscovered by Richardson in 1910, whose name has been attached to the
method. Another extrapolation method was described by Werner Romberg in
1955. He tried to improve on the speed of convergence of approximations to an
integral generated by the trapezium rule. This method is now called Romberg
integration. After the introduction of digital computers, the improvements, gen-
eralizations, and variations of extrapolation techniques were numerous: Aitken,
Steffensen, Takakazu, Shanks, Wynn, QD and epsilon algorithms are certainly
familiar to most numerical analysts. Read more about this in Brezinski’s contri-
bution of this book.

Claude Brezinski (◦1941) is emeritus professor at the University of Lille
and is active on many related subjects among which extrapolation meth-
ods but also Padé approximation, continued fractions, orthogonal poly-
nomials, numerical linear algebra and nonlinear equations. He has always
shown a keen interest in the history of science, about which he has several
books published.
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The talk of James Lyness connected neatly with the previous talk. Romberg
integration for one-dimensional integration also got applications in more-dimen-
sional integration, but the first applications only came in 1975 for integrals over a
simplex and integrands with a singularity. Nowadays this has become an elegant
theory for integration of functions with an algebraic or logarithmic singularity
in some vertices of a polyhedral domain of integration. The integration relies
on three elements. Suppose we have a sequence of quadrature formulas Q[m]{f}
that converge to the exact integral: I{f} = Q[∞]{f}. First one has to write an
asymptotic expansion of the quadrature around m = ∞. For example Q[m]{f} =
B0 + B1/m2 + B4/m4 + · · ·+ B2p/m2p + R2p(m) with B0 = I{f}. This is just
an example and the form of the expansion should be designed in function of the
singularity of the integrand. Next, this is evaluated for say n different values
of m, which results in a system of n linear equations that is eventually solved
for the Bk, in particular B0 = I{f}. The moral of the story is that for further
development of multidimensional extrapolation quadrature one only needs three
simple elements: a routine to evaluate the integrand, a routine implementing the
quadrature rule, and a solver for a linear system. Of course the most difficult
and most creative part is to find the appropriate expansion.

The contribution of Lyness is included in these proceedings.

James Lyness (◦1932) is employed at the Argonne National Laboratory
and the University of New South Wales. His first publications appeared
mainly in physics journals, but since he published his first paper on
N -dimensional integration (co-authored by D. Mustard and J.M. Blatt)
in The Computer Journal in 1963, he has been a leading authority in
this domain with worldwide recognition.

5 Functional equations

The afternoon of the first day was devoted to functional equations.
From an historical point of view, we could say that the method of Euler for

the solution of ordinary differential equations (1768) is the seed from which all
the other methods were deduced. That is how it was presented in the lecture of
Gerhard Wanner. Runge, Heun and Kutta published their methods around 1900.
These were based on a Taylor series expansion of the solution and the idea was
to approximate it in the best possible way. This means that for a small step h,
the difference between the true and the approximating solutions was O(hp) with
order p as high as possible. Such an approach quickly leads to very complicated
systems of equations defining the parameters of the method. Therefore in the
sixties and seventies of the previous century, much effort was put in a systematic
treatment by, e.g., Butcher, Hairer and Wanner.

On the other hand, multistep methods are among the offspring of techniques
by Adams and Bashforth which date back to 1885. These predict the next value
of the solution using not only the last computed point, such as Runge-Kutta
methods do, but they use several of the previously computed points to make the
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prediction. Dahlquist published in 1956 the generalized linear multistep methods.
Important efforts have been made to improve the step control and the stability.

Gerhard Wanner (◦1942) is professor at the University of Genève and
ex-president of the Suisse Mathematical Society. He wrote together with
Hairer several books on analysis and differential equations. The historical
aspects always played an important role. He has had scientific contacts
at all “levels” from 2 meter below sea level (the Runge-Kutta symposium
at the CWI in Amsterdam on the occasion of 100 years of Runge-Kutta
methods in 1995) to the top of the Mont Blanc at 4807 meters above sea
level where he hiked together with Hairer.

The further development was picked up in the talk by Rolf Jeltsch. His main
topic was the evolution of the concept of stability when solving stiff differential
equations.

Stiff differential equations form a problem for numerical solution methods be-
cause the dynamics of the solution have components at quite different scales. Re-
searchers wanted to design methods that computed numerically stable (bounded)
solutions when the theoretical solution was supposed to be stable. Dahlquist
proved in 1963 his well known second barrier for multistep methods. It stated
that there was not an A-stable method of order higher than two. The A stands
for absolute, which means that the numerical method computed a stable solu-
tion, whatever the step size is. This started a quest for other types of methods
and gave rise to a whole alphabet of weaker types of stability.

Rolf Jeltsch (◦1945) is professor at the ETH Zürich. He is a former pres-
ident of the EMS (1999-2002) and of the Suisse Mathematical Society
(2002-2003). Since 2005 he is president of the “Gesellschaft für Ange-
wandte Mathematik und Mechanik” (GAMM). In the nineteen seven-
ties his main research topic was ordinary differential equations. Since
the nineteen eighties, he focussed more on hyperbolic partial differential
equations and large scale computations in engineering applications.

Unfortunately, the contributions by Wanner and Jeltsch could not be in-
cluded in these proceedings but the editors were happy to find a valuable re-
placement to cover the area of differential equations. John Butcher provided a
text in which he reports on the contribution of New Zealanders, which includes
his own, to numerical analysis in general and differential equations in particular.
So he links up the European and New Zealand numerical scene. His personal
reminiscences bring about a broader historical perspective.

John Butcher (◦1933) is professor emeritus at the Department of Math-
ematics, of the University of Auckland. His main interests are in the
numerical solution methods for ordinary differential equations. He is con-
sidered to be the world’s leading specialist on Runge-Kutta methods. His
1987 book on the numerical solution of ordinary differential equations
and their subsequent editions of 2003 and 2008, are considered the best
reference work on this subject.
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Herbert Keller was the dean of the company. He replaced Philip Davis, who
first agreed to attend but eventually was not able to come to the meeting. The
message of Keller was that singularities have always played an important role
in numerical computations and that they were not always given the attention
they deserve. This starts with such a simple thing as dividing by zero (or by
something “almost zero”). This is obviously a fundamental issue. In Gaussian
elimination for solving a linear system of equations, dividing by a small diagonal
element may completely destroy the accuracy of the algorithm. But, it is as
important to take care of a singularity of an integrand when designing good
numerical quadrature formulas. This was already shown in the talk by Lyness.
Another example is encountered when solving nonlinear equations where the
Jacobian evolves during the iteration towards a matrix that is (almost) singular.
This kind of difficulties certainly appears in more complex large scale problems
connected with differential or integral equations, dynamical systems etc.

Herb Keller was in excellent shape during the symposium and full of travel
plans. However, few months after the symposium, we received the sad news that
Keller had passed away on January 26, 2008. So there is no contribution by him
about his talk. Hinke Osinga, who had an interview with Keller published in
the DSWeb Magazine, was kind enough to slightly adapt her text and this is
included instead.

Herbert Keller (◦1925 – †2008) was emeritus professor at the California
Institute of Technology. Together with E. Isaacson, he is the author of the
legendary book “Analysis of Numerical Methods” that was published in
1966 by J. Wiley. His scientific contributions mainly dealt with boundary
value problems and methods for the solution of bifurcation problems.

The first day was concluded by the lecture of Kendall Atkinson who spoke
about his personal vision on the evolution in research related to the solution of
integral equations. He emphasized the use of functional analysis and operator
theory for the analysis of numerical methods to solve this kind of equations.
The origin points to a paper by Kantorovich “Functional analysis and applied
mathematics” that appeared in Russian in 1948. It deals among other things
with the solution of Fredholm integral equations of the second kind. Atkinson
summarizes the most important methods and the results that were obtained:
degenerate kernel approximation techniques in which the kernel is written as
K(s, t) =

∑
i αi(s)βi(t), projection methods (the well known Galerkin and col-

location methods where the solution is written as a linear combination of basis
functions with coefficients that are fixed by interpolation or by orthogonality
conditions), and the Nyström method that is based on numerical integration.
The details of his lecture can be found in these proceedings.

Kendall Atkinson (◦1940) is emeritus professor at the University of Iowa.
He is an authority in the domain of integral equations. His research en-
compasses radiosity equations from computer graphics and multivariate
approximation, interpolation and quadrature. He wrote several books on
numerical analysis and integral equations.
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6 The importance of software and the influence of
hardware

The first lecture of the second day was given by Brian Ford. He sketched the
start and the development of the NAG (Numerical Algorithms Group) software
library. That library was the first collection of general routines that were not
just focussing on one particular kind of numerical problem or on one particular
application area. Also new was that it came out of the joint effort of several
researchers coming from different groups. Ford started up his library in 1967,
stimulated by his contacts with J. Wilkinson and L. Fox. Being generally appli-
cable, well tested, and with good documentation it was an immediate success.
The official start of the Algol and Fortran versions of the NAG library is May 13,
1970. The algorithms are chosen on the basis of stability, robustness, accuracy,
adaptability and speed (the order is important). Ford then tells about the fur-
ther development and the choices that had to be made while further expanding
the library and how this required an interplay between numerical analysts and
software designers. He concludes his talk with an appeal to young researchers
to work on the challenge put forward by the new computer architectures where
multicore hardware requires a completely new implementation of the numerical
methods if one wants to optimally exploit the computing capacity to cut down
on computer time and hence to solve larger problems.

The contribution of B. Ford is included in these proceedings. More on the
(r)evolution concerning hardware and its influence on the design and implemen-
tation of numerical software can be found in the next contribution by
J. Dongarra.

Brian Ford (◦1940) is the founder of the NAG company and was director
until his retirement in 2004. He received a honorary doctorate at the
University of Bath and was given a OBE (Officer of British Empire)
for his achievements. Under his leadership, NAG has developed into a
respected company for the production of portable and robust software
for numerical computations.

The conclusion of B. Ford was indeed the main theme in the lecture of Jack
Dongarra. In his lecture he describes how, since about 1940, the development of
numerical software, the hardware, and the informatics tools go hand in hand.
Early software was developed on scalar architectures (EISPACK, LINPACK,
BLAS ’70) then came vector processors (’70-’80) and parallel algorithms, MIMD
machines (ScaLAPACK ’90), and later SMP, CMP, DMP, etc. The multicore
processors are now a reality and a (r)evolution is emerging because we will have
to deal with multicore architecture that will have hundreds and maybe thousands
of cores. Using all this potential power in an efficient way by keeping all these
processors busy, will require a total re-design of numerical software.

A short version of the lecture, concentrating on a shorter time-span, has been
included in these proceedings.
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Jack Dongarra (◦1950) is professor at the University of Tennessee where
he is the leader of the “Innovative Computing Laboratory”. He is spe-
cialized in linear algebra software and more generally numerical soft-
ware on parallel computers and other advanced architectures. In 2004
he received the “IEEE Sid Fernbach Award” for his work in HPC (High
Performance Computing). He collaborated on the development of all the
important software packages: EISPACK, LINPACK, BLAS, LAPACK,
ScaLAPACK, etc.

7 Approximation and optimization

More software in the lecture of Robert Plemmons. The thread through his lec-
ture is formed by nonnegativity conditions when solving all kinds of numerical
problems. First a survey is given of historical methods for the solution of non-
negative least squares problem. There one wants to solve a linear least squares
problem where the unknowns are all nonnegative. Also the factorization of two
nonnegative matrices (NMF) was discussed. The latter is closely connected with
data-analysis. Other techniques used here are SVD (singular value decompo-
sition) and PCA (principal component analysis). These however do not take
the nonnegativity into account. Around the nineteen nineties ICA (independent
component analysis) was introduced for NMF. This can also be formulated as
BSS (blind source separation). In that kind of application, a mixture of several
sources is observed and the problem is to identify the separate sources. In more
recent research, one tries to generalize NMF by replacing the matrices by ten-
sors. There are many applications: filter out background noise from an acoustic
signal, filtering of e-mails, data mining, detect sources of environment pollution,
space research SOI (space object identification) etc.

Read more about this in the contribution by Chen and Plemmons in these
proceedings.

Robert J. Plemmons (◦1938) is Z. Smith Reynolds professor at the
Wake Forest University, NC. His current research includes computa-
tional mathematics with applications in signal and image processing.
For example, images that are out of focus are corrected, or atmospheric
disturbances are removed. He published more than 150 papers and three
books about this subject.

Michael Powell gave a survey of the successive variants of quasi-Newton
methods or methods of variable metric for unconstrained nonlinear optimization.
He talked about his contribution to their evolution of the prototypes that were
designed in 1959. These methods were a considerable improvement over previous
methods that were popular before that time which were dominated by conjugate
gradients, pure Newton, and direct search methods. In these improved methods,
an estimate for the matrix of second derivatives is updated so that it does not
have to be recomputed in every iteration step. These methods converge fast
and the underlying theory is quite different from the corresponding theory for
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a pure Newton method. Mike Powell then evoked methods derived from the
previous ones that are important in view of methods for optimization problems
with constraints. Further methods discussed are derivative free methods, and
the proliferation of other types like simulated annealing, genetic algorithms etc.

A summary of this presentation can be found in these proceedings.

Michael J.D. Powell (◦1936) is professor at Cambridge University. He
has been active in many domains. His name is for example attached to
the DFP (Davidon-Fletcher-Powell) method (a quasi-Newton method for
optimization), and a method with his name that is a variant of the Mar-
quardt method for nonlinear least squares problems. But he is also well
known for his work in approximation theory. The Powell-Sabin splines
are still an active research area in connection with subdivision schemes
for the hierarchical representation of geometric objects or in the solution
of partial differential equations.

8 And some history

The closing lecture of the symposium was given by Alistair Watson. With some
personal touch, he sketched the early evolution of numerical analysis in Scotland.
In a broader sense, numerical analysis has existed for centuries of course. If you
restrict it to numerical analysis as it was influenced by digital computers, then
1947 is a good choice to call that the start. But thinking of the more abstract
connection between numerics and computers, then one should probably go back
to 1913 when papers by Turing were published. That is where Watson starts his
account of the history. More concretely, in Scotland, the start is associated with
the work of Whittaker and later Aitken who were appointed in Edinburgh. In
the “Mathematical Laboratory”, founded in 1946, computations were done by
means of pocket calculators. It was only in 1961 that this was coined to be a
“Numerical Analysis” course. In that year Aitken claimed to have no need for a
digital computer. It arrived anyway in 1963. Then things start to move quickly.
More numerical centers came into existence in St Andrews and later in Dundee.
The University of Dundee became only independent of St Andrews in 1967 and
soon the gravity center of numerical analysis had moved to Dundee. From 1971
until 2007, the biennial conference on numerical analysis was held in Dundee. In
the most recent years, the University of Strathclyde (Glasgow) seems to be the
new attraction pole for numerical analysis in Scotland.

A longer write-up of this historical evolution is included in these proceedings.

The focus of the work of Alistair Watson (◦1942) is numerical approx-
imation and related matters. This can be theoretical aspects, but also
elements from optimization and linear algebra. He is FRSE (Fellow of
the Royal Society of Edinburgh) and he is probably best known by many
for his involvement in the organization of the Dundee conferences on nu-
merical analysis.
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9 And there is more

Of the eleven lecturers at the symposium, the youngest was 57 and the oldest
82, with an average just over 68. All of them showed a lot of enthusiasm and
made clear that whatever the exact age of numerical analysis, be it sixty years
or a hundred years or even centuries, there still remains a lot to be done and the
challenges of today are greater than ever.

Of course we would have liked to have invited many more people to lecture
and cover more subjects at the symposium, but time and budget was finite.
Some important people who had planned to come, finally decided for diverse
reasons to decline. One of these was Gene Golub (◦1932 – †2007), the undisputed
godfather of numerical linear algebra, who, sad to say, passed away just after the
symposium on November 19, 2007. Another name we would have placed on our
list as a speaker for his contributions to numerical integration would have been
Philip Rabinowitz (◦1926 – †2006) had he still be among us. We are fortunate
to have obtained permission of the American Mathematical Society to reprint
an obituary with reminiscences of Phil Davis and Aviezri Fraenkel that was first
published in the Notices of the AMS in December 2007.

Phil Davis also wrote up some personal reminiscences of what it was like in
the very early days, when numerical analysis was just starting in the years before
and during WW-II.

Philip Davis (◦1923), currently emeritus professor at Brown University.
He is well known for his work in numerical analysis and approximation
theory, but with his many columns, and books, he also contributed a
lot to the history and philosophy of mathematics. His books on quadra-
ture (together with Ph. Rabinowitz) and on interpolation and approx-
imation are classics. He also collaborated on the Abramowitz-Stegun
project Handbook of Mathematical Functions. He started his career as a
researcher in the Air Force in WW-II, and joined the National Bureau
of Standards before going to Brown.

Finally, we found Robert Piessens kind enough to write another contribution
for this book. His approach is again historical and sketches first the work of
Chebyshev about linkage instruments, a mechanical tool to transform a rotation
into a straight line. This is how Chebyshev polynomials came about. He con-
tinues by illustrating how the use of Chebyshev polynomials has influenced the
research of his group at K.U.Leuven, since it turned out to be a powerful tool in
developing methods for the numerical solution of several problems encompass-
ing inversion of the Laplace transform, the computation of integral transforms,
solution of integral equations and evaluation of integrals with a singularity. The
latter resulted in the development of the QUADPACK package for numerical
integration.

Robert Piessens (◦1942) is emeritus professor at the Department of Com-
puter Science at the K.U.Leuven, Belgium. He was among the first profes-
sors who started up the department. His PhD was about the numerical
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inversion of the Laplace transform. He is one of the developers of the
QUADPACK package which has been a standard package for automatic
numerical integration in one variable. Originally written in Fortran 77,
it has been re-implemented in different environments. It is available via
netlib, several of its routines have been re-coded and are integrated in
Octave and Matlab, the Gnu Scientific Library (GSL) has a C-version,
etc.
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Some pioneers of extrapolation methods

Claude Brezinski

Laboratoire Paul Painlevé, UMR CNRS 8524, UFR de Mathématiques Pures et
Appliquées, Université des Sciences et Technologies de Lille, 59655 - Villeneuve

d’Ascq cedex, France.
Claude.Brezinski@univ-lille1.fr

Abstract. There are two extrapolation methods methods which are de-
scribed in almost all numerical analysis books: Richardson’s extrapola-
tion method (which forms the basic ingredient for Romberg’s method),
and Aitken’s ∆2 process. In this paper, we consider the historical roots
of these two procedures (in fact, the computation of π) with an empha-
sis on the pioneers of this domain of numerical analysis. Finally, we will
discuss some more recent developments and applications.

Richardson’s extrapolation method and Aitken’s ∆2 process are certainly the
most well known methods for the acceleration of a slowly converging sequence.
Both are based on the idea of extrapolation, and they have their historical roots
in the computation of π.

We will first explain what extrapolation methods are, and how they lead to
sequence transformations for accelerating the convergence. Then, we will present
the history of Richardson’s extrapolation method, of Romberg’s method, and of
Aitken’s ∆2 process, with an emphasis on the lives and the works of the pioneers
of these topics.

The study of extrapolation methods and convergence acceleration algorithms
now forms an important domain of numerical analysis having many applications;
see [15, 24, 71, 77, 78, 80]. More details about its mathematical developments and
its history could be found in [11, 13, 26, 34].

1 Interpolation, extrapolation, sequence transformations

Assume that the values of a function f are known at k distinct points xi, that is

yi = f(xi), i = 0, . . . , k − 1.

Choose a function Fk depending on k parameters a0, . . . , ak−1, and belonging to
some class of functions Fk (for example polynomials of degree k − 1).

What is interpolation? Compute ae
0, . . . , a

e
k−1 solution of the system of equa-

tions (the meaning of the superscript .e will appear below)

Fk(ae
0, . . . , a

e
k−1, xi) = yi, i = 0, . . . , k − 1. (1.1)

1
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Then, for any ∀x ∈ I = [mini xi, maxi xi], we say that f has been interpolated
by Fk ∈ Fk, and we have Fk(ae

0, . . . , a
e
k−1, x) ' f(x). Moreover, if f ∈ Fk, then,

for all x, Fk(ae
0, . . . , a

e
k−1, x) = f(x).

What is extrapolation? Now choose xe /∈ I, and compute

ye = Fk(ae
0, . . . , a

e
k−1, x

e),

where the coefficients ae
i are those computed as the solution of the system (1.1).

The function f has been extrapolated by Fk ∈ Fk at the point xe, and ye ' f(xe).
Again, if f ∈ Fk, then Fk(ae

0, . . . , a
e
k−1, x

e) = f(xe).

What is a sequence transformation? Assume now, without restricting the
generality, that we have an infinite decreasing sequence of points x0 > x1 >
x2 > · · · > x∗ such that limn→∞ xn = x∗. We set yi = f(xi), i = 0, 1, . . ., and we
also assume that limn→∞ yn = limn→∞ f(xn) = y∗. For any fixed n, compute
a
(n)
0 , . . . , a

(n)
k−1 solution of the system

Fk(a(n)
0 , . . . , a

(n)
k−1, xn+i) = yn+i, i = 0, . . . , k − 1.

Then, compute Fk(a(n)
0 , . . . , a

(n)
k−1, x

∗). This value obviously depends on n and,
for that reason, it will be denoted by zn. Then, the sequence (yn) has been
transformed into the new sequence (zn), and T : (yn) 7−→ (zn) is called a se-
quence transformation. As we can see, it’s a kind of moving extrapolation or,
if one prefers, it is a sequence of extrapolated values based on different points.
Obviously, if f ∈ Fk, then, for all n, zn = y∗. Instead of a decreasing sequence
(xn), we can take an increasing one, for example (xn = n).

A sequence transformation can be defined without any reference to a function
f , but only to a sequence (yn). An important concept is the notion of kernel of
a sequence transformation: it is the set KT of sequences (yn) such that, for all
n, zn = y∗. If (yn) converges, y∗ is its limit, otherwise it is called its antilimit.

For readers who are not familiar with the topics of interpolation, extrapola-
tion, and sequence transformations, these notions will be explained again at the
beginning of Section 3 via the construction of Aitken’s ∆2 process.

When are extrapolation and sequence transformations powerful? As
explained above, extrapolation and sequence transformations are based on the
choice of the the class of functions Fk. Thus, if the function f to be extrapolated
behaves like a function of Fk, the extrapolated value ye will be a good approxi-
mation of f(xe). Similarly, the sequence (zn) will converge to y∗ faster than the
sequence (yn), that is limn→∞(zn− y∗)/(yn− y∗) = 0, if (yn) is close, in a sense
to be defined (an open problem), to KT .

For each sequence transformation, there are sufficient conditions so that (zn)
converges to the same limit as (yn), but faster. It was proved that a universal
sequence transformation able to accelerate the convergence of all converging
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sequences cannot exist [25]. This is even true for some classes of sequences such
as the monotonically decreasing ones. This negative result does not mean that
a particular sequence belonging to such a class cannot be accelerated, but that
an algorithm for accelerating all of them cannot exist.

2 Richardson’s extrapolation

The procedure named after Richardson consists in extrapolation at xe = 0 by
a polynomial. It is carried out by means of the Neville-Aitken scheme for the
recursive computation of interpolation polynomials.

2.1 First contributions

The number π can be approximated by considering polygons with n sides in-
scribed into and circumscribed to a circle. With n = 96, Archimedes obtained
two significant figures. He also proved, by geometrical arguments, that the area
of a circle is equal to rp/2, where r is its radius and p its perimeter.

In 1596, Adriaan van Roomen, also called Adrianus Romanus (Leuven, 1561
- Mainz, 1615), obtained 15 figures with n = 230 while, in 1610, Ludolph van
Ceulen (Hildesheim, 1540 - Leiden, 1610), with the help of his student Pieter Cor-
nelisz (Amsterdam, 1581 - The Hague, 1647), gave 36 figures by using n = 262.
According to the Dutch mathematician David Bierens de Haan (1822 - 1895),
these values were, in fact, obtained at about the same time. Van Ceulen’s result
was carved on his tombstone in the St. Peters church in Leiden. His work was
continued in 1616 by Philips van Lansbergen (Ghent, 1561 - Middleburg, 1632)
who held him in high esteem. He was a minister who published books on mathe-
matics and astronomy where he supported Copernic’s theories. However, he did
not accept Kepler’s theory of elliptic orbits. He suggested the approximation

2π ' p2n + (p2n − pn)
p2n − 4

pn
,

where pn is the perimeter of the regular n-gons inscribed in the unit circle. He
obtained π with 28 exacts decimal figures. The Dutch astronomer Willebrord
Snel van Royen (Leiden, 1580 - Leiden, 1626), known as Snellius, was the intro-
ducer of the method of triangulation for measuring the length of the meridian.
He also proposed, in 1621, the lower and upper bounds

3p2
2n

2p2n + pn
< 2π <

p2n(p2n + 2pn)
3pn

.

These formulae were preparing the ground for the next step.

2.2 C. Huygens

In 1654, Christiaan Huygens (The Hague, 1629 - id., 1695), in his De Circuli
Magnitudine Inventa [33], proved 16 theorems or lemmas on the geometry of in-
scribed and circumscribed regular polygons. In particular, he gave the difference
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between the areas of the polygon with 2n sides and that with n sides. Let ac

and an be the areas of the circle and of the n-gons, respectively. He proved that
(see [50] for an analysis of the proof)

ac = an + (a2n − an) + (a4n − a2n) + (a8n − a4n) + · · ·
> an + (a2n − an) + (a2n − an)/4 + (a2n − an)/16 + · · ·
= a2n + (a2n − an)(1/4 + 1/16 + · · · ).

Then Huygens refers to Archimedes when stating that the sum of this geometric
series is 1/3, thus leading to

ac > a2n +
a2n − an

3
.

We have

an =
1
2
n sin

(
2π

n

)
< π < An = n tan

(π

n

)
,

where An is the area of the circumscribed n-gons. Series expansions of trigono-
metric functions were not available to Huygens. However

an = π − 2π3

3n2
+

2π5

15n4
− 4π7

315n6
+ · · · ,

and so Huygens’ lower bound is such that

a2n +
a2n − an

3
= π − 8π5

15 · 16n4
+

16π7

63 · 64n6
− · · ·

Similarly

An = π +
π3

2n2
+

2π5

15n4
+

17π7

315n6
+ · · ·

and it follows

A2n +
A2n −An

3
= π − 8π5

15 · 16n4
− 68π7

63 · 64n6
− · · · ,

which is also a lower bound for π, but slightly poorer than the previous one.

Thus, Huygens’ formulae for lower bounds are exactly those obtained by the
first step of Richardson’s extrapolation method. Moreover, in order to obtain an
upper bound, he proposed

An − An − an

3
= π +

2π5

15n4
+ · · · ,

whose error is bigger than for the lower bounds but uses only polygons with
n sides instead of 2n. With n = 230, this last formula doubles (up to 35) the
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number of exact digits of π. In letters to Frans van Schooten (Leiden, 1615 - id.,
1660) and Daniel Lipstorp (1631 - 1684), he claimed that he was able to triple
the number of exact decimals. Therefore, Huygens achieved approximations of
π which are even better than those given by Richardson’s extrapolation!

Huygens’ method was later used by Jacques Frédéric Saigey in 1856 and 1859
[61]. He considered the three approximations

A′n = A2n +
1
3
(A2n −An)

A′′n = A′2n +
1
15

(A′2n −A′n)

A′′′n = A′′2n +
1
63

(A′′2n −A′′n)

which are similar to those that will be given later by Romberg in the context of
accelerating the convergence of the trapezoidal rule.

Saigey was born in Montbéliard in 1797. He studied at the École Normale
Supérieure in Paris, but the school was closed in June 1822 by the regime of Louis
XVIII. Saigey became the secretary of Victor Cousin and helped him to publish
the volume V of Descartes’ complete works. Then, he became one of the main
editors of the journal Bulletin des Sciences Mathématiques. He published several
papers in mathematics and physics, but he was mostly known for his elementary
treatises and memoranda which had several editions. He died in Paris in 1871.

In 1903, Robert Moir Milne (1873 - ?) applied Huygens’ ideas for computing
π [43], as also did Karl Kommerell (1871 - 1948) in his book of 1936 [36]. As ex-
plained in [76], Kommerell can be considered as the real discoverer of Romberg’s
method since he suggested the repeated use of Richardson’s rule, although it
was in a different context.

2.3 L.F. Richardson

In 1910, Lewis Fry Richardson (1881 - 1953) suggested to eliminate the first error
term in the central differences formulæ given by William Fleetwood Sheppard
(Sydney, 1863 - 1936) [69] by using several values of the stepsize. He wrote [52]

... the errors of the integral and of any differential expressions derived
from it, due to using the simple central differences of §1.1 instead of the
differential coefficients, are of the form

h2f2(x, y, z) + h4f4(x, y, z) + h6f6(x, y, z) + &tc.

Consequently, if the equation be integrated for several different values of
h, extrapolation on the supposition that the error is of this form will give
numbers very close to the infinitesimal integral.

In 1927, Richardson called this procedure the deferred approach to the limit
[55]. Let us quote him
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Confining attention to problems involving a single independent variable
x, let h be the “step”, that is to say, the difference of x which is used in
the arithmetic, and let φ(x, h) be the solution of the problem in differ-
ences. Let f(x) be the solution of the analogous problem in the infinites-
imal calculus. It is f(x) which we want to know, and φ(x, h) which is
known for several values of h. A theory, published in 1910, but too brief
and vague, has suggested that, if the differences are “centered” then

φ(x, h) = f(x) + h2f2(x) + h4f4(x) + h6f6(x)...to infinity... (1)

odd powers of h being absent. The functions f2(x), f4(x), f6(x) are usu-
ally unknown. Numerous arithmetical examples have confirmed the ab-
sence of odd powers, and have shown that it is often easy to perform the
arithmetic with several values of h so small that f(x)+h2f2(x) is a good
approximation to the sum to infinity of the series in (1).
If generally true, this would be very useful, for it would mean that if we
have found two solutions for unequal steps h1, h2, then by eliminating
f2(x) we would obtain the desired f(x) in the form

f(x) =
h2

2φ(x, h1)− h2
1φ(x, h2)

h2
2 − h2

1

. (2)

This process represented by the formula (2) will be named the “h2-extra-
polation”.
If the difference problem has been solved for three unequal values of h it is
possible to write three equations of the type (1) for h1, h2, h3, retaining
the term h4f4(x). Then f(x) is found by eliminating both f2(x) and
f4(x). This process will be named the “h4-extrapolation”.

Let us mention that Richardson referred to a paper by Nikolai Nikolaevich
Bogolyubov (Nijni-Novgorod, 1909 - Moscow, 1992) and Nikolai Mitrofanovich
Krylov (Saint Petersburg, 1879 - Moscow, 1955) of 1926 where the deferred
approach to the limit can already be found [7].

In the same paper, Richardson used this technique for solving a 6th order
differential eigenvalue problem. Richardson extrapolation consists in fact in com-
puting the value at 0, denoted by T

(n)
k , of the interpolation polynomial of the de-

gree at most k which passes through the points (xn, S(xn)), . . . , (xn+k, S(xn+k)).
Thus, using the Neville-Aitken scheme for these interpolation polynomials, the
numbers T

(n)
k can be recursively computed by the formula

T
(n)
k+1 =

xn+k+1T
(n)
k − xnT

(n+1)
k

xn+k+1 − xn
, k, n = 0, 1, . . . (2.1)

with T
(n)
0 = S(xn) for n = 0, 1, . . ..

Extensions of the Richardson extrapolation process are reviewed in [15, 71],
and many applications are discussed in [39].
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Lewis Fry (the maiden name of his mother) Richardson was born on October
11, 1881 in Newcastle upon Tyne, England, the youngest of seven children in a
Quaker family. He early showed an independent mind and had an empirical ap-
proach. In 1898, he entered the Durham College of Science where he took courses
in mathematics, physics, chemistry, botany, and zoology. Then, in 1900, he went
to King’s College in Cambridge, and followed the physics lectures of Joseph John
Thompson (Cheetham Hill near Manchester, 1856 - Cambridge, 1940), the dis-
coverer of the electron. He graduated with a first-class degree in 1903. He spent
the next ten years holding a series of positions in various academic and industrial
laboratories. When serving as a chemist at the National Peat Industry Ltd., he
had to study the percolation of water. The process was described by the Laplace
equation on an irregular domain and Richardson used finite differences, and ex-
trapolation. But it was only after much deliberation and correspondence that
his paper was accepted for publication [52]. He submitted this work for a D.Sc.
and a fellowship at Cambridge, but it was rejected. The ideas were too new,
and the mathematics were considered as “approximate mathematics”! Hence,
Richardson never worked in any of the main academic research centers. This
isolation probably affected him. For some time, he worked with the well-known
statistician Karl Pearson (London, 1857 - Coldharbour, 1936), and became to
be interested in “living things”.

In 1913, Richardson became Superintendent of the Eskdalemuir Observatory
in southern Scotland. He had no experience in meteorology, but was appointed
to bring some theory in its understanding. He again made use of finite differ-
ences. Although he was certainly aware of the difficulty of the problem since
he estimated at 64.000 the number of people that have to be involved in the
computations in order to obtain the prediction of tomorrow’s weather before
day actually began, it seems that he did not realize that the problem was ill-
conditioned. He also began to write his book on this topic [53]. The quote at the
end of its preface is amusing.

This investigation grew out of a study of finite differences and fist took
shape in 1911 as the fantasy which is now relegated to Chap. 11/2. Se-
rious attention to the problem was begun in 1913 at Eskdalemuir Ob-
servatory with the permission and encouragement of Sir Napier Shaw,
then Director of the Meteorological Office, to whom I am greatly in-
debted for facilities, informations and ideas. I wish to thank Mr. W.H.
Dines, F.R.S., for his interest in some early arithmetical experiments,
and Dr. Crichton Mitchell, F.R.S.E., for some criticisms of the first
draft. The arithmetical reduction of the balloon, and other observations,
was done with much help from my wife. In May 1916 the manuscript was
communicated by Sir Napier Shaw to the Royal Society, which generously
voted £100 towards to cost of its publication. The manuscript was re-
vised and the detailed example of Chap. IX was worked out in France in
the intervals of transporting wounded in 1916-1918. During the battle of
Champagne in April 1917 the working copy was sent to the rear, where
it became lost, to be re-discovered some months later under a heap of
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coal. In 1919, as printing was delayed by the legacy of the war, various
excrescences were removed for separate publication, and an introductory
example was added. This was done at Benson, where I had again the
good fortune to be able to discuss the hypotheses with Mr. W.H. Dines.
The whole work has been thoroughly revised in 1920, 1921. As the cost
of printing had by this time much increased, an application was made to
Dr. G.C. Simpson, F.R.S., for a further grant in aid, and the sum of
fifty pounds was provided by the Meteorological Office.

As Richardson wrote, on May 16, 1916 he resigned and joined the Friends’
Ambulance Unit (a Quaker organisation) in France. He began to think about
the causes of wars and how to prevent them. He suggested that the animosity
between two countries could be measured, and that some differential equations
are involved into the process. He published a book on these ideas [54], and then
returned to weather prediction.

Along the years, Richardson made important contributions to fluid dynamics,
in particular to eddy-diffusion in the atmosphere. The so-called “Richardson
number” is a fundamental quantity involving gradients of temperature and wind
velocity.

In 1920, he became a Lecturer in mathematics and physics at the Westmin-
ster Training College, an institution training prospective school teachers up to
a bachelor’s degree. In 1926, he changed again his field of research to psychol-
ogy where he wanted to apply the ideas and the methods of mathematics and
physics. He established that many sensations are quantifiable, he found methods
for measuring them, and modelled them by equations. The same year, he was
elected as a Fellow of the Royal Society of London.

Richardson left the Westminster Training College in 1929 for the position of
Principal at the Technical College in Paisley, an industrial city near Glasgow.
Although he had to teach sixteen hours a week, he continued his research but
came back to the study of the causes of wars and their prevention. He prepared
a model for the tendencies of nations to prepare for wars, and worked out its
applications using historical data from the previous conflicts. He also made pre-
dictions for 1935, and showed that the situation was unstable, which could only
be prevented by a change in the nation’s policies. Richardson wanted to “see
whether there is any statistical connection between war, riot and murder”. He
began to accumulate such data [57], and decided to search for a relation between
the probability of two countries going to war and the length of their common
border. To his surprise, the lengths of the borders were varying from one source
to another. Therefore, he investigated how to measure the length of a border,
and he realized that it highly depends on the length of the ruler. Using a small
ruler allows to follow more wiggles, more irregularities, than a long one which
cuts the details. Thus, the smaller the ruler, the larger the result. The relation
between the length of the border and that of the ruler leads to a new mathe-
matical measure of wiggliness. At that time, Richardson’s results were ignored
by the scientific community, and they were only published posthumously [58].
Today, they are considered to be at the origin of fractals.
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In 1943, Richardson and his wife moved to their last home at Kilmun, 25
miles from Glasgow. He returned to his research on differential equations, and
solved the associated system of linear equations by the so-called Richardson’s
method [56]. He mentioned that the idea was suggested to him in 1948 by Arnold
Lubin. At home, Richardson was also constructing an analogous computer for
his meteorological computations. He died on September 30, 1953 in Kilmun.

Richardson was a very original character whose contributions to many differ-
ent fields were prominent but, unfortunately, not appreciated at their real values
at his epoch; see [32] for details.

2.4 W. Romberg

Let us now come to the procedures for improving the accuracy of the trapezoidal
rule for computing approximations to a definite integral. If the function to be
integrated is sufficiently differentiable, the error of the trapezoidal rule is given
by the Euler-Maclaurin expansion. In 1742, Colin Maclaurin (Kilmodan, 1698
- Edinburgh, 1746) [38] showed that the precision could be improved by linear
combinations of the results obtained with various stepsizes. His procedure can
be interpreted as a preliminary version of Romberg’s method; see [21] for a
discussion.

In 1900, Sheppard used an elimination strategy in the Euler-Maclaurin quadra-
ture formula, with hn = rnh and 1 = r0 < r1 < r2 < · · · , for producing a better
approximation [70]. In 1952, Mario Salvadori (Rome, 1907 - 1997), an architect
and structural engineer, and Melvin L. Baron (1927 - 1997), a civil engineer,
proposed to use Richardson’s deferred approach to the limit for improving the
trapezoidal rule [62]. This new approximation was obtained as a linear combi-
nation of the initial results.

In 1955, Werner Romberg was the first to use repeatedly an elimination
approach for improving the accuracy of the trapezoidal rule [59]. He gave the
well known formula

T
(n)
k+1 =

4k+1T
(n+1)
k − T

(n)
k

4k+1 − 1
,

where T
(n)
0 is the result obtained by the trapezoidal rule with the stepsize h0/2n.

In his paper, Romberg refers to the book of Lothar Collatz (Arnsberg, Westfalia,
1910 - Varna, 1990) of 1951 [22].

In 1960, Eduard L. Stiefel (1909 - 1978), in his inaugural address as the Pres-
ident of the ifip congress in Munich, draws a line from Archimedes to Romberg.
The procedure became widely known after the rigorous error analysis given in
1961 by Friedrich L. Bauer (born 1924 in Regensburg) [6] and the synthesis of
Stiefel [75]. Romberg’s derivation of his process was mainly heuristic. It was
proved by Pierre-Jean Laurent in 1963 [37] that the process comes out, in fact,
from the Richardson process when taking xn = h2

n and hn = h0/2n. Laurent
also gave the condition on the sequence (hn) that there exists α < 1 such that
∀n, hn+1/hn ≤ α in order that the sequences (T (n)

k ) tend to the exact value of
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the definite integral to be computed either when k or n tends to infinity. The
case of a harmonic sequence of steps is studied in [23, p. 52]. Romberg’s work
on the extrapolation of the trapezoidal rule has been continued Tore H̊avie for
less regular integrands [28].

Werner Romberg was born on May 16, 1909 in Berlin. In 1928, he started to
study physics and mathematics in Heidelberg where the Nobel laureate Philip
Lenard (Pozsony, Pressburg, 1862 - Messelhausen, 1947) was still quite influen-
tial. After two years, Romberg decided to go to the Ludwig-Maximilians Univer-
sity in Munich. He followed the mathematics courses of Constantin Carathéodory
(Berlin, 1873 - Munich, 1950) and Oskar Perron (Frankenthal, Pfalz, 1880 - Mu-
nich, 1975), and had physics lectures by Arnold Sommerfeld (Königsberg, 1868
- Munich, 1951), who became his advisor. In 1933, he defended his thesis Zur
Polarisation des Kanalstrahllichtes (On the polarization of canal jet rays). The
same year, he had to leave Germany and went to the USSR. He stayed at the
Department of Physics and Technology in Dnepropetrovsk from 1934 to 1937 as
a theoretical physicist. He was briefly at the Institute of Astrophysics in Prag in
1938, but he had to escape from there. Then, he got a position in Oslo in the au-
tumn of 1938 as the assistant of the physicist Egil Andersen Hylleraas (Engerdal,
1898 - 1965). He also worked for a short period with Johan Holtsmark (1894 -
1975), who built a Van de Graaff generator (the second one in Europe and the
first particle accelerator in Scandinavia) for nuclear disintegration between 1933
and 1937 at Norwegian Institute of Technology (nth) in Trondheim. Romberg
had again to escape for some time to Uppsala during the German occupation
of Norway. In 1949, he joined the nth in Trondheim as an associate professor
in physics. In 1960, he was appointed head of the Applied Mathematics Depart-
ment at the nth. He organized a teaching program in applied mathematics, and
began to build a research group in numerical analysis. He was strongly involved
in the introduction of digital computers in Norway, and in the installation of
the first computer (gier) at nth. He became a Norwegian citizen and stayed
Norwegian until the end of his life.

In 1968, Romberg came back to Heidelberg where he accepted a professorship.
He built up a group in numerical mathematics, at that time quite underdeveloped
in Heidelberg, and was the head of the Computing Center of the University from
1969 to 1975. Romberg retired in 1978, and died on February 5, 2003.

3 Aitken’s process and Steffensen’s method

Let (Sn) be a sequence of scalars converging to S. The most popular nonlinear
acceleration method is certainly Aitken’s ∆2 process which consists in building
a new sequence (Tn) by

Tn =
SnSn+2 − S2

n+1

Sn+2 − 2Sn+1 + Sn
, n = 0, 1, . . . (3.1)
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For deriving this formula, Aitken assumed that he had a sequence (Sn) of
the form

Sn = S + αλn, n = 0, 1, . . . (3.2)

with λ 6= 1, and he wanted to compute S (the limit of the sequence if |λ| < 1, its
antilimit otherwise). Then, ∆Sn = αλn(λ− 1), and λ = ∆Sn+1/∆Sn. It follows

S = Sn − ∆Sn

(1− λ)
= Sn − ∆Sn

(1−∆Sn+1/∆Sn)
=

SnSn+2 − S2
n+1

Sn+2 − 2Sn+1 + Sn
.

If (Sn) has not the form (3.2), the preceding formula can still be used, but
the result is no longer equal to S. It depends on n, and it is denoted by Tn

as in (3.1). This construction of Aitken’s process illustrates how interpolation,
extrapolation, and sequence transformations are related. Indeed, let (Sn) be any
sequence. We are looking for S, α and λ satisfying the interpolation conditions
Si = S + αλi for i = n, n + 1, n + 2. Then, the unknown S is taken as the limit
when n tends to infinity of the model sequence (S+αλn). This is an extrapolation
process. But, since the value of S obtained in this procedure depends of n, it has
been denoted by (Sn), and, thus, the given sequence (Sn) has been transformed
into the new sequence (Tn).

Thus, by construction, the kernel of Aitken’s process consists in sequences
of the form (3.2), or, in other terms, of sequences satisfying a first order linear
difference equation

a0(Sn − S) + a1(Sn+1 − S) = 0, n = 0, 1, . . .

with a0 + a1 6= 0.
If (Sn) is linearly converging, i.e. if a number λ 6= 1 exists such that

lim
n→∞

Sn+1 − S

Sn − S
= λ,

then (Tn) converges to S faster than (Sn). This result illustrates the fact men-
tioned above that sequences not too far away from the kernel (in a meaning to be
defined) are accelerated. Acceleration is also obtained for some subclasses of se-
quences satisfying the preceding property with λ = 1 (logarithmically converging
sequences).

In a paper of 1937 [2], Aitken used his process for accelerating the convergence
of the power method (Rayleigh quotients) for computing the dominant eigenvalue
of a matrix. A section is entitled The δ2-process for accelerating convergence, and,
on pages 291-292, he wrote

For practical computation it may be remembered by the following memo-
ria technica: product of outers minors [minus] square of middle, divided
by sum of outers minus double of middle.
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Aitken’s paper [2] also contains almost all the ideas that will be developed
later by Heinz Rutishauser (Weinfelden, 1918 - 1970) in his QD-algorithm [60].

Notice that Formula (3.1) is numerically unstable, and that one should prefer
the following one

Tn = Sn+1 +
(Sn+1 − Sn)(Sn+2 − Sn+1)

(Sn+1 − Sn)− (Sn+2 − Sn+1)
. (3.3)

It is well known that the fixed point iterative method due to Johan Frederik
Steffensen (1873-1961) in 1933 is based on Aitken’s process. However, Steffensen
does not quote Aitken in his paper, and his discovery seems to have been ob-
tained independently. Consider the computation of x such that x = f(x) and
the iterations xν+1 = f(xν). Steffensen writes [74]

In the linear interpolation formula with divided differences

f(x) = f(a0) + (x− a0)f(a0, a1) + (x− a0)(x− a1)f(x, a0, a1) (5)

we put aν = xν and obtain

f(x) = x1 + (x− x0)
x1 − x2

x0 − x1
+ R1

where

R1 = (x− x0)(x− x1)f(x, x0, x1). (6)

Replacing, on the left of (6), f(x) by x, we have

x = x1 + (x− x0)
x1 − x2

x0 − x1
+ R1

and solving for x, as if R1 were a constant, we obtain after a simple
reduction

x = x0 − (∆x0)2

∆2x0
+ R (7)

where

R = −(x− x0)(x− x1)
∆x0

∆2x0
f(x, x0, x1). (8)

If f(x) possesses a continuous second derivative, the remainder may be
written

R = −1
2
(x− x0)(x− x1)

∆x0

∆2x0
f ′′(ξ). (9)

The formula (7) is the desired result. The approximation obtained may
often be estimated by (9), but we shall make no use of this formula,
preferring to test the result by other methods. We shall therefore use as
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working formula the approximation

x = xν − (∆xν)2

∆2xν
(10)

where, according to the remark made above, xν may be any element of
the sequence.

Then, Steffensen gave several numerical examples where, after 3 iterations,
he restarted them from the approximation given by (10). In a footnote to page
64 (the first page of his paper), he wrote

The present notes had already been written when a paper by H. Holme
appeared in this journal (1932, pp. 225-250), covering to some extend
the same ground. Mr. Holme’s treatment of the subject differs, however,
so much from mine that I think there is room for both.

In his paper [31], Harald Holme was solving a fixed point problem due to
Birger Øivind Meidell (1882-1958) and related to the interest rate of loans [41].
He used linear interpolation passing through 3 consecutive iterates, and he ob-
tained a method quite close to Steffensen’s but different from it.

3.1 Seki Takakazu

In the fourth volume of his book Katsuyō Sanpō, published in 1674, Seki Takakazu
considered the perimeters ci of the polygons with 2i sides inscribed into a circle
of diameter 1. For deriving a better approximation of π, he used a method called
Yenri, which means principle (or theory) of the circle, and consists in the formula

c16 +
(c16 − c15)(c17 − c16)

(c16 − c15)− (c17 − c16)
.

This is exactly Aitken’s ∆2 process (as given by (3.3)) which leads to 12 exact
decimal digits while c17 has only 10. With

c15 = 3.1415926487769856708
c16 = 3.1415926523565913571
c17 = 3.1415926532889027755,

Seki obtained 3.14159265359 (π = 3, 14159265358979323846 . . .). His result is,
in fact, exact to 16 places. Seki did not explain how he got his formula but,
probably, setting a = c15, b = c16 = a + ar, and c = c17 = a + ar + ar2, he
obtained [30]

b +
(b− a)(c− b)

(b− a)− (c− b)
=

a

1− r
= a + ar + ar2 + ar3 + · · ·

The same method was used by his student Takaaki Takebe (1661 - 1716), who
developed it further. Seki also studied how to compute an arc of a circle, given
the chord, and he used again his formula for improving his first approximations.
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Seki Takakazu is considered as the greatest Japanese mathematician. He was
born in Fujioka in 1637 or in 1642. He was later adopted by the Seki family.
However, little is known about his life, but it seems that he was self-educated
and an infant prodigy in mathematics. In his book mentioned above, he intro-
duced a notation for representing unknowns and variables in equations, and he
solved fifteen problems which had been posed three years earlier by Kazuyuki
Sawaguchi (it was the habit to end a book by open problems). He anticipated
many discoveries of western mathematicians: determinants (1683, ten years be-
fore Leibniz) for solving systems of 2 or 3 linear equations, Bernoulli numbers,
Newton-Raphson method, and Newton interpolation formula. He studied the
solution of equations with negative and positive zeros, and, in 1685, he solved
the cubic equation 30 + 14x − 5x2 − x3 = 0 by the same method as Horner a
hundred years later. He was also interested in magic squares, and Diophantine
equations. He died in 1708.

3.2 A.C. Aitken

The sequence transformation defined by (3.1) was stated by Alexander Craig
Aitken in 1926 [1] who used it for accelerating the convergence of Daniel Bernoul-
li’s method of 1728 for the computation of the dominant zero z1 of the polynomial
a0z

n+· · ·+an−1z+an. The method imagined by Bernoulli consists in considering
the sequence Z1(t) = f(t+1)/f(t) generated from the recursion a0f(t+n)+· · ·+
anf(t) = 0, and whose limit is z1 (assuming that all other zeros of the polynomial
have a modulus strictly smaller than |z1|). With this condition, Aitken writes

∆Z1(t) tends to become a geometric sequence... of common ratio z2/z1.
Hence the derivations of Z1(t) from z1 will also tend to become a geomet-
ric sequence with the same common ratio. Thus a further approximate
solution is suggested, viz.

z1 − Z1(t + 2)
z1 − Z1(t + 1)

=
∆Z1(t + 1)

∆Z1(t)

and solving for z1 we are led to investigate the derived sequence

Z
(1)
1 (t) =

∣∣∣∣
Z1(t + 1) Z1(t + 2)

Z1(t) Z1(t + 1)

∣∣∣∣
∆2Z(t)

. (8.2)

This is exactly (3.1). Aitken claims that this new sequence converges geomet-
rically with the ratio (z2/z1)2 or z3/z1, and that the process can be repeated on
the sequence (Z(1)

1 (t). In a footnote, he says that Naegelsbach, in the course of
a very detailed investigation of Fürstenau method of solving equations, obtains
the formulæ (8.2) and (8.4), but only incidentally. The reference for the work of
Eduard Fürstenau is [27]. It must be pointed out that, on page 22 of his second
paper [44], Hans von Naegelsbach (1838 - ?) gave the stable formulation (3.3) of
the process.
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The process was also given by James Clerk Maxwell (Edinburgh, 1831 - Cam-
bridge, 1879) in his Treatise on Electricity and Magnetism of 1873 [40]. However,
neither Naegelsbach nor Maxwell used it for the purpose of acceleration. Maxwell
wanted to find the equilibrium position of a pointer oscillating with an exponen-
tially damped simple harmonic motion from three experimental measurements
(as in (3.2)).

Aitken was born in Dunedin, New Zealand, on April 1st, 1895. He attended
Otago’s High School from 1908 to 1912, where he was not particularly brillant.
But, at the age of 15, he realized that he had a real power in mental calculations,
and that his memory was extraordinary. He was able to recite the first 1000 dec-
imals of π, and to multiply two numbers of nine digits in a few seconds [72]. He
also knew the Aeneid by heart. He was also very good at several sports and be-
gan to study violin. He studied mathematics, French and Latin at the University
of Otago in 1913 and 1914. It seems that the professor of mathematics there,
David J. Richards, a “temperamental, eccentric Welshman”, was lacking of the
power to communicate his knowledge to the students, and Aitken’s interest in
mathematics lowered. Richards was trained as an engineer as well as mathemati-
cian, and was working as an engineer in Newcastle prior to his appointment to
the Chair of Mathematics at Otago in 1907, where he stayed until 1917.

Aitken volunteered in the Otago infantry during World War I, and he took
part in the Gallipoli landing and in the campaign in Egypt. Then, he was com-
missioned in the north of France, and was wounded in the shoulder and foot
during the battle on the river Somme. Did he met Richardson at this time?
After a stay in a London hospital, he was invalided home in 1917, and spent
one year of recovering in Dunedin where he wrote a first account of his memoirs
published later [4].

Aitken resumed his studies at Otago University, and graduated with first
class honours in languages, but only with second ones in mathematics. He mar-
ried Winifred Betts in 1920, and became a school teacher at his old Otago High
School. Richards’ successor in the Chair of Mathematics, Robert John Tainsh
Bell was born in 1877. He graduated from the University of Glasgow in 1898,
and was appointed Lecturer there three years later. He was awarded a D.Sc. in
1911, and was appointed Professor of Pure and Applied Mathematics at Otago
University in 1919. Bell was the only staff member in the Mathematics Depart-
ment, lecturing five days a week, each day from 8.00 am to 1.00 pm. He retired
in 1948, and died in 1963. When Bell required an assistant he called on Aitken.
He encouraged him to apply for a scholarship for studying with Edmund Taylor
Whittaker (Southport, 1873 - Edinburgh, 1956) at Edinburgh. Aitken left New
Zealand in 1923. His Ph.D. on the smoothing of data, completed in 1925, was
considered so outstanding that he was awarded a D.Sc. for it. The same year,
Aitken was appointed as a Lecturer at the University of Edinburgh where he
stayed for the rest of his life. But, the efforts for obtaining his degree led him to
a first severe breakdown in 1927, and then he was periodically affected by such
crisis. They were certainly in part due to his fantastic memory which did not
fade with time, and he was always remembering the horrors he saw during the
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war [5] (see also the biographical introduction by Peter C. Fenton given in this
volume).

In 1936, Aitken became a Reader in statistics, and he was elected a Fellow
of the Royal Society. In 1946, he was appointed to Whittaker’s Chair in Math-
ematics. In 1956, he received the prestigious Gunning Victoria Jubilee Prize of
the Royal Society of Edinburgh. In 1964, he was elected to the Royal Society of
Literature. Aitken died in Edinburgh on November 3, 1967.

3.3 J.F. Steffensen

Since the life of Steffensen is not so well-known, let us give some informations
about it following [49]. Johan Frederik Steffensen was born in Copenhagen on
February 28, 1873. His father was the Supreme Judge of the Danish Army, and
he, himself, took a degree in law at the University of Copenhagen. After a short
period in Fredericia in the eastern part of the Jutland peninsula in Denmark, he
returned to Copenhagen and began a career in insurance. He was self-taught in
mathematics and, in 1912, he got a Ph.D. for a study in number theory. After
three years as the managing director of a mutual life assurance society, he turned
to teach insurance mathematics at the University of Copenhagen, first as a Lec-
turer and, from 1923 to 1943, as a Professor. However, he was still continuing
to be interested in the world of affairs, and was an active member, and even
the Chairman, of several societies. He published around 100 research papers in
various fields of mathematics, and his book of 1927 [73] can be considered as one
of the first books in numerical analysis since its chapters cover interpolation in
one and several variables, numerical derivation, solution of differential equations,
and quadrature. Steffensen loved English literature, especially Shakespeare. He
died on December 20, 1961. For a photography of Steffensen, see [47].

3.4 D. Shanks

The idea of generalizing Aitken’s process is due to Daniel Shanks. He wanted
to construct a sequence transformation with a kernel consisting of sequences
satisfying, for all n,

a0(Sn − S) + a1(Sn+1 − S) + · · ·+ ak(Sn+k − S) = 0, (3.4)

with a0 +a1 + · · ·+ak 6= 0. Let us mention that a particular case of an arbitrary
value of k was already studied by Thomas H. O’Beirne in 1947 [48]. Writing the
relation (3.4) for the indexes n, n + 1, . . . , n + k leads to

∣∣∣∣∣∣∣∣∣

Sn − S Sn+1 − S · · · Sn+k − S
Sn+1 − S Sn+2 − S · · · Sn+k+1 − S

...
...

...
Sn+k − S Sn+k+1 − S · · · Sn+2k − S

∣∣∣∣∣∣∣∣∣
= 0.
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After elementary manipulations on the rows and columns of this determinant,
Shanks obtained

S = Hk+1(Sn)/Hk(∆2Sn), (3.5)

where ∆2Sn = Sn+2−2Sn+1 +Sn, and where Hk denotes a Hankel determinant
defined as

Hk(un) =

∣∣∣∣∣∣∣∣∣

un un+1 · · · un+k−1

un+1 un+2 · · · un+k

...
...

...
un+k−1 un+k · · · un+2k−2

∣∣∣∣∣∣∣∣∣
.

If (Sn) does not satisfy the relation (3.4), the ratio of determinants in the right
hand side of (3.5) could nevertheless be computed but, in this case, the result
obtained depends on n, and it is denoted by ek(Sn). Thus, the sequence (Sn)
has been transformed into the new sequence (ek(Sn)) for a fixed value of k or,
more generally, into a set of new sequences depending on k and n. This sequence
transformation is known as Shanks’ transformation. Let us also mention that
the same ratio of determinants was obtained by R.J. Schmidt in 1941 [63] while
studying a method for solving systems of linear equations.

Dan Shanks was born on January 17, 1917 in Chicago. In 1937, he received
a B.Sc. in physics. From 1941 to 1957, he was employed by the Naval Ordnance
Laboratory (nol) located in White Oak, Maryland. There, in 1949, he pub-
lished a Memorandum describing his transformation [65]. Without having done
any graduate work, he wanted to present this work to the Department of Math-
ematics of the University of Maryland as a Ph.D. thesis. But, he had first to
complete the degree requirements before his work could be examined as a the-
sis. Hence, it was only in 1954 that he obtained his Ph.D. which was published
in the Journal of Mathematical Physics [66]. Dan considered this paper as one
of his best two (the second one was his computation of π to 100.000 decimals
published with John Wrench [67]). After the nol, Shanks worked at the David
Taylor Model Basin in Bethesda where I met him in December 1976. Then, in
1977, he joined the University of Maryland where he stayed until his death on
September 6, 1996. Dan served as an editor of Mathematics of Computation from
1959 until his death. He was very influential in this position which also led him
to turn to number theory, a domain where his book became a classic [68]. More
details on Shanks life and works can be found in [79].

3.5 P. Wynn

The application of Shanks’ transformation to a sequence (Sn) needs the compu-
tation of the ratios of Hankel determinants given by (3.5). The numerators and
the denominators in this formula can be computed separately by the well-known
recurrence relation for Hankel determinants (a by-product of Sylvester’s determi-
nantal identity). This was the way O’Beirne and Shanks were implementing the



18 Claude Brezinski

transformation. However, in 1956, Peter Wynn (born in 1932) found a recursive
algorithm for that purpose, the ε-algorithm [81], whose rules are

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε

(n)
k

, k, n = 0, 1, . . .

with ε
(n)
−1 = 0 and ε

(n)
0 = Sn, for n = 0, 1, . . ..

These quantities are related to Shanks’ transformation by

ε
(n)
2k = ek(Sn),

and the quantities with an odd lower index satisfy ε
(n)
2k+1 = 1/ek(∆Sn). When

k = 1, Aitken’s process is recovered. The proof makes use of Schweins’ and
Sylvester’s determinantal identities that could be found, for example, in Aitken’s
small monograph [3].

Later, Wynn became Bauer’s assistant in Mainz, then he went to Amster-
dam, participating in the birth of algol, and then he held several researcher’s
positions in the United States, Canada, and Mexico. Wynn’s ε-algorithm is cer-
tainly the most important and well-known nonlinear acceleration procedure used
so far. Wynn dedicated many papers to the properties and the applications of
his ε-algorithm. With a vector generalization of it [82], he also opened the way
to special techniques for accelerating the convergence of sequences of vectors.
The ε-algorithm also provides a derivative free extension of Steffensen’s method
for the solution of systems of nonlinear equations [8] (see also [15]).

Let us mention the important connection between the ε-algorithm and Padé
approximants (and, thus, also with continued fractions). Let f be a formal power
series

f(x) =
∞∑

i=0

cixi.

If the ε-algorithm is applied to its partial sums, that is Sn = ε
(n)
0 =

∑n
i=0 cixi,

then ε
(n)
2k = [n + k/k]f (x), the Padé approximant of f with a numerator of

degree n + k and a denominator of degree k, a property exhibited by Shanks
[66]. This connection allowed Wynn to obtain a new relation, known as the
cross rule, between 5 adjacent approximants in the Padé table [83]. However,
the ε-algorithm and the cross rule give the values of the Padé approximants only
at the point x where the partial sums Sn were computed, while knowing the
coefficients of the numerators and the denominators of the Padé approximants
allows to compute them at any point.

4 And now?

In the last twenty years, Richardson’s and Romberg’s methods, Aitken’s process
and the ε-algorithm have been extended to more general kernels, or to acceler-
ate new classes of sequences. Very general extrapolation algorithms have been
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obtained; see, for example, [15, 71]. In particular, the E-algorithm, whose rules
obviously extend those of the Richardson process, was devised almost simultane-
ously by different people in different contexts [9, 29, 42, 64]. These procedures are
now used in many physical applications [78, 20]. An important new field of in-
vestigation is the connection between some convergence acceleration algorithms
and integrable systems, Toda lattices, the KdV equation, and solitons [45, 46,
51].

For the improvement of certain numerical techniques, it is often worth to
construct special extrapolation procedures built on the analysis of the process
to be accelerated (that is to construct extrapolations methods whose sequences
in the kernel mimic as closely as possible the exact behavior of the sequence
to be accelerated). For example, this was the methodology recently followed for
Tikhonov regularization techniques [18], estimations of the error for systems of
linear equations [12], treatment of the Gibbs phenomenon in Fourier and other
series [14], and ranking in web search [35, 19, 16, 17].
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les Solutions Raisonnées, Hachette, Paris, 1859.

62. M.G. Salvadori, M.L. Baron, Numerical Methods in Engineering, Prentice–Hall,
Englewood Cliffs, 1952.

63. R.J. Schmidt, On the numerical solution of linear simultaneous equations by an
iterative method, Phil. Mag., 7 (1941) 369–383.

64. C. Schneider, Vereinfachte Rekursionen zur Richardson–Extrapolation in
Spezialfällen, Numer. Math., 24 (1975) 177–184.

65. D. Shanks, An analogy between transient and mathematical sequences and some
nonlinear sequence-to-sequence transforms suggested by it. Part I, Memorandum
9994, Naval Ordnance Laboratory, White Oak, July 1949.

66. D. Shanks, Non linear transformations of divergent and slowly convergent se-
quences, J. Math. and Phys., 34 (1955) 1–42.

67. D. Shanks, J.W. Wrench, Jr., Calculation of π to 100.000 decimals, Math. Comp.,
16 (1962) 76–99.

68. D. Shanks, Solved and Unsolved Problems in Number Theory, Spartan Books,
Washington, 1962.

69. W.F. Sheppard, Central difference formulæ, Proc. London Math. Soc., 31 (1899)
449–488.

70. W.F. Sheppard, Some quadrature formulas, Proc. London Math. Soc., 32 (1900)
258–277.

71. A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge Uni-
versity Press, Cambridge, 2003.

72. S.B. Smith, The Great Mental Calculators. The Psychology, Methods, and Lives
of Calculating Prodigies Past and Present, Columbia University Press, New York,
1983.

73. J.F. Steffensen, Interpolation, Williams and Wilkins, Baltimore, 1927. Reprinted
by Chelsea, New York, 1950.

74. J.F. Steffensen, Remarks on iteration, Skand. Aktuarietidskr., 16 (1933) 64–72.
75. E. Stiefel, Altes und neues über numerische Quadratur, Z. Angew. Math. Mech,

41 (1961) 408–413.
76. G. Walz, The history of extrapolation methods in numerical analysis, Report Nr.

130, Universität Mannheim, Fakultät für Mathematik und Informatik, 1991.
77. G. Walz, Asymptotics and Extrapolation, Akademie Verlag, Berlin, 1996.
78. E.J. Weniger, Nonlinear sequence transformations for the acceleration of conver-

gence and the summation of divergent series, Comput. Physics Reports, 10 (1989)
189–371.

79. H.C. Williams, Daniel Shanks (1917-1996), Math. Comp., 66 (1997) 929–934 and
Notices of the AMS, 44 (1997) 813–816.

80. J. Wimp, Sequence Transformations and their Applications, Academic Press, New
York, 1981.

81. P. Wynn, On a device for computing the em(Sn) transformation, MTAC, 10 (1956)
91–96.

82. P. Wynn, Acceleration techniques for iterated vector and matrix problems, Math.
Comp., 16 (1962) 301–322.

83. P. Wynn, Upon systems of recursions which obtain among the quotients of the
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Abstract. Extrapolation quadrature comprises a branch of numerical
quadrature and cubature that developed from the (early nineteenth cen-
tury) Euler-Maclaurin asymptotic expansion by intensive application of
the idea (1927) of Richardson’s deferred approach to the limit.
At present, extrapolation quadrature provides an elegant, well-rounded
theory for a significant and well defined class of quadrature problems.
This class comprises integration over an N -dimensional simplex and an
N -dimensional parallelepiped, and so, by extension, over all polyhedra. It
may be applied to regular integrand functions, and to integrand functions
having algebraic or logarithmic singularities at vertices.
Within this class of problem, when N > 1 and the integrand is singular,
polynomial (Gaussian) quadrature is extraordinarily cumbersome to ap-
ply, while extrapolation is simple and cost-effective. On the other hand, in
one dimension and for N -dimensional regular integrands, extrapolation
remains simple and cost-effective, but polynomial (Gaussian) quadrature
is significantly more cost-effective.
This note is devoted to clarifying this situation. It is concerned with the
underlying expansions on which extrapolation is based; and at the end,
pinpointing the difference in approach to that of polynomial approxima-
tion which leads to this dichotomy.

1 Introduction

1.1 Software

This paper concerns the development of extrapolation quadrature to provide
the theoretical justification for a simple algorithm for integrating certain N -di-
mensional singular integrands over an N -dimensional polyhedron. The resulting
? The author was supported by the Mathematical, Information, and Computational

Sciences Division subprogram of the Office of Advanced Scientific Computing Re-
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procedure is simple to use. The algorithm requires only two items of numerical
software. These are:

(1) A standard linear equation solver. This requires input s, an s× s matrix
V and an s-vector b. It returns an s-vector x = V −1b and usually an estimate
K of the condition number of V .

(2) Subprograms for evaluating and N -dimensional m-panel rule (1.7) over
C, a specified parallelepiped; or for evaluating a closely related rule (1.9) over
T , a specified simplex. These implement quadrature rules which we denote by
Q[m](C)f or by Q[m](T )f respectively. Naturally, these require input parameters
which define the integration region, the positive integer panel number m; and
they require access to a user-provided subroutine that is used to evaluate the
integrand function f at any point within the integration region.

With these software items, one can implement all the formulas suggested in
the rest of this paper for integrating large classes of singular integrands over
N -dimensional polyhedra.

1.2 N-dimensional quadrature rules

We denote by ¤ the unit cube [0, 1]N . The rule Q[m](¤)f is simply the N -product
m-panel mid-point rule. Thus

Q[m](¤)f = m−N
∑

ji∈[1,m]

f(tj/m) (1.1)

with

tj = ((2j1 − 1), (2j2 − 1), . . . , (2jN − 1))/2. (1.2)

We denote by the standard N -dimensional simplex obtained from ¤ by re-
taining only the corner nearest the origin in which x1 + x2 + · · · + xN ≤ 1.
The rule Q[m]( )f is obtained from Q[m](¤)f in an analogous way. One sim-
ply omits points outside the simplex, and assigns to points on the boundary an
appropriate weight factor. Thus

Q[m]( )f = m−N
∑

ji∈[1,m]

f(tj/m)θ(tj/m), (1.3)

where tj is as given above and θ(x) = 1 or 0, according as x is strictly inside
, or is strictly outside . When x is on a boundary, θ(x) is a rational frac-

tion representing the proportion of a spherical neighborhood of x lying inside
. When N is odd, there are no boundary nodes. Minor modifications of this

definition are available for even N ≥ 4.
These rules for the standard regions may be extended to more general re-

gions of the same type by means of an affine transformation. The rest of this
section is devoted to describing this in detail. Let ej be the jth unit N -vector
(0, 0, . . . , 0, 1, 0, . . . , 0). The N +1 vertices of are at 0 and ej , j = 1, 2, . . . , N ;
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and the 2N vertices of ¤ are at
∑N

j=1 λjej with each of the 2N possibilities
obtained from (λ1, λ2, . . . , λN ) with each λj taking the values 0 or 1.

We treat a simplex T having vertices at 0 and aj , j = 1, 2, . . . , N ; and a
parallelepiped C having vertices at

∑N
j=1 λjaj . These may be obtained from the

standard regions and ¤ using an affine transformation M . Thus

aj = Mej ; C = M¤; T = M . (1.4)

It is evident by inspection that M takes a function f(x) into another function
F (x) = f(M−1x) yielding

∫

C

F (x)dx = |M |
∫

[0,1]N
f(x)dx (1.5)

with

M = det(a1,a2, . . . ,aN ). (1.6)

The same transformation may be applied to both discretisations (1.1) and (1.3)
leading to the following definitions.

Definition 1.1. An m-panel product mid-point trapezoidal rule for the paral-
lelepiped C is

Q[m](C)f = |M |m−N
∑

ji∈[1,m]

f(tj/m) (1.7)

with

tj = ((2j1 − 1)a1 + (2j2 − 1)a2 + · · ·+ (2jN − 1)aN )/2. (1.8)

Definition 1.2. An m-panel mid-point trapezoidal rule for the simplex T is

Q[m](C)f = |M |m−N
∑

ji∈[1,m]

f(tj/m))θ(tj/m) (1.9)

with tj given by the same formula and θ(x) = 1 or θ(x) = 0 according as x
is strictly inside T , or is strictly outside T . When x is on a boundary, θ(x) is
a rational fraction representing the proportion of a spherical neighborhood of x
lying inside T .

Note that |M | is the N -volume of C. The N -volume of T is |M |/N !.
Looking ahead for a moment, we see that by applying the transformation in

(1.5) to the quadrature error to obtain

Q[m](C)F − I(C)F = |M |
(
Q[m](¤)f − I(¤)f

)
; (1.10)

Q[m](T )F − I(T )F = |M |
(
Q[m]( )f − I( )f

)
. (1.11)
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These simple results allows us to obtain error expansions for the standard re-
gions and apply them immediately to the linearly transformed regions. A similar
remark is not valid for multidimensional Gaussian quadrature. Indeed, Gaussian
quadrature is infeasible to the extent of being almost impossible for the prob-
lems described in section 3 but extrapolation is a viable approach. This aspect
is discussed in section 5.

2 Extrapolation quadrature for regular integrands

2.1 One dimension; regular integrand

Our starting point is an almost unbearably simple example of extrapolation
quadrature. Here f(x) is regular in [0, 1], that is f ∈ C∞[0, 1]. A straightforward
approximation to the integral.

If =
∫ 1

0

f(x)dx, (2.1)

is provided by the m-panel mid-point trapezoidal rule

Q[m]f =
1
m

m∑

j=1

f

(
2j − 1
2m

)
. (2.2)

This requires m function values and, in isolation, is not in general a particularly
good approximation. This rule is in fact the m-copy version of the one point
mid-point rule, which we may denote by

Qf = Q[1]f = f(1/2). (2.3)

For larger m, the m-copy version is generally, but not always, more accurate.
This dependence on m is quantified by the classical Euler-Maclaurin asymptotic
expansion, which takes the following form.

Theorem 2.1. Let f ∈ C∞[0, 1]. Let m, p be positive integers. Then

Q[m]f = If +
B2

m2
+

B4

m4
+ · · ·+ B2p

m2p
+ R2p+2(m) (2.4)

where Bj is independent of m and Rj(m) = O(m−j).

The infinite series obtained from (2.6) is generally not convergent.
Extrapolation quadrature makes use of several approximations of this type,

and combines them in a way designed to provide what one hopes may be a closer
approximation to If . Suppose we have available four of these approximations,
those having mesh values m = m1, m2, m3, and m4. Then we can rewrite the
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set of four equations obtained from (2.4) using these mesh values and p = 3 in
matrix form as




Q[m1]f

Q[m2]f

Q[m3]f

Q[m4]f




=




1 m−2
1 m−4

1 m−6
1

1 m−2
2 m−4

2 m−6
2

1 m−2
3 m−4

3 m−6
3

1 m−2
4 m−4

4 m−6
4







If

B2

B4

B6




+




R8(m1)

R8(m2)

R8(m3)

R8(m4)




(2.5)

and express this in matrix notation as

Q = V I + R. (2.6)

We are interested in calculating If , the first element of the vector

I = V −1Q− V −1R. (2.7)

We have available numerical values of the elements of Q, and the elements of
the Vandermonde matrix V . Since we do not know R, in the best traditions of
numerical calculation, we abandon it and calculate instead the first element of

Ĩ = V −1Q, (2.8)

thereby introducing a discretisation error, the first element of

Ĩ − I = V −1R. (2.9)

All that is needed to calculate the first element of Ĩ is a set of values of m
together with a corresponding set of Q[m]f . Then we need only apply a standard
linear equation solver to solve V Ĩ = Q. But remember, the connecting equation
(2.4) is critical, as this justifies the entries in V , the Vandermonde matrix. In
all the generalisations of this technique known to the author, the key result is
the generalisation of this expansion, which is also known as the error functional.
Without this theoretical result being available, no reliable progress is possible.

2.2 N-Dimensional square and simplex; regular integrand

Since extrapolation quadrature in one dimension is so straightforward, it is natu-
ral to look for other contexts in which the same sort of extrapolation is available.
The first is really obvious: numerical quadrature over a hypercube [0, 1]N . The
rule Q[m](¤)f defined in section 1 is an N -dimensional Cartesian product of the
one-dimensional m-panel mid-point trapezoidal rule. Since the hypercube is a
product region, a relatively simple derivation reveals an expansion of precisely
the same form as (2.4) above. Naturally, the coefficients Bj in the new expan-
sion are different from those in (2.4) but we recall they play no major role in
the subsequent calculation. The elements of the Vandermonde matrix coincide
precisely with those in the one dimensional case. Again the approximation Ĩf is
the first element of Ĩ = V −1Q.

Another context is in quadrature over a simplex.
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Theorem 2.2. [3, Theorem 2.2] Let f ∈ C∞( ) where is the standard
N -dimensional simplex. Let m, p be positive integers. Then

Q[m]( )f ∼ I( )f +
B2

m2
+

B4

m4
+ · · ·+ B2p

m2p
+ R2p+2(m) (2.10)

where Bj is independent of m.

I know of only two proofs of this expansion. Both are cumbersome, involving sev-
eral journal pages. However the result is important. It provides the justification
for extending the technique to simplices.

Note that, while these expansions are derived and stated in terms of stan-
dard hypercubes and simplices, the theory can readily be extended to general
parallelepipeds and simplices by means of an affine transformation.

These are the situations of which I am aware in which extrapolation can be
based on the Euler-Maclaurin expansion without any modification. Note that in
these situations the integrand is regular.

However, it seems that the product Gauss-Legendre rules for the hypercube,
and the conical product rule for the simplex are respectively more cost effective
but by a slightly smaller relative margin as the dimension becomes higher.

3 Extrapolation quadrature for some N -dimensional
algebraic singularities

3.1 An N-dimensional example

We now proceed to integrands which have a singularity of a particular type at
a vertex. To fix ideas we treat a simple case,

If =
∫

[0,1]N
rαdNx, with r =

√
x2

1 + x2
2 + · · ·+ x2

N . (3.1)

Here f(x) = rα and we need α+N > 0 for the integral to exist in the conventional
sense. When α is an even nonnegative integer, f ∈ C∞[0, 1], in which case
the expansion (2.4) applies. Otherwise expansion (2.4) is not valid because the
integrand is not C∞ over the closed integration region.

In this another expansion may be used in place of (2.4), namely

Q[m]f ∼ If+
Aα+N

mα+N
+

B2

m2
+

B4

m4
+· · · when α + N is not an even integer (3.2)

Q[m]f ∼ If +
Cα+N log m

mα+N
+

B2

m2
+

B4

m4
+ · · · when α + N is an even integer.

(3.3)

This pair of expansions comprise an example of Theorem 3.1 below. Note par-
ticularly that the coefficients denoted here by Bq are quite different from those
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which occur in previous theorems. And there is one additional term. Otherwise,
the form is the same, and it can be exploited in just the same way. In the first
case ( that is when α + N is not an even integer) our equation Q = V Ĩ is:




Q[m1]f

Q[m2]f

Q[m3]f

Q[m4]f




=




1 m
−(α+N)
1 m−2

1 m−4
1

1 m
−(α+N)
2 m−2

2 m−4
2

1 m
−(α+N)
3 m−2

3 m−4
3

1 m
−(α+N)
4 m−2

4 m−4
4







Ĩf

Ãα+N

B̃2

B̃4




.

In the second case, the one in which α + N is an even integer, the equation is




Q[m1]f

Q[m2]f

Q[m3]f

Q[m4]f




=




1 m
−(α+N)
1 log m1 m−2

1 m−4
1

1 m
−(α+N)
2 log m2 m−2

2 m−4
2

1 m
−(α+N)
3 log m3 m−2

3 m−4
3

1 m
−(α+N)
4 log m4 m−2

4 m−4
4







Ĩf

C̃α+N

B̃2

B̃4




One may proceed, exactly as before, to solve the appropriate set of equations
using, perhaps the same linear equation solver as was mentioned in section 1.
In this example, the procedure is extraordinarily straightforward; but it does
depend critically on knowing the correct asymptotic expansion for Q[m]f − If ,
in order to construct the matrix V . That is, we must use (3.2) or (3.3) and not
(2.4). We now proceed to state the underlying theory.

3.2 Homogeneous type singularities

The integrand (3.1) of the example is one of a wide class of integrands for which
an expansion of form (3.2) or (3.3) exists. When the integrand function has a
singular behavior anywhere in [0, 1]N , (2.4) is generally not valid. However, an
expansion is known for integrand functions that are homogeneous of specified
degree about the origin and are C∞[0, 1]N \ {0}.

Definition 3.1. f(x) is homogeneous about the origin of degree λ if f(kx) =
kλf(x) for all k > 0 and |x| > 0.

For example, in two dimensions, let A 6= 0 and B be constants. Then functions
such as

(Ax2 + By2)λ/2, (Ax + By)λ, (xy2)λ/3, (3.4)

are homogeneous of degree λ about the origin.
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Theorem 3.1. [1] Let γ > N ; let f(x) be homogeneous of degree γ and be
C∞[0, 1]N \ {0}. Then

Q
[m]
N f ∼ If +

Cγ+N log m + Aγ+N

mγ+N
+

∑
s=1

B2s

m2
, (3.5)

where the coefficients are independent of m and Cj = 0, unless j is an even
integer.

The only proof of this known to the author, requires several journal pages. In
the example of the previous section we have applied this theorem to rα, which
is homogeneous of degree α. Incidentally, (3.5) is completely equivalent to the
pair (3.2), (3.3).

Definition 3.2. f(x) is termed pseudohomogeneous of degree λ about the
origin if it may be expressed in the form f(x) = fλ(x)h(x), where fλ(x) is
homogeneous of degree λ about the origin and h(x) is analytic in a neighborhood
of the origin.

A regular function h is pseudohomogeneous of integer degree 0. It may also be of
higher integer degree. In two dimensions the function (using conventional polar
coordinate notation with g, h and Θ regular)

rαg(r)h(x, y)Θ(θ)

is pseudohomogeneous of degree α. In the sequel, we shall omit the phrase “about
the origin”. We note that f , a pseudohomogeneous function of degree λ can be
expressed as

f = fλ + fλ+1 + fλ+2 + · · ·+ fλ+p + G,

where G has a higher degree of continuity than fλ+p. Developing this approach
leads to the following relatively straightforward extension of the previous theo-
rem.

Theorem 3.2. Let γ > −N ; let f(x) be pseudohomogeneous of degree γ and
be C∞[0, 1]N \ {0}. Then,

Q
[m]
N f ∼ If +

∑
t=0

Cγ+N+t log m + Aγ+N+t

mγ+N+t
+

∑
s=1

B2s

m2s
, (3.6)

where the coefficients are independent of m and Cj = 0, unless j is an even
integer.

The theorems of this section have been presented in the context in which they
first appeared; that is they specify the unit cube [0, 1]N as the domain of inte-
gration. In fact, they are far more general. and may be applied word for word
to parallelepipeds. The reason is that an affine transformation M takes a
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(pseudo)homogeneous function into another (pseudo)homogeneous function of
the same degree. If we set F (x) = f(M−1x) and C = M [0, 1]N , we find

∫

C

F (x)dx = |M |
∫

[0,1]N
f(x)dx.

The same relation applies to the discretisation Q[m] of the integral, and so to
their difference, giving

Q[m](C)F − I(C)F = |M |(Q[m](¤)f − I(¤)f).

The upshot is the following.

Theorem 3.3. Theorems 3.1 and 3.2 above remain valid as written when Q[m]f
and If are redefined as a rule and the corresponding integral over a parallele-
piped C.

In fact, the scope of these results is even wider. They may be applied to
simplices too. Following is an outline of some of the proof.

One may synthesise the N -dimensional cube C into two parts, namely the
N -dimensional simplex T together with a complementary section (C−T ). In all
the results of this and earlier sections, the integrand function has no singularity
in the region C − T . The rule Q[m] has been defined in such a way that (in an
obvious notation)

Q[m](T )f = Q[m](C)f −Q[m](C − T )f.

When there is singular behaviour at the origin, but not elsewhere in C, the
final term involves directly no singular behavior. While certainly not immediate,
by exploiting Theorem 2.2 it is not too difficult to show that the expansion
corresponding to this final term only involves terms B2s/m2s. The form of the
expansion of the first term on the right is unaltered by these additional terms.
This leads to the following theorem.

Theorem 3.4. Theorems 3.1 and 3.2 above remain valid as written when Q[m]f
and If are redefined as a rule and the corresponding integral over a simplex T .

4 Choice of mesh sequence

In previous sections we have made no detailed suggestions about the choice of
meshes m1,m2, . . .. An instinctive first choice might be to reduce the cost by
choosing these to be as small as feasible. This would be relatively easy to justify
if the calculation were to be carried out in infinite precision arithmetic.

However, infinite precision arithmetic is rarely available. A potential user
would be right to be concerned that his matrix V may be ill-conditioned, intro-
ducing non-trivial amplification of the inherent noise level in the elements of Q.
This situation is discussed in some detail in [2].
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Many linear equation solvers provide an estimate of the condition number K
of the matrix V . While it is provided automatically, it may be unduly pessimistic
for our purposes. We are interested in a condition number, K corresponding to
the first element Ĩf of the vector Ĩ. Naturally, this cannot exceed K, but in the
type of matrices we are dealing with here, it can be significantly smaller than K.

With certain minor restrictions, this condition number may be calculated at
the same time as or before Ĩf is calculated. K coincides with the magnitude of
the first element of V −1U with U = (1,−1, 1,−1, . . .)T . The restrictions are that
the terms in the asymptotic expansion should be treated in their natural order,
and that the final included term should be an inverse power of m (and not a
term involving log m).

5 Gaussian formulas for singular integrands

In section 2.1, we completed our treatment of one dimensional regular inte-
grands. At the end of that section I remarked that, up to that point, a Gaussian
rule approach seemed to be more cost-effective than extrapolation. However,
for the integrands of subsequent sections (singular integrands in more than one
dimension), this advantage seems to disappear completely.

We outline briefly the very well known Gaussian rule approach for handling a
two or more dimensional integral whose integrand is of the form f(x) = w(x)h(x)
where w(x) contains the singularity and h(x) is a regular function, which might
be readily approximated by a polynomial. The quadrature rule is of the form
Qf =

∑
i wih(xi) and is of polynomial degree d when it has the property that

Qf = If for all polynomials h(x) of degree d or less. In the present context the
weight function may be identified as fλ(x) appearing in Definition 3.2. A major
difference between Gaussian rules and rules based on extrapolation is that one
uses function values of h(x) and the other uses function values of f(x).

In multidimensional quadrature of singular integrands, it often appears dif-
ficult to locate a Gaussian rule. There are two related reasons. The first is that
a major calculation is required to construct Gaussian formulas. The second is
that, once constructed, they are quite inflexible; perhaps parochial would be a
better term.

Let us deal with the second point first. An affine transformation takes one
Gaussian formula into another. But, by the same token, it also takes the weight
function into another weight function. For example, suppose one has available a
Gaussian formula for the standard triangle (vertices at (0, 0), (1, 0), (0, 1)) with
a weight function w(x, y) = 1/r. And suppose one required such a formula,
with the same weight function, but a differently shaped triangle (for example
one having vertices at (0, 0), (4, 0), (0, 1)). The affine transformation which takes
the first triangle into the second also alters the weight function to w(x, y) =
1/(x2 + 4y2)1/2. The upshot seems to be that, unless the weight function is
constant, one needs a new Gaussian formula whenever the shape of the triangle
is changed. This is not the case when extrapolation is used, since both weight
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functions are homogeneous of the same order, the procedure for handling these
different problems using extrapolation quadrature is identical.

This situation would not be so bad if it were straightforward to construct
Gaussian formulas. In one dimension, in the early days, many formulas were tab-
ulated. Later they could be obtained from subroutine libraries. More recently,
programs have been constructed which handle almost any one-dimensional weight
function providing weights, abscissas and even carrying out a set of integrations
at the same time. This reflects to some extent the advanced state of the theory
of (one dimensional) orthogonal polynomials.

The current situation in two or more dimensions is quite different. The theory
of orthogonal polynomials is much more complex and has not reached the stage of
supplying a sequence of formulas. Cubature rules are conventionally constructed
by solving sets of (non-linear) moment equations. And, during the course of such
a project, no natural sequence of rules.

In fact, if one were to attempt to construct a set of Gaussian formulas for
integrands like those in section 3, possibly the first task would be to calculate
the moments using the extrapolation methods of those sections. While one can-
not completely rule out any particular method, it appears that in many cases
involving N -dimensional singularities, the Gaussian approach is simply not com-
petitive.

6 Concluding remarks

This paper is a brief no-frills account of the theory on which the technique now
known as Extrapolation Quadrature is based. One of its purposes is to assemble
the theory in a way that it can be immediately comprehended and used. I believe
that all the theory described here was available in 1977 (over thirty years ago.)

My intention is that a reader with no prior acquaintance with extrapolation
quadrature, can, if he wishes, complete an accurate integration of some singular
function mentioned in section 3 within a couple of hours. (This would include
both reading the theory and programming the calculation.) To do so is possible
because I have omitted large sections of material that woud normally be expected
in an account of such a wide attractive theory.

(1) Scope. The topic is limited to integrating over simplices and parallelepi-
peds. The integrand may be regular, or may have a singularity of an algebraic
nature (see Definition 3.1) at a vertex. When there is a singularity, in higher
dimensions, the Gaussian approach is extraordinarily difficult to implement and
extrapolation is straightforward. (See section 5.)

(2) The numerical sofware required is simple. One requires only a linear
equation solver and a numerical quadrature routine for evaluating trapezoidal
type quadrature rule approximations.

(3) One needs to choose the error expansion appropriate to the singularity.
These occur throughout sections 2 and 3 as theorems. Only the structure is
needed and this is almost simple enough to commit to memory.
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(4) An unfortunate aspect of this theory lies in the proofs of the two key error
expansions (theorems 2.2 and 3.1). The proofs known to the author appear to
be long, involved and nontransparent.

A subsidiary purpose of this paper is to draw attention to item 4. This is a
blemish on a fine theory. Even a casual reader will see that these theorems are
central to the theory. They deserve elegant proofs! I am hoping that some reader
of this paper may provide a set of shorter, better proofs.
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Abstract. A personal account of the author’s introduction to numerical
methods for ordinary differential equations together with his impressions
of some of the notable developments in this subject and some of the
people who have contributed to these developments.

1 Introduction

This note is about “early days” but what early days and whose early days? The
early days of numerical analysis, specifically the numerical analysis of ordinary
differential equations, were too long ago for the author to have any real con-
nection with them. What about the early days of numerical analysis in New
Zealand? It is almost laughable to think that a small isolated country like New
Zealand would have any significant history in this mathematically and tech-
nically profound subject but there is indeed some history. Two of the great
pioneering figures in British numerical analysis, that is L. J. Comrie [39], and
A. C. Aitken [37] were New Zealanders. Amongst Comrie’s many contributions
was the perfecting of the table makers art, ironically at a time when the rising
importance of electronic computing was about to make table making obsolete.
Aitken belongs correctly in the annals of Scottish Numerical Analysis. He was
an outsider who found a home in one of the centres of scientific activity of his
day. Unfortunately, this is typical of New Zealanders: anything they can con-
tribute, they contribute somewhere else. The author of this note hopes he can
be regarded as an exception. Whether his contributions are important or not,
they are definitely New Zealand contributions. In this note he will say some-
thing about his own early days in the context of some of the notable events and
pioneering contributors to the subject.

In 1957 the author had the privilege of hearing S. Gill and A. R. Merson,
speak about their work. In 1965 he met such pioneers in the subject as P. Henrici
and C. W. Gear and in 1970 he met the already famous G. Dahlquist as well as
two people who were also destined to become famous: E. Hairer and G. Wanner.

35
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Thus writing about his own early days, and about the people he encountered,
does not restrict the author and is quite consistent with broader historical aims.

The paper is organised as follows. In Section 2 a survey will be presented
of some of the great events, great people and great ideas in the early history of
numerical methods for ordinary differential equations. In Section 3 the author
will say a little about his own early days and how he got into this subject.

2 Notable events, ideas and people

In 1995, regarded as the centenary of the Runge–Kutta method, a conference
was held at the CWI in Amsterdam to celebrate this occasion and, subsequently
G. Wanner and the author wrote an account of the history of Runge–Kutta meth-
ods as we understood it at the time [11]. A more general history of numerical
methods for ordinary differential equations appeared a few years later as a mil-
lennium review [10]. In the light of these existing surveys, it seems appropriate
to aim for something on a smaller scale in the present paper.

Linear multistep methods

The classical Euler method [19], in which each time step approximates the aver-
age rate of change of the solution by its value evaluated at the beginning of the
step is like a numerical Tortoise. It is slow and steady and, although it might not
always win the race, it usually gets there in the end. More sophisticated methods
which attempt to achieve greater accuracy by making more use of past calcu-
lations (linear multistep methods) or more intensive calculations in the current
step itself, are more like hares. They are fast and flighty but quite often they get
distracted and don’t do as well as the tortoise.

The general form of linear multistep methods for an initial value problem

y′ = f(x, y), y(x0) = y0,

is based on evaluating approximations yn ≈ y(xn) using an expression of the
form

yn =
k∑

j=1

αjyn−k + h

k∑

j=0

βjf(xn−j , yn−j).

Note that if β0 6= 0, the method is implicit (in contrast to explicit methods
where β0 = 0) and the solution of non-linear algebraic equations is required to
actually evaluate yn.

The first important of these hare-like methods is the systematic collection
known as Adams-Bashforth [2] methods which, together with Adams-Moulton
methods [35], are the basis of modern predictor-corrector methods. In the Adams-
Bashforth methods β0 = 0 and the only non-zero values of the αj are α1 = 1.
The Adams-Moulton methods are more accurate and are implicit.
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A typical Adams-Bashorth method, yn = yn−1 + 3
2hf(yn−1)− 1

2hf(yn−2) is
based on the quadrature formula

∫ 0

−1

φ(x)dx ≈ 3
2φ(−1)− 1

2φ(−2).

If, instead of numerical integration, we start from numerical differentiation

φ′(0) = 3
2φ(0)− 2φ(−1) + 1

2φ(−2)

we obtain the second order backward difference method

yn = 2
3hf(yn) + 4

3yn−1 − 1
3yn−2.

The family of “backward-difference methods”, of which this is an example, have
an important role in the numerical solution of stiff problems, which we will now
discuss.

Stiffness

In a seminal paper, Curtiss and Hirschfelder [12] considered a special type of
difficult problem characterised by unstable behaviour unless the stepsize is un-
reasonably small. The increasing power of computing equipment at that time had
made it feasible to attempt large problems, such as those arising in the method
of lines for partial differential equations, and this type of difficult behaviour is
typical of such problems. The remedy for stiffness, as it became known, is either
to use such reduced stepsizes as to make the use of traditional methods possible,
or to use methods especially designed for stiff problems. These stiff methods are
usually implicit and this makes the cost of each step very high. But, overall,
the use of these methods may be cheaper than taking the large number of steps
required for explicit methods to work successfully.

Runge–Kutta methods

In the search for improvements over the Euler method, there are two natural
generalisations. The linear multistep idea, in which information from recently
completed integration steps is exploited, is matched by a completely different
idea in which the function f defining a given differential equation is evaluated
more than once in each step. The first paper on this type of generalisation, by
C. Runge [38], was followed by contributions from K. Heun [30] and W. Kutta
[33]. In carrying the integration from yn−1≈y(xn−1) to yn≈y(xn)=y(xn−1+h),
where h is the stepsize, a number of stages are evaluated each defined as an
approximation to y evaluated at a point close to xn−1. Each stage is equal to
yn−1 plus a linear combination of “stage derivatives” evaluated from previously
computed stages. The coefficients in the various linear combinations are usually



38 John C. Butcher

written, together with other relevant information, in a tableau

c A

bT

=

0 0
c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs.

The entries in this tableau indicate that the stages are defined by Yi = yn−1 +
h

∑i−1
j=1 aijFj , where the stage derivatives are defined by Fi = f(xn−1 + hci, Yi).

The tableau entries further indicate that the output approximation is equal to
yn = yn−1 + h

∑s
i=1 biFi. By introducing elements above and on the diagonal of

A, the possibility is allowed for a Runge–Kutta method to be implicit.

Linear and non-linear stability

To model stiff behaviour, Dahlquist [14], introduced the famous “A-stability”
definition. In its more general formulation for application to a wider class of
numerical methods, the definition is concerned with a linear problem y′ = qy,
where q is a complex number. We will write z = hq and it is observed that for
linear multistep methods, Runge–Kutta methods, and a wide range of related
methods, the value of each step value yn becomes the solution to a difference
equation whose coefficients are functions of z. The set of z values for which
this difference equation has only bounded solutions is known as the “stability
region”. A method is A-stable if all points in the left-half complex plane belong
to the stability region. Although A-stability is not possible for high order linear
multistep methods, it is available for high order implicit Runge–Kutta methods.
Many attempts have been made to weaken this property in an appropriate way;
the most important of these is A(α)-stability. This property holds for many
methods for which strict A-stability, which is the same as A(π/2)-stability, does
not hold and these methods are effective for the solution of many stiff problems.
It is also possible to strengthen the property and get even better performance for
some stiff problems. It is very difficult to predict stable behaviour for non-linear
problems and a new approach for doing this was discovered by Dahlquist in 1975
[15] along with the invention of “one-leg methods”. The ideas associated with
non-linear stability were extended first to Runge–Kutta methods [9] and later
to general linear methods [4].

The starting point for all these non-linear stability investigations, is the a
test equation

y′(x) = f(x, y(x)), (2.1)

where

〈Y − Z, f(X, Y )− f(X, Z)〉 ≤ 0. (2.2)
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From (2.2) it follows that, if y(x) and z(x) are two solutions to (2.2), then
‖y(x)− z(x)‖ is non-increasing. A Runge–Kutta method is BN-stable if

‖yn − zn‖ ≤ ‖yn−1 − zn−1‖ (2.3)

and this is equivalent, for irreducible methods, to the requirements that bi > 0
for i = 1, 2, . . . , s and that the symmetric matrix

M = diag(b)A + AT diag(b)− bbT ,

is positive semi-definite.
The relationship between algebraic stability, as this type of non-linear sta-

bility is named for the all-embracing general linear case, is complicated by the
fact that more than a single piece of information is passed between steps. If yn

in (2.3) is interpreted in this multivalue approximation sense, then ‖ · ‖ has to
be generalised to reflect this more general setting. Dahlquist had already intro-
duced the G matrix in the one-leg and linear multistep cases and this remained
as a key component in the general linear formulation of algebraic stability.

Order barriers

A linear k-step method, in its most general form has 2k + 1 parameters to be
chosen and it might seem that order 2k is possible. This is true but the unique
method of this order is unstable. What the strict order limitations are was solved
by Dahlquist. His result states that for stable linear k-step methods the order
cannot exceed k + 2 and if k is odd, the order cannot exceed k + 1.

In contrast to this “first Dahlquist barrier” there is a second barrier relating
A-stability to order. This states that, for a linear multistep method the maximum
order consistent with A-stability is only two. This result can be generalised
to a what was formerly known as the Daniel-Moore conjecture. Although the
second Dahlquist barrier was proved by Dahlquist, a new proof, which is easily
generalised to the Daniel-Moore statement, was proved using order stars [40].

In the case of Runge–Kutta methods order barriers also exist. For explicit
methods with s stages, the maximum possible order is s, up to s = 4 but for
s > 4, at least s+1 stages are required [7]. For order p = 8 for example, 11 stages
are required. In the case of implicit methods for which the stability function is
a rational function of degrees n (numerator) and d (denominator), an order
p = n + d is possible. These high order “Padé approximations” are consistent
with A-stability, if and only if d − n ∈ {0, 1, 2}. The final steps in this result
were proved using order stars [40].

3 First contacts with numerical analysis

As an undergraduate mathematics student I didn’t know what numerical analysis
was but I knew it was an inferior subject because my Professor, H. G. Forder,
said that it was. How could anyone take an interest in anything so devoid of
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intellectual content he asked. When I failed to get a scholarship to study math-
ematics in England after going as far as I could in New Zealand, my life seemed
to be over. However, my mother saw an advertisement which led to my getting
a research studentship at the University of Sydney. I could work on any sub-
ject as long as it used the SILLIAC computer [17]. I was persuaded to work
on simulation of cosmic ray showers and I had several papers in this area in
collaboration with Professor H. Messel and others. One of my early attempts
at scientific computation was the development of an efficient way to calculate
inverse Laplace transforms. I presented this at a conference in South Australia
at which a number of eminent British numerical analysts were present.

S. Gill and R. H. Merson

The most famous contribution of Stanley Gill to numerical differential equations,
is his adaptation of one of Kutta’s fourth order methods to economise on memory
use. His algorithm [26], which has the following tableau,

0 0
1
2

1
2

1
2

√
2−1
2

2−√2
2

1 0 −
√

2
2

2−√2
2

1
6

2−√2
6

2+
√

2
6

1
6

was also a precursor to the compensated summation technique [31]. In his anal-
ysis of the order conditions he made use of combinations of partial derivatives
which are now known as elementary differentials. Merson took this idea further
and developed an operational calculus for deriving Runge–Kutta methods [34].
A particular method he promoted was quite popular for many years:

0 0
1
3

1
3

1
3

1
6

1
6

1
2

1
8 0 3

8

1 1
2 0 − 3

2 2
1
6 0 0 2

3
1
6

The output values is fourth order and the result computed as the fifth stage, Y5,
is used for error estimating purposes. The value of Y5 is actually a third order
approximation but for linear problems it is also order 4.

In the long discussion following Merson’s talk, the following contribution was
made:
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Dr. S. Gill, Ferranti Ltd.
I looked into this subject 5 years ago but I did not carry the subject quite
as far as Mr. Merson for two reasons.
Firstly, automatic computing was new then and there did not seem to be
much interest in a variety of methods for integrating differential equa-
tions. Since then it has become apparent that there are applications for a
number of different processes and it is perhaps now worthwhile standar-
dising the procedures for developing variations of the process.
The other reason is that, not being a pure mathematician, I was never
quite sure of what I was talking about. It is difficult to keep a cool head
and I think this would justify a solid attack by a pure mathematician to
put everything on a sound basis. I did however see the one-one corre-
spondence between the trees and the “basic operators”.

At this stage of my life I was too shy to speak to either Mr. Merson or
Dr. Gill but their work had a strong influence on me. I worked on questions
related to Runge–Kutta methods as a hobby for several years until my first
paper on the subject was eventually published in the Journal of the Australian
Mathematical Society, after being rejected by Numerische Mathematik. By this
time my hobby had become my career.

In 1965 I travelled to USA and met some very famous numerical analysts.

G. Forsyth and G. Golub

George Forsyth of Stanford University, was a pioneer in numerical linear algebra
and the academic father and grandfather of many of the present day leaders in
numerical analysis. He was also one of the visionaries who viewed Computer
Science, and Computational Mathematics as an integral part of it, as a dis-
tinct academic discipline. His famous protegé, Gene Golub, became a lifelong
friend and supporter for myself, and for many other people. He is credited with
the rhetorical question: “Numerical ODEs: is there anything left to do?”. This
challenge was answered by Bill Gear in an interesting paper [24].

C. W. Gear and P. Henrici

I met both Bill Gear and Peter Henrici during my first year in USA. Bill has
made many contributions to this subject but I will mention only three. The
first is his invention of “hybrid methods” [20] (actually the co-inventor see also
[27] and [6]) which opened the way to a wide variety of multi-stage multi-value
methods. The second is his championing, and further developing, the Nordsieck
adaptation of Adams and other linear multistep methods [36], [21], [22]. Finally,
the DIFSUB code, which is the first general purpose variable step, variable order,
differential equation solver [23].

Peter Henrici wrote an important textbook on Numerical ODEs [29] which
is acknowledged to be a masterpiece of exposition. It is also significant in aiming
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for a high mathematical style without deviating from its core aim of provid-
ing analyses and critical comment on practical computing, featuring the most
important algorithms available at the time. It is not surprising that an early
and visionary work would express opinions which would not hold up to future
developments. He explained why Taylor series methods are not a good idea but
today they have important roles in practical computation (see classic papers
on Taylor series [1], [25]). He also did not think much of backward difference
methods; these have since become the central component of generations of use-
ful codes from DIFSUB to DASSL [3]. My own dealings with Peter were cordial
and agreeable but I never got him to recognise that New Zealand is a different
place from Australia and that this actually mattered to the inhabitants of these
two countries separated by 2000km of ocean.

T. E. Hull

Tom Hull was a leading figure in numerical ordinary differential equations in
Toronto and in Canada as a whole. His enduring impact rests on the DETEST
and STIFF-DETEST projects [32], [18]. The idea was to provide standardized
tests for the performance of differential equation solvers. Ultimately this led
to mature test sets with wide international support based first at the CWI,
Amsterdam, The Netherlands, and later at the University of Bari, Italy. Even
when I first met him in 1965, Tom had already built a school of numerical analysis
which has survived as an influential centre for numerical ordinary differential
equations.

E. Hairer and G. Wanner

I first met these remarkable scientists in 1970 when, somewhat surprisingly, I got
invited to a significant anniversary celebration at the University of Innsbruck.
My series of lectures was basically an exposition of two papers [5], [8], the second
of which was not yet published. Subsequently they wrote an important paper
[28], in which the idea of B-series was developed. The relationship between this
and my own paper was like the relationship between Taylor series and Taylor co-
efficients. This led to my own contribution becoming recognised, through their
eyes, in a way that might otherwise have not been possible. In collaboration
with S. P. Nørsett, whom I did not meet in person until much later, they intro-
duced order stars [40]. Some of the achievements of this remarkable theoretical
technique have already been referred to in Section 2.

G. Dahlquist

In my 1970 European visit I was privileged to meet Germund Dahlquist both in
Stockholm and also at a summer school in France where we presented lectures
on linear multistep methods (Germund) and Runge–Kutta methods (myself). I
was already acquainted with the work in his famous thesis [13] and especially
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with the proof of the first Dahlquist barrier. The first proof I knew about was
the one in Henrici’s book [29] but there is a choice between sophistication at
a high level or directness at a low level. Because the summer school organisers
expected printed matter in addition to the verbal lectures, Germund, with the
author’s permission of course, distributed advance copies of the book by Bill
Gear [22]. This formed a very nice introduction to many of the topics Germund
was preparing to cover.

Without doubt, meeting and learning from, Germund Dahlquist, completed
my personal introduction to the subject of numerical methods for differential
equations.
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Abstract. Herb Keller is well known in dynamical systems as the person
who invented pseudo-arclength continuation. However, his work ranges
as wide as scattering theory, fluid dynamics, and numerical analysis, and
his publications span almost 60 years! At a workshop in Bristol, March
21-24, 2005, he shared some of his many stories with Hinke Osinga.

In March 2005 DSWeb Magazine had the splendid opportunity to do an
interview with Herb Keller when he visited Bristol to attend the workshop

Herbert B. Keller, March 24, 2005.

photographer Bernd Krauskopf.

Qualitative Numerical Analysis of High-
dimensional Nonlinear Systems1. Herbert
Bishop Keller, who was born in 1925 in Pa-
terson, New Jersey, turns 80 this year (“Yes,
in June. . . If I last that long”). Starting at
the age of 20, he has been working in math-
ematics for almost 60 years and it would be
impossible to convey the entire breadth and
depth of his work in one article. This inter-
view particularly focuses on his contributions
in Dynamical Systems Theory.

Herb got a Bachelor in Electronic Engi-
neering from Georgia Tech2 in 1945. “This
was a special program during the war years,
where you took three semesters in one year
for an otherwise four-year program. I did it
in two years and eight months and so I was
only 20 years old then.” Herb got to Georgia

Tech as part of the Naval Reserve Officer Training core program. He was trained
as a fire control officer and he was on a battleship preparing for the invasion of
Japan. There is a certain matter-of-fact-ness about it: “I got my diploma, and
? This article first appeared April 2005 in DSWeb Magazine, the quarterly newsletter

of the Activity Group on Dynamical Systems of the Society for Industrial and Ap-
plied Mathematics; http://www.dynamicalsystems.org/ma/ma/display?item=108
They are acknowledged for their kind permission to reprint this interview.

1 http://www.enm.bris.ac.uk/anm/workshop-c/
2 Georgia Institute of Technology, Atlanta; http:www.gatech.edu
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the next day I got married, and the next day I was off to war.” From this point
of view, one can understand the elation Herb felt when the bomb was dropped: it
meant he could go home. “They had a point system: you could get discharged as
soon as you had enough points.” However, when Herb had collected the required
number of points a few months later, he was told that he couldn’t possibly leave!
“I was their only qualified catapult officer, they couldn’t lose me.” As suggested
by a fellow officer, Herb put a message on the notice board ‘Catapult class,
8am Monday morning’ and, indeed, four young men showed up. “They were all
from Annapolis, and one of them was Jimmy Carter! After two weeks of training
them, I could go home.”

Herb to Hinke: “I got my degree and the next day I got my
commission as an Ensign in the Navy, and the next day I

got my Georgia peach!” (March 24 2005)

photographer Bernd Krauskopf.

In 1946 Herb
was back at Geor-
gia Tech and try-
ing to decide what
to do. His two-
year older brother
Joe was by then
a Faculty member
at the Institute for
Mathematics and
Mechanics at New
York University3,
which later was to
become the Cour-
ant Institute of
Mathematical Sci-
ences. “I was inter-
ested in Engineer-
ing and Physics,
so naturally I was
good at Mathe-
matics, but I had never thought about a career in Mathematics. Through my
brother I began to believe that Mathematics might be interesting.” Joe arranged
for Herb to meet Courant. Obviously, an interview with Courant himself was a
serious matter, and Herb decided to wear his Navy Whites. “I had worn that
uniform only twice before, when I tried it on, and when I got married. It seemed
appropriate to wear it again.” It is unclear whether the uniform did it. Courant
certainly was not much impressed with Herb’s mathematical skills. “At one point
he looked up and down the big windows in his office and asked: ‘Do you know
how to wash windows?’ But he hired me anyway and, fortunately, he found
something else for me to do!” So that was that. Herb went to New York and
studied for his Master’s, which he got in 1948.

3 http://www.cims.nyu.edu
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Joe and Herb Keller on
la Tour Eiffel in 1948.

Herb wrote papers with his brother on scatter-
ing theory and the reflection and transmission of
electromagnetic and sonic waves. Part-time he also
taught at Sarah Lawrence College4 in Bronxsville,
New York. “There were 360 mostly wealthy and
good-looking girls at this school, and I was the
Math Department. That was a pretty nice job.”
As Herb was looking for a topic for his PhD, he
realized that he should not work too closely with
his brother. He decided to move away from scatter-
ing theory into computing. “I decided to become
a Numerical Analysist.” He wrote a thesis On sys-
tems of linear ordinary differential equations with
applications to ionospheric propagation with Wil-
helm Magnus as his advisor and received his PhD
in 1954. From then on, he was a full-time member
of the faculty at NYU.

NYU was an extremely active place. The
Institute officially became the Courant Insti-
tute in 1960, with Niels Bohr as the dedica-

tion speaker. “Everyone from Europe who travelled to the US came through
Courant. The institute was well known and I got to meet lots of people.”

Herb and Joe Keller at
Iguassue Falls in Brazil, 1985.

In the late 1950s NYU bought
the third UNIVAC. This is a
1000-word memory mercury de-
lay line computer, the first com-
mercially available high-speed
computer. They founded the
AEC Computing and Applied
Mathematics Center, of which
Herb was the associate director
and Peter Lax was the direc-
tor. “This was the beginning of
Scientific Computing. I think I
was very fortunate to be getting
into the numerical business at
the right time. Numerical Anal-
ysis really took off. The main
problem was how to solve big
systems on small computers. It
is changing now, because there
is so much good software. We
didn’t even know the term soft-
ware!”

4 http://www.slc.edu/
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Research in the early 1960s always had a strong military flavor. “We had the
cold war with Russia. We wanted to know how to protect people from bombs.”
Together with Bob Richtmeyer, Herb set up a research group working on nuclear
reactions and the effects of atomic weapons. “We were interested in Mathemati-
cal Physics in much the same way as Los Alamos, but our stuff was not classified.
We worked on the theory of nuclear reactors for naval power reactors. These were
diffusion problems and transport problems. It was all done numerically.”

At the same time, Herb was interested in fluid flow problems. “At Courant
there was lots going on about fluid flow. You simply couldn’t help being part
of it. It really was the area where I started to work on computational things.”
He studied Von Karman swirling flow between rotating disks, Taylor-Couette
flow, flows in channels and over airplane wings. “Oh yeah, and satellite re-entry
problems. That is simply the flow around a sphere when entering the atmosphere
at hypersonic speeds.”

Developing a taste for dynamical system theory

At some point, Herb started working with Ed Reiss, who was interested in solid
mechanics at Courant, on the buckling of spherical shells and rods and so on.
“We treated it as an equilibrium phenomenon, while it was a bifurcation problem.
But we didn’t know that at the time. We realized it had dynamics, but didn’t
do much about it.”

Herb Keller and Tony Chan (right) in China.

This was also the time when Herb moved from the Courant Institute to the
department of Applied and Computational Mathematics5 at Caltech. He had
visited Caltech in 1965, but went back to NYU in 1966. “Courant came to see
me and told me that it would be so much better for me to come back to NYU.
5 http://www.acm.caltech.edu
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I agreed with him. I mean, they had much more powerful machines than at
Caltech. But when I came back to New York, I knew it was a mistake and I left
for Caltech again in 1967 and have been there ever since.”

At NYU, Herb had alternated teaching Numerical Analysis with Eugene
Isaacson, who was quite a bit older than Herb. Wiley asked them whether they
were interested in writing a book about it from the lecture notes. “We had a
really good collaboration going, working on this book together. This continued
while I was at Caltech, which is quite something, because we didn’t have email
at the time. I remember writing the preface of the book. I found it really difficult
and wanted to get it over with. But when I sent it to Eugene, he responded that
it was terrible and had all sorts of suggestions on how to change it. That’s when
I decided to work in my secret message. Do you know what an acronym is? You
go and figure it out. And when you think you should give up, keep on reading!
When Eugene saw it, he never complained again.” [When Herb told me this, we
were enjoying a sparkling Chardonnay at a nice restaurant, and I couldn’t wait
to get back to my office and read the preface. It’s worth it.]

As Herb worked on the book with Eugene Isaacson, he got too carried away on
two-point boundary value problems. “It was too much material and I decided to
write a monograph on it separately. The techniques explained in that book really
were the start of the continuation setting.” At Caltech, in 1967, Herb learnt about
Lyapunov-Schmidt methods, which made a big impression on him. It was then
that he started doing serious bifurcation theory and path continuation. “The real
turning point only came in 1976, when I was asked to speak at the Advanced
Seminar on Applications in Bifurcation Theory, organized by Paul Rabinowitz
and Mike Crandall. The army had a big center for research at the University of
Wisconsin and they organized a series of meetings every year with a book for
each. In my paper “Numerical Solution of Bifurcation and Nonlinear Eigenvalue
Problems” for this book, I invented the term pseudo-arclength continuation.
It is my most popular paper ever. Rabinowitz was very thankful, because the
popularity of my paper meant that his book was very popular.”

Stig Larsson, Simon Tavener, Herb Keller, Alastair Spence, Ridgway Scott, and Don

Estep hiking in the Rocky Mountains outside of Fort Collins, Colorado, May 2001.
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While research in Applied and Computational Mathematics at Caltech, which
grew out of Aeronautics, was primarily focused on Fluid Dynamics, Herb brought
in a strong numerical component. He built up a group of people working in Nu-
merical Analysis, including Heinz-Otto Kreiss, Bengt Fornberg, Jens Lorenz,
Tony Chan, Jim Varah, Eitan Tadmore and others. However, the core group
at ACM was built by Gerald Whitham (a student of Lighthill’s), and included
Philip Saffman (who had worked with G.I. Taylor), Paco Lagerstrom (a topol-
ogist by training who worked on asymptotics in Aero), Julian Cole (also from
Aero), Don Cohen (a student of Joseph Keller), and, of course, Herb himself.
“In addition, I’ve had tons of excellent students and postdocs. You know, if you
get garbage in, you get garbage out, but if you get good students in... It was a
pleasure! Yes, in a sense I was lucky, being at such fantastic places and all that.
I was influenced by the many good people around me. However, you cannot fake
it in this business.”

Retirement

In contrast to many other countries, there is no longer forced retirement in the

Herb Keller with his grandson
Milo at San Diego Zoo.

US. In 1983, an old senator from Florida
who himself was in the 90s, passed a law
that one should not force people to retire
just because of age. As a transition period,
it was decided that in the following ten
years, one must retire when reaching the
age of 70. “I was lucky. My brother turned
70 just before the end of those ten years,
but I didn’t.”

For many of the younger mathemati-
cians, especially those who are still look-
ing for a permanent job, it can be frustrat-
ing to see grey old men (mostly, isn’t it!)
sitting on precious academic posts. Herb
ponders the possible benefits of forced re-
tirement: “In fact, we did have a discus-
sion at Caltech about how to get rid of the
dead wood, but we decided that, at Cal-
tech, we did not have to worry about it.”
Caltech has an appealing early retirement
program, offering a two-year scholarly leave with full pay and no teaching (like
a two-year sabbatical), at the end of which one should retire. “I think that good
people do not hang on by the skin of their teeth. When they feel they do not
pull their weight as compared to the people around them, they will pull out.”

Herb retired from Caltech in 2001. He is now a research scientist at UC
San Diego6 and also kept his office at Caltech, which he also visits regularly.
6 http://www.ucsd.edu
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Jim Bunch, Herb Keller, and
Randy Bank at UCSD, drinking beer.

“Aging has effects on
your research. You
need to do lots of cal-
culations and I find
it harder to do. It
used to be fun, but
it is not as much fun
anymore and it cer-
tainly does not go as
fast.” Herb also got
tired of teaching. “It
is a big commitment
and I certainly was
not very good at it.
I probably could have
been more stimulat-
ing.” Caltech annu-
ally awards the Feyn-
man Prize for Excel-

lence in Teaching. The winner is chosen by the students, and the prize consists
of a cash award of $3,500 and an equivalent raise in the winner’s salary. Herb
has never won that prize (“Oh no, I didn’t even come close!”), but he did ask
advice on teaching from Harry Gray, the Beckman Professor of Chemistry, who
is a very popular teacher. “He told me that you should never start lecturing
straight away. The first five to ten minutes the students are not ready for you
yet. Furthermore, they cannot concentrate for more than 15 minutes and it is im-
possible to have them absorb more than one new idea in a lecture. Well, I think
he had quite a low opinion of the students, but he worked very hard at teaching
professionally. I never thought about it. My concerns were how to best present
the material and how to present the proofs.” There is a second aspect: the rate
at which the course content changes is often slow compared to the changes in
technology. “You work so hard on getting the course material, you cannot keep
up, certainly not if you ever want to get any research done.”

“I must say that it feels great to be retired. We old guys thought we were ir-
replacable, but we’re not. We have been replaced and the young mathematicians
are good. However, I do miss having students. That I miss most.”

Addicted to cycling

Those who know Herb well know that he hardly ever goes anywhere without his
bicycle. “I started cycling rather late, in early 1981 or so. After my divorce I
wanted to keep more contact with my son. He was at UC Davis7 and everyone
bikes there, so...” After Herb had been invited to Oberwolfach, he decided to do
a big bike tour in Germany and asked his son to join him. What should have been
7 http://www.ucdavis.edu
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a fantastic vacation ended dramatically when Herb could not make the turn on
a downhill slope and ended up head first in a lumber yard. “It must have been
terrible for my son. His first bike tour with his dad and then I had this dreadful
accident.” Herb spent one week in a hospital in Villingen-Schwenningen. Sebius
Doedel [Sebius is enjoying the same Chardonnay in this restaurant] remembers
the event quite well, because he paid Herb a visit at the hospital. Sebius tells
us how he came to the hospital and asked the nurses where he could find Herb
Keller. The nurses immediately knew who he meant, because Herb was their most
honored guest: “Ah, der Herr Keller! Der ist mit einem Helikopter eingeflogen!!”

Despite this bad accident, Herb has kept cycling ever since. He has also had
many other bicycling accidents, but none as remarkable as this first one. “It
cured my eyesight! For 30 years I had glasses, even bi-focals, but I haven’t worn
glasses since.”

Bristol, April 2005.
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Abstract. This is a personal perspective on the development of nu-
merical methods for solving Fredholm integral equations of the second
kind, discussing work being done principally during the 1950s and 1960s.
The principal types of numerical methods being studied were projection
methods (Galerkin, collocation) and Nyström methods. During the 1950s
and 1960s, functional analysis became the framework for the analysis of
numerical methods for solving integral equations, and this influenced the
questions being asked. This paper looks at the history of the analyses
being done at that time.

1 Introduction

This memoir is about the history of the numerical analysis associated with solv-
ing the integral equation

λx(s)−
∫ b

a

K(s, t)x(t) dt = y(s), a ≤ s ≤ b, λ 6= 0. (1.1)

At the time I was in graduate school in the early 1960’s, researchers were inter-
ested principally in this one-dimensional case. It was for a kernel function K
that was at least continuous; and generally it was assumed that K(s, t) was sev-
eral times continuously differentiable. This was the type of equation studied by
Ivar Fredholm [26], and in his honor such equations are called Fredholm integral
equations of the second kind.

Today we work with multi-dimensional Fredholm integral equations of the
second kind in which the integral operator is completely continuous and the
integration region is commonly a surface in R3; in addition, the kernel function
K is often discontinuous. The Fredholm theory is still valid for such equations,
and this theory is critical for the convergence and stability analysis of associated
numerical methods. Throughout this paper, we assume the integral equation
(1.1) is uniquely solvable for any given continuous function y.

The theory of Fredholm integral equations is quite old, and many such equa-
tions are associated with reformulations of elliptic boundary value problems as
boundary integral equations (BIEs). More about BIEs later. Among the well-
known names associated with the development of the theory of Fredholm integral
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equations are Ivar Fredholm and David Hilbert. For a survey of the origins of
integral equations in applications, see Lonseth [44]. An interesting history of the
origins of function spaces is given in Bernkopf [16]. He argues that much of the
original motivation for creating function spaces arises from the study of integral
equations (and secondarily, the calculus of variations).

A brief perusal of any mathematics library will yield many books on integral
equations. An excellent introductory text on integral equations is that of Rainer
Kress [41], and it also contains a good introduction to the numerical solution of
integral equations.

2 A survey of numerical methods

There are only a few books on the numerical solution of integral equations as
compared to the much larger number that have been published on the numerical
solution of ordinary and partial differential equations. General books on the
numerical solution of integral equations include, in historical order, Bückner [21],
Baker [14], Delves and Mohamed [25], and Hackbusch [32]. Lonseth [43] gives
a survey of numerical methods in the period preceding the widespread use of
digital computers. For an interesting perspective on the theory, application, and
numerical solution of nonlinear integral equations around the early 1960’s, see
the proceedings [1]. Important bibliographic references for both the application
and the solution of integral equations are given in the very large subject and
author listings of Noble [46].

Bückner’s book was published in 1952, and it is representative of a pre-
computer approach to the numerical analysis of integral equations. The book
presents numerical methods for principally Fredholm integral equations of the
second kind, with a shorter discussion of numerical methods for Volterra inte-
gral equations. The eigenvalue problem for integral operators is the principal
focus of the book, with shorter treatments of some numerical methods for the
inhomogeneous equation (1.1).

More specialized treatments of numerical methods for integral equations are
given in the books Atkinson [9], [11], Brunner [20], Chatelin [23], Groetsch [29],
Linz [42], Ivanov [35], and Wing [65]. Useful presentations of numerical methods
are given in sections of [39, Chap. 14], [38, Chap. 2], [41, Chaps 10-17], and [12,
Chaps 12, 13], along with sections of many general texts on integral equations.
There are a number of edited proceedings, which we omit here. In the last 25
years, there has been a large amount of activity in numerical methods for solv-
ing boundary integral equation reformulations of partial differential equations.
Introductions to this topic are given in [11], [32], and [41]. It is discussed briefly
later in this paper.

Before discussing some of the history of the numerical analysis for (1.1), I
give a brief survey of the general numerical methods for solving such integral
equations. Most researchers subdivide the numerical methods into the following:
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– Degenerate kernel approximation methods
– Projection methods
– Nyström methods (also called quadrature methods)

All of these methods have iterative variants, which I discuss briefly in §3.4. There
are other numerical methods, but the above methods and their variants include
the most popular general methods.

To expedite the presentation, I often use a functional analysis framework,
even though such a presentation arose later in the history of these numerical
methods. As an illustration, the integral equation (1.1) can be written abstractly
as (λI −K) x = y with K a compact integral operator on a Banach space X , e.g.
C [a, b] or L2 (a, b).

2.1 Degenerate kernel approximation methods

We say K (s, t) is a degenerate kernel function if it has the form

K (s, t) =
n∑

j=1

αj (s) βj (t) .

In this case, the solution of (1.1) reduces to the solution of the linear system

λci −
n∑

j=1

(αj , βi) cj = (y, βi) , i = 1, . . . , n

and

x (s) =
1
λ


y (s) +

n∑

j=1

cjαj(s)


 . (2.1)

Most kernel functions K (s, t) are not degenerate, and thus we seek to ap-
proximate them by degenerate kernels. We assume a sequence of degenerate
kernels have been constructed, call them Kn (s, t), for which

max
a≤s≤b

∫ b

a

|K (s, t)−Kn (s, t)| dt → 0 as n →∞. (2.2)

Denote by xn the result of solving the integral equation (1.1) with the approx-
imate kernel Kn replacing K. For later reference, introduce the associated ap-
proximating integral operator

Knz(s) =
∫ b

a

Kn(s, t)z(t) dt, a ≤ s ≤ b, z ∈ X .

Usually, X equals C [a, b] or L2 (a, b). Then xn satisfies (λI −Kn)xn = y; and if
(1.1) is considered within the framework of the function space C [a, b] with the
uniform norm, then (2.2) is exactly the same as saying

‖K − Kn‖ → 0 as n →∞. (2.3)



56 Kendall Atkinson

2.2 Projection methods

These methods approximate the solution x by choosing an approximation from
a given finite dimensional linear subspace of functions, call it Z. Given z ∈ Z,
introduce the residual

r = (λI −K) z − y.

We select a particular z, call it x∗, by making the residual r small in some sense.
Let {ϕ1, . . . , ϕn} denote a basis for Z. Then we seek

x∗(s) =
n∑

j=1

cjϕj (s) .

The residual becomes

r (s) =
n∑

j=1

cj {λϕj (s)−Kϕj (s)} − y(s).

– Collocation method. Select collocation node points {t1, . . . , tn} ∈ [a, b]
and require

r (ti) = 0, i = 1, . . . , n.

– Galerkin method. Set to zero the Fourier coefficients of r with respect to
the basis {ϕ1, . . . , ϕn},

(r, ϕi) = 0, i = 1, . . . , n.

The basis {ϕi} need not be orthogonal. The Galerkin method is also called
the method of moments.

These are the principal projection methods, although there are others such as
the minimization of the L2 norm of r with respect to the elements in Z.

With both collocation and Galerkin methods, it is possible to define a pro-
jection P with range Z and for which the numerical method takes the abstract
form

(λI −PK) x∗ = Py.

In practice we have a sequence of approximating subspaces Z = Xn, n ≥ 1, and
associated projections Pn. Thus we have a sequence of approximating equations

(λI −PnK)xn = Pny. (2.4)

With Galerkin’s method defined on a Hilbert space X , Pnx is the orthogonal
projection of x onto Xn. For the collocation method, Pnx is the element of Xn

which interpolates x at the node points {t1, . . . , tn}.
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We usually work with cases in which

Pnz → z as n →∞, for all z ∈ X (2.5)

although there are important cases where this is not satisfied. A weaker but
adequate assumption is that the projections satisfy

‖K − PnK‖ → 0 as n →∞. (2.6)

This also follows from (2.5) and the compactness of the operator K. The space
X is generally chosen to be C [a, b] or L2 (a, b), and we are solving (1.1) for the
solution x ∈ X . For details and examples, see [11, Chap. 3].

Projection methods are probably the most widely used class of methods for
solving integral equations. For a presentation and summary of the most recent
perspectives on projection methods for solving integral equations of the second
kind, see [11, Chap. 3]. This also contains a discussion of ‘discrete projection
methods’ in which integrals in the discretized linear system are replaced by
numerical integrals.

2.3 Nyström methods

Approximate the integral operator in (1.1) using numerical integration. Consider
a numerical integration scheme

∫ b

a

f(t) dt ≈
n∑

j=1

wjf (tj)

which is convergent as n → ∞ for all continuous functions f ∈ C [a, b]. Then
introduce

Kz (s) ≡
∫ b

a

K(s, t)z(t) dt

≈
n∑

j=1

wjK(s, tj)z (tj) ≡ Knz (s) , a ≤ s ≤ b

for all z ∈ C [a, b]. We approximate the equation (1.1) by

(λI −Kn)xn = y (2.7)

or equivalently,

λxn(s)−
n∑

j=1

wjK(s, tj)xn (tj) = y(s), a ≤ s ≤ b. (2.8)

This is usually solved by first collocating the equation at the integration node
points and then solving the linear system

λzi −
n∑

j=1

wjK(ti, tj)zj = y(ti), i = 1, . . . , n (2.9)
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in which zi ≡ xn (ti). Originally people would take this solution and then inter-
polate it in some way so as to extend it to the full interval [a, b]. However, it can
be shown that the equation (2.8) furnishes a natural interpolation formula,

xn(s) =
1
λ


y(s) +

n∑

j=1

wjK(s, tj)zj


 , a ≤ s ≤ b. (2.10)

It turns out that this is a very good interpolation formula, as the resulting
interpolated values have an accuracy that is comparable to that of the approxi-
mate solution {zi} at the integration node points. We solve (2.9) and may stop
there with no interpolation; but for the theoretical analysis of the method, we
use (2.8). This places the original equation (1.1) and the approximating equation
(2.7) in the same function space, namely C [a, b].

The interpolation formula (2.10) was noted by Nyström [48]. He was operat-
ing in an age of hand calculation, and therefore he wanted to minimize the need
for such calculations. The great accuracy of (2.10) recommended itself, as then
one could use a high accuracy integration rule with few nodes (e.g. Gaussian
quadrature) while still having an accurate answer over the entire interval [a, b].
For that reason, and beginning in [4], I refer to the approximation (2.8) as the
Nyström method. It has also been called the ‘method of numerical integration’
and the ‘analogy method’ (cf. [21, p. 105]). As a current example of an actual
algorithmic use of Nyström interpolation, see [13].

With the rectangular numerical integration rule, (2.8) was used by Hilbert
[33] in studying the symmetric eigenvalue problem for the integral operator K. He
used a limiting procedure to pass from the known properties of the symmetric
eigenvalue problem for matrices to results for an integral operator K with a
continuous and symmetric kernel function.

3 Error analysis and some history

The 1960’s were a time of major change in numerical analysis, due in large part
to the widespread introduction of digital computers. To obtain some sense of
the contrast with today, consider my first numerical analysis course in 1961 and
the text for it, Hildebrand [34]. This text was well-written, and it was fairly
typical of numerical analysis textbooks of that time. The numerical methods
were dominated by the need to do hand and desktop calculator computations.
There was extensive material on finite differences and on methods that would
make use of tables. By the mid-1960’s there were several books in which digital
computers were now the the main means of implementing methods, and this
in turn led to a different type of numerical scheme. Pre-computer algorithms
emphasized the use of tables and the use of the human mind to reduce the
need for calculations. The use of computers led to the development of simpler
methods in which the calculational power of the computer could profitably be
brought to bear. For the numerical solution of integral equations such as (1.1),
a major change was being able to solve much larger systems of linear equations.
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This had been a major roadblock in the development of numerical methods for
integral equations.

A major theme in theoretical numerical analysis in the 1950’s and 1960’s
was the development of general frameworks for deriving and analyzing numeri-
cal methods, and such frameworks almost always used the language of functional
analysis. This was true in many areas of numerical analysis and approximation
theory, although I believe numerical linear algebra was less affected by this focus.
Initially researchers were more interested in obtaining a better understanding of
existing numerical methods than they were in creating new methods. The devel-
opment of such abstract frameworks, led to the development of so-called ‘opti-
mal’ numerical methods. Spline functions and finite element methods are both
associated with this search for optimal methods. As the abstract frameworks
solidified, they led to the development of new methods for new problems.

Especially important in the building of a more general and theoretical frame-
work was the seminal paper of L. V. Kantorovich [37]. This paper was subse-
quently translated under the auspices of the U.S. National Bureau of Standards
and deseminated fairly widely. The paper was quite long and consisted of sev-
eral parts. A framework using functional analysis was given for the approximate
solution of integral equations and other operator equations. Another part gen-
eralized the method of steepest descent to functionals over a Banach space. And
yet another part developed a calculus for nonlinear operators on Banach spaces.
This was followed by a generalization of Newton’s method for solving nonlinear
operator equations on Banach spaces. This paper was quite influential on me
and many others. It took many years for the ideas in the paper to work their
way through the research community. For easier access to the material in [37],
see the book of Kantorovich and Akilov [39, Chaps. 14-18]. A related early book
of importance for nonlinear integral equations is Krasnoselskii [40].

3.1 Degenerate kernel methods

The error analysis for degenerate kernel methods was well-understood without
the need for a functional analysis framework, and carrying it over to function
spaces was straightforward. Basically it is a consequence of the geometric series
theorem. In particular, suppose an operator A : X → Y is bounded, one-to-one
and onto, with X and Y Banach spaces. Suppose B : X → Y is bounded, and
further assume that

‖A − B‖ < 1/
∥∥A−1

∥∥ . (3.1)

Then B is also one-to-one and onto, and its inverse B−1 is bounded. Moreover,∥∥A−1 − B−1
∥∥ = O (‖A − B‖). In the case of degenerate kernel methods with

A = λI − K and B = λI − Kn, and working within the context of C [a, b], the
bound (2.3) gives us a bound for ‖A − B‖. More precisely, if

‖K − Kn‖ <
1∥∥∥(λI −K)−1

∥∥∥
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then (λI −Kn)−1 exists and it can be bounded uniformly for all sufficiently large
n. Letting (λI −K)x = y and (λI −Kn)xn = y,

‖x− xn‖ ≤
∥∥∥(λI −Kn)−1

∥∥∥ ‖K − Kn‖ ‖x‖.

This leads to a straightforward error analysis for the degenerate kernel method
when considered within the function space C [a, b] using the uniform norm.

This basic analysis is given in many textbooks when developing the theory
of integral equations, although historically if was often without the functional
analysis framework; and it was often also used to develop some of the theory
of the eigenvalue problem for integral operators. Since the degenerate kernel
method was used both as a theoretical tool in developing the theory of integral
equations and as a numerical method, it is difficult to give attributions to the
development of the numerical method. In talking about the numerical method,
much time has been spent on developing various means of approximating general
kernel functions K (s, t) with a sequence of degenerate kernels Kn (s, t), and this
continues to the present day. For illustrative examples of the degenerate kernel
method, see [11, Chap. 2].

3.2 Projection methods

The general framework for projection methods and other approximation methods
that was given by Kantorovich [37] was too complicated when considering only
projection methods. Later work simplified his framework a great deal, and new
perspectives continued to be given well into the 1980’s.

The general error analysis for projection methods uses the assumption (2.6)
that ‖K − PnK‖ → 0 as n → ∞. With the assumption that (λI −K)−1 exists,
we write

λI − PnK = (λI −K)+ (K − PnK)

= (λI −K)
[
I − (λI −K)−1 (K − PnK)

]
. (3.2)

With the assumption (2.6), we have that
∥∥∥(λI −K)−1

∥∥∥ ‖K − PnK‖ < 1

for all sufficiently large n. It then follows from the geometric series theorem that[
I − (λI −K)−1 (K − PnK)

]−1

exists and is bounded, and therefore the same is

true for (λI − PnK)−1. For the error, let (λI −K)x = y and (λI − PnK)xn =
Pny. Then

x− xn = λ (λI − PnK)−1 (x− Pnx) . (3.3)

This implies

|λ|
‖λ−PnK‖ ‖x−Pnx‖ ≤ ‖x− xn‖ ≤ |λ|

∥∥(λ−PnK)−1
∥∥ ‖x−Pnx‖ . (3.4)
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We have convergence if and only if Pnx → x as n →∞. The speed of convergence
of xn to x is precisely the same as that of Pnx to x.

A number of researchers have contributed to this theory and to extensions
not discussed here. There are many papers on collocation methods for solving
Fredholm integral equations of the second kind. For a general framework within
a functional analysis framework, I cite in particular those of Phillips [50] and
Prenter [51].

3.2.1 Kantorovich and Krylov regularization An early and interesting
variant on projection methods was given by Kantorovich and Krylov [38, p. 150].
As with projection methods, suppose a family of approximating functions Z is
given with basis {ϕ1, . . . , ϕn}. Assume a solution for (1.1) of the form

x∗(s) =
1
λ


y(s) +

n∑

j=1

cjϕj (s)


 . (3.5)

This was motivated, perhaps, by the solution (2.1) for a degenerate kernel inte-
gral equation. In effect we are seeking an approximation of the integral operator
term Kx in (1.1),

The authors looked at the residual r for such an approximating solution and
then minimized it in the same manner as with Galerkin’s method (although
collocation methods can be used equally well). Introduce

z∗(s) =
n∑

j=1

cjϕj (s)

substitute it into the formula for r = (λI −K)x∗− y, and then minimize r with
either a Galerkin or collocation method. Then z∗ satisfies (λI −PK) z∗ = PKy
and x∗ satisfies (λI − PK)x∗ = y. Because P has a finite-dimensional range,
and because we always assume P is bounded, the combined operator PK can
be shown to be an integral operator with a degenerate kernel function. Thus the
assumption (3.5) amounts to the approximation of (1.1) by a degenerate kernel
integral equation.

Another way of picturing this method is to consider (1.1) in the form

x =
1
λ

(y + z) , z = Kx. (3.6)

The function Kx is often better behaved than the original solution x, and this
is particularly true if x is badly behaved (e.g. lacking differentiability at points
in [a, b]). The function z satisfies the equation

(λI −K) z = Ky. (3.7)

Applying a projection method to this equation and then using (3.6) leads to
the method of Kantorovich and Krylov. The use of the formulation (3.6)-(3.7)
is often referred to as the Kantorovich and Krylov method of regularizing the
integral equation (λI −K)x = y.
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3.2.2 The iterated projection solution Associated with the projection
method solution xn is the iterated projection solution. Given the projection
method solution xn, define

x̃n =
1
λ

[y +Kxn] . (3.8)

Although such iterations are found in the literature in many places, Ian Sloan
[54] first recognized the importance of doing one such iteration; and in his honor
x̃n is often called the Sloan iterate.

The solution x̃n satisfies the equation

(λI −KPn) x̃n = y (3.9)

and Pnx̃n = xn. It can be shown that (λI −KPn)−1 exists if and only if
(λI − PnK)−1 exists; cf. [11, §3.4].

In the case of the Galerkin method over a Hilbert space X , Sloan showed
that the iterated solution x̃n converges to x more rapidly than does the original
Galerkin solution x, provided Pn is pointwise convergent to the identity I on X
(as in (2.5)). Begin with the identity

x− x̃n = (λ−KPn)−1K(I − Pn)x. (3.10)

Note that I − Pn is a projection, and therefore

K(I − Pn)x = K(I − Pn)(I − Pn)x
‖K(I − Pn)x‖ ≤ ‖K(I − Pn)‖ ‖(I − Pn)x‖ .

With Galerkin’s method, I −Pn is an orthogonal projection and is self-adjoint.
Also, the norm of an operator on a Hilbert space equals that of its adjoint.
Therefore,

‖K(I − Pn)‖ =
∥∥[K(I − Pn)]∗

∥∥ = ‖(I −Pn)∗K∗‖
= ‖(I −Pn)K∗‖ .

If the operator K is compact on X , then so is K∗; and when combined with (2.5),
we have ‖(I − Pn)K∗‖ → 0. Completing the error bound,

‖x− x̃n‖ ≤
∥∥(λ−KPn)−1

∥∥ ‖K(I −Pn)x‖
≤ c ‖(I − Pn)K∗‖ ‖(I − Pn)x‖ .

When compared with the earlier result (3.4), this shows the earlier assertion
that the iterated solution x̃n converges to x more rapidly than does the original
Galerkin solution x.

For collocation methods, we do not have ‖K(I − Pn)‖ → 0. Nonetheless, the
Sloan iterated solution x̃n is still useful. From the property Pnx̃n = xn, we know
that xn and x̃n agree at the node points {t1, . . . , tn}. Thus an error bound for
‖x− x̃n‖∞ is also a bound on the error

En = max
1≤i≤n

|x (ti)− xn (ti)| .
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To bound En, we can use the formula (3.10) and analyze ‖K(I −Pn)x‖∞. Using
this, Graeme Chandler in his thesis [22] showed that astute choices of interpola-
tion nodes (e.g. Gauss-Legendre zeroes) led to En → 0 at a rate that was faster
than the speed with which ‖x− xn‖∞ → 0. The collocation points {t1, . . . , tn}
are said to be points of superconvergence with respect to the solution xn over
[a, b].

3.3 Nyström methods

A central feature of the error analysis for degenerate kernel and projection meth-
ods is the justifiable assumption that ‖K − Kn‖ → 0 as n → ∞, where Kn de-
notes the associated approximation of the integral operator K. With degenerate
kernel methods, Kn is a degenerate kernel integral operator; and for projection
methods, Kn = PnK. As discussed above, this leads to a straightforward error
analysis based on the geometric series theorem.

In contrast, quadrature-based discretizations satisfy the relation

‖K − Kn‖ ≥ ‖K‖ , n ≥ 1.

As a consequence, the convergence analysis for the Nyström method must be
something different than that used for degenerate kernel methods and projection
methods.

The first convergence analysis for the Nyström method, to this author’s
knowledge, was given by Kantorovich and Krylov [38, p. 103]. Their analysis
is complicated, but it is complete and is equivalent to the bounds of some later
authors. Its significance appears to have been overlooked by later researchers.
The 1948 paper of Kantorovich [37] contains a general schema for analyzing
discretizations of operator equations, and using it he gives another convergence
analysis for the solution at the node points. Yet another early analysis is given
by Bückner [21] using arguments related to those for degenerate kernel methods
and using piecewise constant interpolation to extend the nodal solution to the
full interval.

For an approach that leads to the way in which the Nyström method is
currently analysed, begin by defining

En (s, t) =
∫ b

a

K(s, v)K(v, t)dv −
n∑

j=1

wjK(s, tj)K(tj , t). (3.11)

With continuous kernel functions K and standard quadrature schemes that are
convergent on C [a, b], Mysovskih [45] showed that

En (s, t) → 0 as n →∞ (3.12)

uniformly in (s, t). He used this to give a more transparent convergence analysis
for Nyström’s method. The convergence result (3.12) shows, implicitly, that in
the context of C [a, b], we have that

‖(K −Kn)K‖ , ‖(K −Kn)Kn‖ → 0 as n →∞. (3.13)
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This follows easily from the formulas

‖(K −Kn)K‖ = max
a≤s≤b

∫ b

a

|En (s, t)| dt

‖(K −Kn)Kn‖ = max
a≤s≤b

n∑

j=1

|wjEn (s, tj)| .
(3.14)

Anselone and Moore [3] were interested in freeing the error analysis from the
specific form of the integral equation (1.1) and its approximation (2.8). They
found that such an argument using En (s, t) in (3.14) could be avoided within an
operator theoretic framework that was based on the following three assumptions.

A1. K and Kn, n ≥ 1, are bounded linear operators from a Banach space X into
itself.

A2. Knx → Kx as n →∞ for all x ∈ X .
A3. {Knx : n ≥ 1 and ‖x‖ ≤ 1} has compact closure in X .

From these hypotheses, it follows that ‖(K −Kn)K‖ and ‖(K −Kn)Kn‖ con-
verge to zero as n →∞. To prove this, begin by letting B denote the set in A3;
its closure B is compact. Then

‖(K −Kn)Kn‖ = sup
‖x‖≤1

‖(K −Kn)Knx‖

≤ sup
z∈B

‖ (K −Kn) z‖.

In addition, A3 implies the family {Kn} is uniformly bounded; and thus it is
an equicontinuous family on any bounded subset of X . It is straightforward to
show that pointwise convergence of a sequence of functions on a compact set is
uniform. Combining these results leads to the convergence ‖(K −Kn)Kn‖ → 0.

An approximating family {Kn} satisfying A1-A3 is said to be ‘pointwise
convergent and collectively compact’. This framework turns out to be quite im-
portant as there are important extensions of the standard Nyström approxima-
tion (2.8) for which one cannot show directly, as in (3.14), that ‖(K −Kn)K‖
and ‖(K −Kn)Kn‖ converge to zero. Product quadrature methods for treating
singular kernel functions are examples. In addition, the family of approximating
operators {Kn} for both degenerate kernel and projection methods satisfy A3.

In the error analysis, the earlier argument (3.2) is replaced by the following:

1
λ

{
I + (λI −K)−1Kn

}
(λI −Kn) = I +

1
λ

(λI −K)−1(K −Kn)Kn. (3.15)

This identity originates from the following.

(λI − S)−1 =
1
λ

[
I + (λI − S)−1 S

]

≈ 1
λ

[
I + (λI − T )−1 S

]
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1
λ

[
I + (λI − T )−1 S

]
(λI − S) = I +

1
λ

(λI − T )−1 (T − S)S.

We assume (λI − K)−1 exists. From (3.15) and using ‖(K −Kn)Kn‖ → 0, we
can show that (λI − Kn)−1 exists and is uniformly bounded for all sufficiently
large n. We can solve (3.15) for (λI − Kn)−1 to obtain bounds on it that are
uniform for sufficiently large n. Letting (λI −K)x = y and (λI −Kn)xn = y,
we have

x− xn = (λI −Kn)−1 (Kx−Knx) . (3.16)

This shows that the speed of convergence of xn to x is at least as rapid as the
speed of convergence of Knx to Kx. A more complete discussion of collectively
compact operator approximation theory is given in [2].

Other researchers developed related ideas, and the best known are proba-
bly those of Stummel [58] (involving the concept of discrete compactness) and
Vainikko [60] (involving the concept of compact approximation). Their frame-
works are more general in that the approximating equations can be defined on
separate Banach spaces Xn, n ≥ 1. Another approach to understanding the
Nyström method was given by Noble [47]. He developed an alternative frame-
work using the language of prolongation and restriction operators, in some ways
reminiscent of the original work of Kantorovich [37], but simpler and with new
insights.

Using the abstract framework of collectively compact operators, a number of
extensions of the Nyström method have been analyzed. We discuss two of them.

3.3.1 Product integration Consider singular kernel functions such as
K (s, t) = log |s− t| or |s− t|−α, α < 1. These define compact integral oper-
ators on C [a, b]; but an approximation of the associated integral operator based
on standard numerical integration is a poor idea. To introduce the main idea of
product integration, consider the particular kernel function

K (s, t) = L (s, t) log |s− t|
with L (s, t) a well-behaved kernel function.

As a particular case of product integration, let

a = t0 < t1 < · · · < tn = b.

Let [z(t)]n denote the piecewise linear interpolant to z(t) with node points
{t0, . . . , tn}. Define the approximation of Kx by

Kx (s) ≈
∫ b

a

[L(s, t)x(t)]n log |s− t| dt ≡ Knx (s) .

It is straightforward to show that

Knx (s) =
n∑

j=0

wj(s)L (s, tj)x (tj) . (3.17)
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This is often called the product trapezoidal approximation.
The approximating equation (λI −Kn)xn = y can be dealt with in exactly

the same manner as in (2.7)-(2.10) for the original Nyström method. These ideas
for product integration were introduced in [4], [6], motivated in part by Young
[66].

For the error analysis, the family {Kn} can be shown to be a pointwise conver-
gent and collectively compact family. The error analysis reduces to that already
done for such families, with bounds on the speed of convergence obtainable from
(3.16). It should be noted that it was not possible to show directly for (3.17) the
required convergence in (3.13).

Much research has been done on product integration methods. De Hoog
and Weiss [24] give asymptotic error estimates when x(t) is a smooth function.
Among the more important results are those showing that the solution x of
such equations (λI −K)x = y are usually poorly behaved around the endpoints
of [a, b]; cf. Graham [27], Richter [52], and Schneider [53]. The latter paper
[53] also discusses how to grade the mesh {ti} so as to compensate for the
bad behaviour in the solution around the endpoints. For a general discussion of
product integration, see [11, §4.2].

3.3.2 The eigenvalue problem Consider finding the eigenvalues λ and
eigenfunctions x 6= 0 for the compact integral operator K,

∫ b

a

K(s, t)x(t) dt = λx(s), a ≤ s ≤ b, λ 6= 0. (3.18)

This is a very old problem, and there is a large research literature on both
it and its numerical solution. For a bibliography and some discussion of the
early literature, see Bückner [21]. Among the papers in the research literature
on the numerical solution of the problem, I particularly note [5], [8], Brakhage
[18], Bramble and Osborn [19], Vainikko [59], and Wielandt [64]. The book of
Chatelin [23, Chap. 4] gives a general presentation which includes a number of
these results, and it contains an up-to-date bibliography of the field.

Let λ0 6= 0 be an eigenvalue of K. Let ε > 0 be chosen so that the set
F ≡ {λ : |λ− λ0| ≤ ε} contains no other eigenvalues of K and also does not
contain 0. Let {Kn} be a collectively compact and pointwise convergent family
of approximations to K on a Banach space X Let

σn =
{

λ
(n)
1 , . . . , λ(n)

rn

}

denote the eigenvalues of Kn that are located in F . It can be shown that for n
sufficiently large, σn is contained in the interior of F .

Define

E (λ0) =
1

2πi

∫

|µ−λ0|=e

(µI −K)−1
dµ.
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E (λ0) is the spectral projection associated with λ0. E (λ0)X is the finite-dimen-
sional subspace of simple and generalized eigenvectors associated with the eigen-
value λ0 for K,

E (λ0)X = Null
(
(λ0I −K)ν(λ0)

)

with ν (λ0) the index of the eigenvalue λ0.
Define

En (σn) =
1

2πi

∫

|µ−λ0|=ε

(µI −Kn)−1
dµ.

En (σn)X is the direct sum of the subspaces of the simple and generalized eigen-
vectors associated with the eigenvalues of Kn contained in the approximating set
σn,

En (σn)X =Null

((
λ

(n)
1 I −K

)ν
(

λ
(n)
1

))
⊕ · · · ⊕Null

((
λ(n)

r I −K
)ν(λ(n)

r ))
.

It is shown in [5] that the approximating eigenvalues in σn converge to λ0,

max
λ∈σn

|λ− λ0| → 0 as n →∞.

Also, for every simple and generalized eigenvector ϕ ∈ E (λ0)X ,

En (σn)ϕ → ϕ as n →∞.

The element En (σn) ϕ is a sum of simple and generalized eigenvectors associated
with approximating eigenvalues in σn. Error bounds are also given in [5], [8];
and Bramble and Osborn [19] give both bounds and a beautifully simple way to
improve the convergence in the case of an eigenvalue with multiplicity greater
than 1. These results also apply to degenerate kernel methods and projection
methods since the associated approximations Kn can be shown to be collectively
compact and pointwise convergent.

Related and independent error analysis results are given by Vainikko [59],
and they are for a more general discretization framework than that of Anselone
and Moore.

3.4 Iterative variants

There are iterative variants of all of the numerical methods discussed above.
The linear systems for all of these numerical methods result in dense linear
systems, say of order n, and then the cost of solution is O

(
n3

)
. In addition,

with both degenerate kernel methods and projection methods, the elements of
the coefficient matrix are integrals which are usually evaluated numerically. With
the collocation method these coefficients are single integrals, and with Galerkin’s
method, they are double integrals. The cost of evaluating the coefficient matrix
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is generally O
(
n2

)
, although the constant of proportionality may be quite large.

Evaluating the coefficient matrix for a Nyström method is also O
(
n2

)
, but now

each coefficient is only a single evaluation of the kernel function.
Most standard iteration methods for solving linear systems of order n, includ-

ing Krylov subspace methods, lead to a cost of O
(
n2

)
, which is consistent with

the cost of setting up the coefficient matrix. Two-grid methods were introduced
by Brakhage [17] and then developed much more extensively in [7], [9] for both
linear and nonlinear problems. These methods also have a cost of O

(
n2

)
. In [30]

Hackbusch developed a fast multigrid iteration method with a cost of O (n) for
solving these linear systems; but the cost of setting up the linear system is still
O

(
n2

)
. For a much more extensive look at iterative variants of the methods of

this paper, see [11, Chap. 6].

4 Boundary integral equation methods

A major use of integral equations has been to reformulate problems for partial
differential equations (PDEs), and historically this dates back over 150 years. For
example, the classical Neumann series (circa 1873) for solving integral equations
refers to work of Carl Neumann in which he was considering a problem in
potential theory. For a more complete look at this historical background, see
Bateman [15] and Lonseth [44].

Along with the growth from the 1950’s onward of finite element methods for
solving elliptic PDEs, there was also interest in developing ‘boundary element
methods’ (BEM) for solving ‘boundary integral equation’ (BIE) reformulations
of elliptic PDEs. These integral equation reformulations reduce by 1 the dimen-
sionality of the boundary value problem; and sometimes the solution of interest
is needed only on the boundary of the region on which the original PDE is
defined. The engineering literature on BEM is enormous, and there are several
annual meetings on various aspects of the topic. In the community of researchers
devoted to the numerical solution of Fredholm integral equations, the numerical
solution of BIE has been a major focus from the late 1970’s to the present day.

There are a number of ways to approach the development of BIE reformu-
lations and their numerical analysis, and my perspective is biased by my own
work in the area. Among introductions, I refer the reader to the books of [11,
Chaps. 7-9], [32], [36], [41], [49], and [63]; for planar BIE problems, see the ex-
tensive survey article of Sloan [55]. A survey of the numerical solution of BIE
for Laplace’s equation is given in [10].

There are many outstanding research papers, and I can only refer to a few
of them here; see [11] for a much more extensive bibliography. In his 1968
paper [62], Wendland laid the foundation for collocation methods for solving
BIE reformulations in R3. In [31], Hackbusch and Nowak gave a fast way to set
up and solve discretizations of BIE, with a total cost of O

(
n logd n

)
, d a small

integer. An alternative fast method of solution, the fast multipole method, is
given by Greengard and Rokhlin [28].
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A true extension of the finite element method from PDE to BIE, retaining its
variational framework, was introduced by Stephan and Wendland in [57]. This
included BIE that were integral equations of the first kind (λ = 0 in (1.1)) as well
as of the second kind. This framework opened a very fruitful approach to solving
BIE, and it is still a very active area of research. An extended discussion of this
finite element method is given in [63], and there is a large research literature on
it.

Additional comments. Although a number of papers are given in the fol-
lowing bibliography, a much more complete list is given in [11], and additional
discussions of the literature are given at the conclusions of the various chapters
therein.

Acknowledgements. I thank the organizers of this conference, The Birth of
Numerical Analysis, for their efforts in making it such a success and for giving
me the chance to participate in it.
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1 Introduction

A desire to build a General Purpose Numerical Subroutine Library is not a wish
most people are born with! To do it at least twice is even more unusual. Numer-
ical Algorithm Libraries have taken much of my life – and I don’t regret it! The
driving force was to develop a selection of software solvers that enabled scientists
and engineers to solve their problems, invariably expressed as equations, in some
area of Numerical Mathematics or Statistics. In many instances this would be
addressing the mathematical models underlying their research field for the first
time with the realistic hope of computing predicted results.

At the outset the aim was to build a quality facility –what quality means will
become clear– and the library collection would be carefully selected to meet the
needs of its users over the whole field of numerical mathematics and statistics. It
was not a subject library (e.g. ODEs) nor a topic library(e.g. quantum chemistry)
nor a numerical analysis research group collection(e.g. the Harwell Library) but
a general purpose library for University users. So in the late 1960s and early
1970s we asked our university computing users what numerical areas they needed
solvers for. Then set out to discover what numerical subject areas had reasonable
and useful algorithms available. From the beginning we were choosing the best –
not simply taking what was available. Everyone thought we were being idealistic,
but agreed to try, to help. The Library was not to be a haphazard collection, but
an integrated, complete, consistently organised, well-documented and thoroughly
tested selection of procedures for scientific computing.

The Result was that the NAG Library was built. Much science and engineer-
ing was completed. (We know that at least thirty Nobel Prizes were won using
the Library.) There was a tremendous stimulation of Numerical Analysis and
Computational Statistics, with many algorithms invented.

2 Prelude – the pre-NAG days

I solved equations using hand machines (Brunsvigas) in afternoon practicals as
part of my Maths degree at Imperial College (1959-1962). I actually preferred
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Quantum Mechanics but became involved with numerical computing software
for the first time in 1967. I read the seminal paper [16] by Francis on the QR
algorithm and started a software implementation of it. I was offered a joint post
between Maths and the Computing Centre at Nottingham University. I set up
a Numerical Advisory Service for the whole university in the Computing half of
the post. This involved collecting and building a numerical algorithms library,
preparing the documentation for user advice and creating an office where the
users could come and consult.

Nottingham University had an ICL KDF-9. Its design was based on Pilot
ACE, the brain child of Alan Turing, and built at NPL by Turing and then
Jim Wilkinson and colleagues. The KDF-9 had a 48 bit word, hardware double-
precision inner product and true rounding. The university computing resources
were saturated and had to be strictly rationed. Looking to achieve improved
use of the facilities, through the use of better numerical methods, I invited
Jim Wilkinson and Leslie Fox to come and lecture to our users at Nottingham.
To me these were the absolute Gods of numerical computing. Wilkinson had
published the Algebraic Eigenvalue Problem in 1965 [35]. He came first and
attracted 150 people to each of his two lectures. On his visit I showed Jim my
QR implementation. “Do you want the good news or the bad news first” he asked.
“The Good”. “It’s not bad”. “And the bad news?” I asked. “I’m publishing my
QL with Christian Reinsch in Numerische Mathematik next week!”.1 This was
the beginning of my friendship with Jim, which lasted until his untimely death
in 1986. Leslie Fox sent David Mayers. David also gave two excellent lectures.

These were amazing times. I built a numerical algorithms library for KDF-9.
It contained over a hundred routines. It had good numerical linear algebra and
random number generators, spotty coverage in non-linear optimisation, quadra-
ture and ODEs, and one curve and surface fitting routine. Our sources of mate-
rial included routines from the National Physical Laboratory and optimisation
codes from Harwell. Inevitably I wrote some myself. We did some serious test-
ing to aid reliability and prepared our first user documentation, in a distinct
house style. The take-up of the material was instantaneous, by tens of people,
stopping me everywhere I went. I remember going to the Playhouse and never
getting back into the theatre after the interval to see the second half of the
play. They were users from all over the University, delighted to be addressing
their research mathematical models for the first time. Individuals were asking
for specific solvers for their particular research problem. I fed queries on to NPL,
Harwell and Manchester.

I also went to other universities with KDF-9s, which had active numerical
analysis groups. Linda Hayes worked for Lesley Fox, and ran the user advisory
desk in Oxford. Adrian Hock and Shirley Lill were in Leeds. Shirley was doing
a PhD in non-linear optimisation with Roger Fletcher. None had particularly
developed numerical libraries. Each had a subject library. Uniquely Manchester
University had an Atlas computer. Joan Walsh had developed ODE routines

1 See [2].
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for local use. All of the machines ran 24/7 with demand for larger computing
resources, and machine time was consistently rationed.

3 Announcement of the ICL 1906A

In November 1969 the UK Government Computer Board for Universities and
Research Councils announced the provision of ICL 1906As for Oxford, Birming-
ham, Leeds, Manchester and Nottingham Universities and the Science Research
Council Chilton Atlas Laboratory. The machine was described as so powerful
that thirty per cent of its computing resources could be given over to its oper-
ating system George 3. Nottingham University was delighted to be included in
such an august list. Eric Foxley, our Computing Centre Director, immediately
asked me to build a numerical library for the 6A, which didn’t come with one.
“No” was my immediate response. I had built one, that was sufficient for any
mathematician. I wanted to complete my PhD and research and teach in Quan-
tum Mechanics. “But Brian, it’s your duty. Look at all the people you’ve helped
already. You’ll be letting them all down, after creating such a community”. I
went away to think about it.

4 Birth of the NAG Library – built collaboratively

Lying in a bath one Saturday in February 1970, in our village of Bunny, I had
a half idea. Why not build the Library collaboratively, involving the individuals
I already know, or know of, in the other centres receiving 6As at the same
time? I prepared for and convened a meeting, at Nottingham University, on the
13th May 1970. Linda Hayes came from Oxford, Shirley Lill and Adrian Hock
came from Leeds, Joan Walsh came from Manchester and Bart Fossey came
from the SRC Chilton Atlas Centre. At that inaugural meeting we agreed to
build collaboratively a numerical algorithms library, in Algol 60 and Fortran,
for the ICL 1906A [12]. We had resources in our computing centres which we
could direct and use. Each of us was strong minded, and hard working. We led
from the front and individually undertook the technical work and organisation
ourselves.

The design principles for the Library were quickly agreed. The base of the
Library was algorithms, individually selected and coded in both languages. The
user documentation was as equally important as the source code of the routines.
There would be an example program in the user documentation showing the
use of each routine. Each routine would have a stringent test set to establish its
correct functioning and the reasons for its selection. When an error is found in
the library software or documentation, it would be corrected as soon as possible
and users would be notified of its existence in the interim.

The Library was created for our University Users. We knew that the spectrum
of users was wide, in terms of subject background, knowledge of computing,
knowledge of numerical analysis. Formally each user had an equal claim on the
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computing service and its resources. Everything had to be designed to cover
their range of ability, requirement and demand.

Each user had a mathematical problem to solve which fitted into one (or
more) categories of numerical mathematics or statistics. The Library classifi-
cation was by these areas of numerical mathematics and statistics. Most users
were familiar with the vocabulary and language of their research area. Many
needed support with the vocabulary and language of the mathematics of their
study (e.g. Professor Sir Peter Mansfield; Nuclear Magnetic Imaging; Eigenvalue
Problem). This was a major factor in preparing the user documentation.

5 Selection of library contents

The selection of the Library contents was wholly based on finding algorithms
that satisfied user needs. We sought from the outset to establish an interaction
between users and algorithm developers. Previously users simply accepted grate-
fully algorithms developed by analysts. We worked to identify user’s actual needs
(particularly unsolved needs) and used our contacts with numerical analysts to
solve them. There were secondary factors in content selection. We recognised
early that algorithm developers in one numerical area would need to utilise al-
gorithms developed in another, and that this would affect the algorithm selected
and the interface provided. For example algorithms in numerical linear algebra
would be required in many parts of the Library, and there would be cross-calling
to other areas too.

At our first meeting we drew up a list of preferred characteristics in algo-
rithms, in order of importance:

1. Usefulness
2. Robustness
3. Numerical Stability
4. Accuracy
5. Speed.

(Robustness was the ability of an algorithm to fail gracefully, delivering an
error message.) Usefulness was far too vague, so quickly the characteristics be-
came:

1. Stability
2. Robustness
3. Accuracy
4. Adaptability (Trustworthiness)
5. Speed.

Speed was always last. There was too much fast rubbish about! Later Pro-
fessor Christian Reinsch told Dr. Seymour Cray that his Cray 1 computer “was
unsafe at any speed – because of its dirty arithmetic!” The reality was that some
of our early selected algorithms had few or none of the properties. We were press-
ing to satisfy as best we could our user’s needs so we had to include inadequate
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tools. We sought and seek to replace out-moded material at the earliest oppor-
tunity. The pursuit of our characteristics was a proper ideal. Library contents
would be updated in an ordered, notified and consistent way.

6 Library contents

At our first meeting we also selected the first numerical and statistical areas
which were to be our chapter topics, in an agreed order of priority.

1. Linear Algebra
2. Statistics

– Statistical Routines
– BMD Programs

3. Non-linear optimisation
4. Special Functions
5. Sorting

6. Simulation
7. ODEs
8. Roots
9. Approximation Theory

10. Quadrature
11. Interpolation
12. Non-linear equations

A first set of general comments on our initial, perhaps näıve decisions are
appropriate. We had no long-term understanding of what we were getting into.

Clearly the numerical linear algebra came first. We stumbled over the statis-
tics. We had a continuous argument over many years, which intensified, as to
whether we should include major chapters of statistics in the Library, or direct
users to employ statistical packages. We learnt that both approaches were es-
sential. We were also slow to get the first statistical routines into use. Arguably
the sorting chapter should not have been included (although it has always been
heavily used). Random numbers have always been vital to the Library (described
above as “simulation”). We failed to grasp the PDE nettle. It would have been
the most challenging of all areas. Our failure to include PDEs set back their
library availability for years. ODEs were of much greater importance than their
initial placing suggests. This wrinkle in our planning was corrected by the prompt
response of our ODE colleagues in Manchester and elsewhere [33]. A number of
other areas were in their numerical infancy. At that time linear programming
was seen as a package activity. It was good from the beginning we sought to in-
clude routines. Graphics and Visualisation deserved early attention, which they
didn’t get.

After some initial research we recognised four categories of algorithmic cov-
erage for the mathematical areas addressed (26 of them!). Each chapter fell into
one of

General e.g. F02 (Eigenvalue problems)
Patchy e.g. D02 (ODEs), E04 (non-linear optimisation)
Spotty e.g. E02 (curve and surface fitting)
None e.g. D05 (integral equations).



78 Brian Ford

Our aim over the years was to move all chapters into general, as research
and resources permitted. The Classification we chose to name the chapters was
the Modified Share Classification Index. This choice was hard fought and would
take of paper of itself.

Number of Routines per Chapter of the Early Libraries
Chapter Names Marks of Library

1 2 3 4 5 6
A02 COMPLEX ARITHMETIC — 3 — — — —
C02 ZEROS OF POLYNOMIALS — — — 2 — —
C05 ROOTS OF TRANSCENDENTAL EQNS 3 2 — — — —
C06 SUMMATION OF SERIES — 3 — 1 — 1
D01 QUADRATURE — 2 4 — 3 —
D02 ODEs 2 2 2 — 1 —
D04 NUMERICAL DIFFERENTIATION — — — — 1 —
D05 INTEGRAL EQUATIONS — — — — 1 —
E01 INTERPOLATION 2 — 2 — — —
E02 CURVE AND SURFACE FITTING 1 — — — 5 3
E04 MIN (MAX) A FTN 4 4 — 5 2 23

Marks are releases of the Library. The addition of contents is cumulative
(except where stated otherwise). We had some ODE routines from the beginning.
The early non-linear optimisation routines were not modularised. At Mark 5
and 6 modularly constructed routines cross-calling linear algebra modules were
introduced.

Number of Routines per Chapter of the Early Libraries
Chapter Names Marks of Library

1 2 3 4 5 6
F01 COMPLEX ARITHMETIC 2 29 11 0 2 6
F02 EIGENVALUES AND EIGENVECTORS 10 8 3 — 3 1
F03 DETERMINANTS 4 4 2 — — 1
F04 SIMULTANEOUS LIN. EQNS — 13 2 3 1 1
F05 ORTHOGONALISATION — — — — 1 1
G01 SIMPLE CALLS ON STATS DATA — — — 3 — —
G02 CORRELATION AND REGRESSION ANL — — — 25 — —
G04 ANL OF VARIANCE — — 1 — — —
G05 RANDOM NUMBER GNRTS 24 — 2 — — 26

First the eigenvalue routines (F02) were introduced and then the solution
of simultaneous linear equations (F04). Except for the Random Numbers the
introduction of statistical routines was very slow.
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Number of Routines per Chapter of the Early Libraries
Chapter Names Marks of Library

1 2 3 4 5 6
H OPERATIONS RESEARCH 2 — 2 2 — —

M01 SORTING 16 — 4 — — —
P01 ERROR TRAPPING 1 — — — — —
S APPROX OF SPECIAL FTNS 8 1 3 8 7 —

X01 MATHEMATICAL CONSTANTS — — — — 2 —
X02 MACHINE CONSTANTS — — — — 9 —
X03 INNERPRODUCTS — — — — 2 —

TOTALS 82 71 36 49 40 64

A fabulous effort by Dr Lawrie Schonfelder of Birmingham University created
a methodology for the preparation and generation of portable special function
routines (S chapter) [32].

Over 340 new routines were prepared and included in the first six years (and
first six releases) of the Library.

7 Comments on the chapter contents developed

C05 Solution of Polynomial equations. This was a challenge area amongst numer-
ical analysts but infrequently used.

C06 There was a significant demand for Fast Fourier Transforms. Work here led
to the enlargement of our concept of algorithm.

D01 Quadrature was a specialist demand area. This led to an amazing contribu-
tion group centred on Queens University Belfast and excellent collaboration
with the University of Leuven. Led by O’Hara and Patterson at different
times, the group met at Queen’s University, Belfast throughout the troubles
in Northern Ireland and contained within it a complete political spectrum
of views. Quadrature was the only topic we could all talk about. There was
also an exemplary collaboration with de Doncker and Piessens centred on
QUADPACK [29].

D02 After outstanding initial contributions in ODEs, specifically from Manch-
ester, the team there led a world-wide collaborative group, with original
work completed in shooting methods and the method of lines (see the case
study below).

D05 Initially there was no software in the Solution of Integral Equations. Rela-
tions grew with George Symm and his colleagues at NPL [22].
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E02 My own puny efforts using a mini-max polynomial to fit a set of points en-
couraged Geoff Hayes and Maurice Cox and their colleagues at NPL to take
on leadership of the chapter (see the case study below).

E04 Early routines included the ubiquitous Simplex Method of Nelder and Mead
[28], and a conjugate direction algorithm of Fletcher and Powell [11]. The
contact with John Nelder led to much joint work and projects in Compu-
tational Statistics during the next thirty years. Ultimately, Walter Murray
and Philip Gill of NPL co-ordinated the contribution [17].

F02 and F04 The numerical linear algebra chapters enjoyed the great input and
influence of Jim Wilkinson and his colleagues. Linda Hayes and her col-
leagues completed an excellent translation of the Handbook Algol 60 codes
[36] into Fortran, first for the eigenvalue problem and then for simultaneous
linear equations. We also developed invaluable relations with the EISPACK
team and other colleagues at Argonne National Laboratory (see the case
study below).

G04 This was the only area where the offered software failed to meet our own
agreed standards. This delayed availability of software for two years and ex-
acerbated the arguments between subroutine and package exponents within
the contribution group.

G05 The Random number package by Henry Neave was a major building block
of the early libraries. It was replaced after four years by work spearheaded
by Nick MacLaren [25–27].

H The Programming chapter had a slow start, initially including the LP sim-
plex method [6] and a quadratic programming solver subject to linear con-
straints.

P01 The systematic error reporting from the Library routines, fundamentally de-
pendent on the Library Documentation, was one of the immediate successes
of the NAG Library, creating great user confidence.

S Lawrie Schonfelder (and colleagues) had the awesome responsibility of gen-
erating full machine precision approximations for the commonly used special
functions (defined by the “Handbook of Special Functions” by Abramowitz
and Stegun [1]). This he achieved progressively over the early marks of the
Library [31].

X02 Once the issue of the portability of numerical software was grasped, the study
of machine characteristics and their parameterisation in numerical software
became a research study. Finally a set of parameters was chosen for the
Library [13].
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8 Chapter subdivisions

Within each overall chapter we were looking for subdivisions into different prob-
lem types. This was important when selecting algorithms for inclusion in the
Library. In linear algebra we had eigensolution and simultaneous equations, and
then in each section real symmetric, real, hermitian, and complex matrices so
that linear algebra problems truly subdivided into individual problem types re-
quiring an identifiable individual algorithm. Problem types in non-linear opti-
misation could only be partially identified.

Non−linear Optimisation Problem

ConstrainedUnconstrained

direct

search
vector

calculate calculate
gradient

vector and
Hessian

univariate
gradient

Fig. 1 Classification of the chapters, optimisation example.

Beginning with the separation into unconstrained and constrained, we could
then classify the problem type by the information available to compute the
objective function. But amongst all problems solved by direct search techniques,
could not subtypes be found, defined by the mathematical characteristics of the
objective function? And then select the best algorithm for each subtype? That
was the aim.

9 Library contribution

In building the Library we were and are fundamentally dependent on our individ-
ual Chapter Contributors. The selection of algorithms for inclusion in the Library
is a fundamental task with far-reaching consequences and implications. Initially
we divided the responsibilities between the co-operating centres as shown in the
table below, on the basis of local expertise and the desire to achieve complete ini-
tial coverage of the chosen material. In some areas chapter leadership remained
with the original contributing centre whilst for others it soon passed to more
expert hands.



82 Brian Ford

Chapter Contents Collating Centre Test Centre
F01-F05 Linear Algebra Oxford Nottingham
G01-G04 Statistics

–Statistical routines Manchester Birmingham
–BMD programs Nottingham Birmingham

E04 Non-linear Optimisation Leeds Manchester
S Special Functions Birmingham Manchester
M Sorting Birmingham Manchester

G05 Simulation Nottingham Manchester
D02 ODEs Manchester Oxford
C05 Roots Atlas Leeds
E02 Approximation Theory Nottingham Leeds
D01 Quadrature Atlas Oxford
H Programming Manchester Birmingham

E01 Interpolation Nottingham Leeds
C05 Non-linear Equations Leeds Nottingham

The activity in linear algebra worked like a dream, with close collaboration
between Linda Hayes and colleagues in Oxford and Jim Wilkinson and his group
at NPL. In Statistics we soon dropped the BMD programs. We were so grateful
for so many wonderful colleagues (particularly Linda Hayes, Shirley Lill and
Joan Walsh) who simply put their heads down, and worked!

As the success of the activity became clear a series of workshops were organ-
ised, following which individual chapter groups were formed and group leaders
recognised (or particular research groups). Each chapter contributor defined the
sub-structuring of their chapter and selected the algorithmic contents accord-
ingly. As each was an expert numerical analyst (or statistician) in the particular
area, they knew the currently available algorithms, what was inadequate, who
was working in the given sub-fields and what was involved in developing new
algorithms to fill holes. These contributors were and are voluntary and unpaid.
Their interest in involvement was to drive their area forward, broaden their
own contacts and expertise, see their work used and the increased reference and
published use of their algorithms.

10 Three chapter case studies

10.1 Numerical linear algebra

The numerical linear algebra was crucial to the Library activity. Oxford com-
pleted the translation of the Handbook for Linear Algebra Algol 60 codes [36]
into Fortran. The NATS EISPACK project at Argonne National Laboratory did
the same [32]. Jim Wilkinson gave his blessing to the NAG Library project and
committed to work with us. This he did for the rest of his life.
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Jim appreciated the difference between Numerical Analysis, Algorithm De-
sign and Software Implementation, and valued all three. He believed in co-
operation and collaboration, and valued critical analysis of his own work. We
shared with him a philosophy of excellence, in every phase of numerical soft-
ware creation. Jim introduced me, and other members of NAG to the group at
Argonne, to EISPACK [32] and LINPACK [8], and to other numerical linear
algebraists in North America and Europe. The reaction everywhere was “if it’s
good enough for Jim, it’s good enough for me!”

The Linear Algebra Working Party, chaired by Jim, met regularly from 1972
at NPL. It worked filling in the holes in the numerical linear algebra offering,
planned the inclusion and development of the BLAS [9, 10, 19]in the Library,
prepared input from and for the LINPACK project, collaborated with John
Reid (a member of the working party) in the inclusion of sparse matrix software
and regularly updated the existing Library contents.

Jim gave us his backward error analysis [34], his understanding of algorithm
stability, the Handbook in Linear Algebra with Reinsch [36] and input designing
basic linear algebra modules for use throughout the Library. Wilkinson was a
welcoming and friendly man with everyone, a natural collaborator.

10.2 Curve and surface fitting, and interpolation

Geoff Hayes took charge of the E02 contribution. First the polynomial and spline
routines already in Algol 60 were translated into Fortran. Their software was
built on Clenshaw’s work in Chebyshev polynomials [3] and Wilkinson’s linear
algebra [36]. All contributions were supported by floating-point error analyses
(except for least squares polynomials!). Later there were new algorithms for B-
splines [5] mirroring the work of de Boor [7], and basic algorithms for differenti-
ation and integrating polynomials and splines. The contributions were validated
by Ian Gladwell whom Maurice Cox described as “a hard task Master”. They
had a number of fiery meetings and correspondence. His mature view (twenty
years later!) was that “I’m glad we took the criticism. The resulting code and
documentation was much improved”.

10.3 Ordinary differential equations

Joan Walsh was the only experienced numerical analyst in the NAG founding
Group. She took responsibility for the ODEs and gave us much excellent software
from the inception of the Library. Exhaustive testing was a great feature of the
Manchester Group (George Hall, Ian Gladwell and David Sayers with Joan). At
the first meeting on ODE contents at Manchester, during a discussion of Shooting
Methods for Boundary Value problems, Fox made clear his great distrust of
computers, and why fundamentally he would not use them!

An ODE meeting was arranged at Argonne National Laboratory hosted by
George Byrne and including Bill Gear, Alan Hindemarsh, Tom Hull, Fred Krogh,
Larry Shampine and Marilyn Gordan. It discussed and largely agreed issues
of shared technical vocabulary, testing regimes and identification of problem
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types. The ODE groups at Manchester and Toronto had close technical relations,
particularly on testing.

11 Types of Library Software

The majority of user requirements were met with three types of software.

Type Function Example

Problem solver one routine call to
solve a problem

Solution of set of simultaneous,
real linear equations

Primary routine each routine con-
tains one major al-
gorithm

LU factorization

Basic module basis numerical
utility designed for
contributors use

extended precision inner-product

12 Library construction and operation — the NAG
Library Machine

For the outline of the NAG Library Machine see Figure 2.
From the outset preparation of the Library, taking it through all its stages

to its ultimate use, by users, was a substantial collaboration by tens, then quite
quickly hundreds of people, the vast majority of whom worked together com-
pletely voluntarily, without payment. I called this team and process “The NAG
Library Machine” [14].

13 Issues of numerical software portability

Within weeks of distributing our first NAG Library, the NAG ICL 1906A Mark 1
Library (on 30th September 1971) Manchester Regional Computing Centre
(which had both an ICL 1906A and CDC 7600 computers) was asking for a “7600
copy”. Cambridge University soon joined asking for an IBM version. These ma-
chines had different bases of floating-point representation, different word lengths
and different overflow/underflow thresholds. We were immediately immersed in
the twin problems of algorithmic and software portability.

Recognising and ultimately solving these issues of portability was one of the
greatest achievements of the NAG Library project. It was a real contribution
to scientific and technical computing [18]. We also recognised the problems of
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Validation

Implementation

Distribution
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Contribution

The "Machine"

Users

Fig. 2 The NAG Library Machine

computing language dialects and overcame these by using strict language subsets
[30]. Our aim was routines, running to prescribed efficiency and accuracy on all
the machines to which we took the Library, with the routines in the many ver-
sions virtually unchanged [15]. We needed and developed adaptable algorithms
realised as transportable (later called portable) subroutines.

14 NAG Library Conceptual Machine

Our Contributors wished to write a single routine, which would be tailored au-
tomatically to perform to required accuracy and efficiency on every computing
configuration to which the routine was carried. As a basis for the development
of all NAG software we defined a simple model of the numerical and related
features of any computer, relevant to the execution and performance of the soft-
ware. We parameterised this model, and developed all numerical software based
on this model [13].

So the conceptual machine was described in terms of these parameters, for ex-
ample overflow threshold, base of floating-point number representation – sradix
is 16 for the IBM 360, 2 for the CDC 7600. Hence the Contributor designed
their algorithm and wrote the routine using the parameters of the conceptual
machine. The algorithm and routine were then tailored for a particular machine
by the choice of values for the parameters. The Contributor provided an im-
plementation test for each routine to demonstrate its correct working in each
separate environment.
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15 Models of portability for numerical software

There were Numerical Software Portability Wars in the early and middle 1970s.
One group sought portability through use of a single commonly used high quality
computer arithmetic. Another group wanted software portability so that user
programs could move easily between different computing configurations. Both
groups were correct in their desires and objectives and were ultimately successful.
Cody, Kahan and colleagues prepared the IEEE Arithmetic Standard [23, 21]
and saw it adopted by the majority of world computing systems (particularly
those for scientific computing). We, as part of the software group, knew we had
succeeded when Kahan said to me in 1976 “Brian, we’re all writing portable
numerical software now!”

16 NAG Library Manual

For NAG the user documentation was and is always as important as the software
it supports. It needs to cater for different levels of mathematical and computing
knowledge and experience in its users. Further the documentation mirrors the
issues addressed by the software, handling the evolution of Library contents
(updating), supporting the software on many different computer ranges and has
the same chapter structure in the manual as in the Library. The challenge of
“portable documentation/information for portable software” was only finally
met by the NAG Library Engine in the late 1990s.

To meet these requirements the manual is document-based. Each chapter
starts with a substantial introduction with four distinct elements:

1. Background information on subject area
2. Recognition of problem type
3. Recommendation on choice and use of routine
4. Flow chart guide to selection of routine.

There is then a separate routine document for each routine in the chapter,
which describes all aspects of the routine and its use under 13 headings, including
an example program with input data and results. Each routine and its routine
document have the same name.

In its day the NAG Manual was an international success. Later it was felt to
be too big, even cumbersome.

17 Software testing

There were and are at least six different types of testing for Library Development.

1. Algorithm selection (Contributor and Validator)
2. Stringent testing (assembly)
3. Language standards compliance (assembly)
4. Implementation testing (Implementation)
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5. Example programs
6. Automatic results comparison.

All are important in different phases of Library preparation. Along with the
standards, the testing is what brought the Library its high quality (and high
quality name).

Each contributor has their own independent test suite for algorithm testing
and selection. Each validator has their own set too! The codes for the stringent
testing of the software are selected by the contributors, and as a collection of
software is bigger than the Library code itself! Automatic results comparison
became an art and a science in its own right.

18 Algorithm testing

The algorithm testing by each contributor was paramount.

Linear algebra. Wilkinson set the standard for the activity with an error anal-
ysis for each algorithm including detailed stability analysis, and studying the
effects of overflow and underflow. He used these to choose Householder transfor-
mations for the QL algorithm. Brian Smith in EISPACK used backward error
analysis tests to check for algorithm portability and software consistency.

Special functions. Kuki and Cody did comparable analysis preparing approx-
imations to elementary and special function. There were no backward errors and
Cody could not compute forward errors (without a massively expensive multi-
precision facility-which would have blown models of portability.) Cody “tested
the corners of his special functions using his Elefunt system”. He was the first
to use mathematical identities to check the correctness of computed results [4].

Quadrature. Valerie Dixon noted at the Software for Numerical Mathematics
Conference at Loughborough in 1972 “Now that many good automatic routines
are available the problem of comparing them all will become extremely difficult
unless the procedure for testing each new routine is standardised”. As the field
developed, Lyness showed the ultimate ineffectiveness of this approach. He did
similar work to Cody, which resulted in showing the gaps and limitations in
evaluating algorithms in quadrature. Lyness commented “it is easier to develop 3
new quadrature algorithms than establish that your existing algorithm is giving
“correct” results”. “You could always construct a function that would defeat
a given quadrature rule”. These experiences led Lyness to his seminal idea of
creating performance profiles for quadrature algorithms [24], later applied in
other fields of numerical analysis. This underlines the need for care and artful
judgement in specifying for which integrand type a particular algorithm is used.
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ODEs. The careful testing by Walsh and Gladwell in selection of their first
general-purpose initial value solver was mentioned above. Their reference was
to “Comparing numerical methods for ODEs”, Hull, Enright et al [1972] [20].
The work continues today. The ODE community has maintained a tradition of
careful public analysis of competing algorithms.

19 Validation and library assembly

Validation involves the certification of algorithm selection and user documenta-
tion of a particular chapter contribution. The activity is invariably based on an
additional test suite. Validation of another’s software and documentation is still
a great way to make friends!

Library assembly is the work of many individuals. It is the point at which the
software instantiation of a particular algorithm is thoroughly tested. It is where
inconsistency and confusion of agreed standards is removed, and common stan-
dards in software and documentation enforced. Hence any diversity in algorithm
design and software development is “ironed out” and a unified style created.
Where-ever possible, standards are machine proven, using specific software tools
created for these purposes. Inevitably some checking is by hand for example
checking that the relevant chapter design is being followed and that subroutine
interfaces follow general Library structure.

20 Software certification

A sophisticated set of software tools, to insure consistency and reliability of the
contributed software was prepared, or “borrowed” to complete the certification
process. These tools, together with the language compilers were and are:

1. Diagnosing a coding error (algorithmic or linguistic)
2. Altering a structural property of the text (e.g. ordering of Fortran state-

ments)
3. Standardising appearance
4. Standardising nomenclature
5. Conducting dynamic analysis (e.g. branch analysis)
6. Ensuring adherence to language standards
7. Changing operational properties (e.g. generate double-precision version)
8. Coping with arithmetic, dialect etc. between computing configurations.

Then there was an initial implementation check on ICL 1900(48 bit), IBM (4/8
byte) and CDC 7600(60 bit) with stringent, implementation and example pro-
grams to certify accuracy, efficiency and effectiveness.

The Mark 6 Library = Mark 5 Library + 64 new routines!



Memoires on building a general purpose numerical algorithms library 89

21 Implementation and distribution to sites

At Mark 5 there were 44 different implementations of the Fortran Library and 16
in Algol 60. Currently at Mark 21 in 2008 there are 78 different implementations
of the Fortran Library and 39 of the equivalent C Library.

The Library in its many implementations has been distributed to thousands
of different using sites during the last 37 years. A modified programme of imple-
mentation, distribution and support continues today. The Numerical Algorithms
Group (NAG) is very much alive, building Libraries and serving the Scientific
Computing Community.

22 Operational principles

. Consultation: Library for users
Library Machine helps all its parts

. Collaboration: gives access to required resources

. Co-ordination: parallel, independent development in unified
structure

. Planning: overall design of individual chapter contents

. Mechanisation: minimises costs, whilst giving most reliable
software processing

23 Conclusions

The building of the NAG Library, and similar library ventures, led to the de-
signing of scalable numerical algorithms and portable numerical software.

With related technical developments (IEEE arithmetic, visualisation and
symbolic computing) they resulted in a great flowering of Computational Sci-
ence, Engineering, Economics, Finance and Medicine.

Fundamental to all of this was the underpinning Numerical Mathematics,
Numerical Analysis and Numerical Software.

A similar spirit of collaboration continues in NAG today.

Acknowledgments to the hundreds of collaborators in the NAG Library project
over the years, who made it all possible, and to Drs Adhemar Bultheel and
Ronald Cools for such a delightful meeting in Leuven, Belgium.
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Abstract. In this paper we analyze major recent trends and changes in
High Performance Computing (HPC). The introduction of vector com-
puters started the area of “Supercomputing”. The initial success of vector
computers in the seventies was driven by raw performance. Massive Par-
allel Processors (MPPs) became successful in the early nineties due to
their better price/performance ratios, which was enabled by the attack
of the “killer-micros”. The success of microprocessor based Symmetric
MultiProcessor (SMP) concepts even for the very high-end systems, was
the basis for the emerging cluster concepts in the early 2000’s. Within the
first half of this decade clusters of PC’s and workstations have become
the prevalent architecture for many HPC application areas on all ranges
of performance. However, the Earth Simulator vector system demon-
strated that many scientific applications can benefit greatly from other
computer architectures. At the same time there is renewed broad inter-
est in the scientific HPC community for new hardware architectures and
new programming paradigms. The IBM BlueGene/L system is one early
example of a shifting design focus for large-scale system.

Key Words: High Performance Computing, HPC, Supercomputer Market, HPC
technology, Supercomputer market, Supercomputer technology

1 Introduction

“The Only Thing Constant Is Change” – Looking back on the last four decades
this seems certainly to be true for the market of High Performance Computing
systems (HPC). This market was always characterized by a rapid change of
vendors, architectures, technologies and the usage of systems. Despite all these
changes the evolution of performance on a large scale however seems to be a
very steady and continuous process. Moore’s Law is often cited in this context.
If we plot the peak performance of various computers of the last six decades in
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Fig. 1 which could have been called the “supercomputers” of their time [2, 4] we
indeed see how well this law holds for almost the complete lifespan of modern
computing. On average we see an increase in performance of two magnitudes of
order every decade.

Fig. 1 Performance of the fastest computer systems for the last six decades
compared to Moore’s Law.

In this paper we analyze recent major trends and changes in the HPC market.
For this we focus on systems, which had at least some commercial relevance. This
paper extends a previous analysis of HPC market in [6]. Historical overviews with
different focus can be found in [8, 9]. Section 2 summarizes our earlier finding
[6]. Section 3 analyzes the trend in the first half of this decade and section 4
projects our finding into the future.

The initial success of vector computers in the seventies was driven by raw
performance. The introduction of this type of computer systems started the area
of “Supercomputing”. In the eighties the availability of standard development
environments and of application software packages became more important. Next
to performance these criteria determined the success of MP vector systems es-
pecially at industrial customers. MPPs became successful in the early nineties
due to their better price/performance ratios, which was enabled by the attack of
the “killer-micros”. In the lower and medium market segments the MPPs were
replaced by microprocessor based SMP systems in the middle of the nineties. To-
wards the end of the nineties only the companies which had entered the emerging
markets for massive parallel database servers and financial applications attracted
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enough business volume to be able to support the hardware development for the
numerical high end computing market as well. Success in the traditional float-
ing point intensive engineering applications was no longer sufficient for survival
in the market. The success of microprocessor based SMP concepts even for the
very high-end systems was the basis for the emerging cluster concepts in the
early 2000s. Within the first half of this decade clusters of PC’s and worksta-
tions have become the prevalent architecture for many application areas in the
TOP500 on all ranges of performance. However, the Earth Simulator vector
system demonstrated that many scientific applications can benefit greatly from
other computer architectures. At the same time there is renewed broad interest
in the scientific HPC community for new hardware architectures and new pro-
gramming paradigms. The IBM BlueGene/L system is one early example of a
shifting design focus for large-scale system. The IBM Roadrunner system at Los
Alamos National Laboratory reached the Petaflops threshold in June 2008.

2 A short history of supercomputers

In the second half of the seventies the introduction of vector computer systems
marked the beginning of modern supercomputing. These systems offered a per-
formance advantage of at least one order of magnitude over conventional systems
of that time. Raw performance was the main if not the only selling argument.
In the first half of the eighties the integration of vector systems in conventional
computing environments became more important. Only the manufacturers which
provided standard programming environments, operating systems and key appli-
cations were successful in getting industrial customers and survived. Performance
was mainly increased by improved chip technologies and by producing shared
memory multiprocessor systems.

Fostered by several Government programs massive parallel computing with
scalable systems using distributed memory got into the center of interest at the
end of the eighties. Overcoming the hardware scalability limitations of shared
memory systems was the main goal for their development. The increase of per-
formance of standard micro processors after the RISC revolution together with
the cost advantage of large scale productions formed the basis for the “Attack
of the Killer Micro”. The transition from ECL to CMOS chip technology and
the usage of “off the shelf” micro processor instead of custom designed proces-
sors for MPPs was the consequence. Traditional design focus for MPP system
was the very high end of performance. In the early nineties the SMP systems
of various workstation manufacturers as well as the IBM SP series, which tar-
geted the lower and medium market segments, gained great popularity. Their
price/performance ratios were better due to the missing overhead in the design
for support of the very large configurations and due to cost advantages of the
larger production numbers. Due to the vertical integration of performance it
was no longer economically feasible to produce and focus on the highest end of
computing power alone. The design focus for new systems shifted to the market
of medium performance systems.
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The acceptance of MPP systems not only for engineering applications but also
for new commercial applications especially for database applications emphasized
different criteria for market success such as stability of system, continuity of
the manufacturer and price/performance. Success in commercial environments
became a new important requirement for a successful supercomputer business
towards the end of the nineties. Due to these factors and the consolidation in
the number of vendors in the market hierarchical systems built with components
designed for the broader commercial market replaced homogeneous systems at
the very high end of performance. The marketplace adopted clusters of SMPs
readily, while academic research focused on cluster of workstations and PCs.

3 2000-2005: Cluster, Intel processors, and the Earth
Simulator

In the early 2000’s clusters built with of the shelf components gained more and
more attention not only as academic research objects but also computing plat-
forms with end-users of HPC computing systems. By 2004 these group of clusters
represent the majority of new systems on the TOP500 in a broad range of ap-
plication areas. One major consequence of this trend was the rapid rise in the
utilization of Intel processors in HPC systems. While virtually absent in the
high end at the beginning of the decade, Intel processors are now used in the
majority of HPC systems. Clusters in the nineties were mostly self-made system
designed and built by small groups of dedicated scientist or application experts.
This changed rapidly as soon as the market for clusters based on PC technology
matured. Nowadays the large majority of TOP500-class clusters are manufac-
tured and integrated by either a few traditional large HPC manufacturers such
as IBM or HP or numerous small, specialized integrators of such systems.

In 2002 a system called “Computnik” with a quite different architecture, the
Earth Simulator, entered the spotlight as new #1 system on the TOP500 and
it managed to take the U.S. HPC community by surprise even though it had
been announced 4 years earlier. The Earth Simulator built by NEC is based on
the NEC vector technology and showed unusual high efficiency on many applica-
tions. This fact invigorated discussions about future architectures for high-end
scientific computing systems. A first system built with a different design focus
bust still with mostly conventional off the shelf components is the BlueGene/L
system. Its design focuses on a system with an unprecedented number of pro-
cessors using a power efficient design while sacrificing main memory size

3.1 Explosion of cluster based system

By the end of the nineties clusters were common in academia but mostly as
research objects and not so much as computing platforms for applications. Most
of these clusters were of comparable small scale and as a result the November
1999 edition of the TOP500 listed only 7 cluster systems. This changed dramati-
cally as industrial and commercial customer started deploying clusters as soon as
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their applications permitted to take advantage of the better price/performance
ratio of commodity based clusters. At the same time all major vendors in the
HPC market started selling this type of clusters fully integrated to their cus-
tomer base. In November 2004 clusters became the dominant architecture in
the TOP500 with 294 systems at all levels of performance (see Fig. 2). Compa-
nies such as IBM and Hewlett-Packard sell the majority of these clusters and a
large number of them are installed at commercial and industrial sites. To some

Fig. 2 Main architectural categories seen in the TOP500 (the term Constella-
tions refers to clusters of SMPs).

extent, the reasons for the dominance of commodity-processor systems are eco-
nomic. Contemporary distributed —memory supercomputer systems based on
commodity processors (like Linux clusters) appear to be substantially more cost
effective— roughly an order of magnitude-in delivering computing power to ap-
plications that do not have stringent communication requirements. On the other
hand, there has been little progress, and perhaps regress, in making scalable
systems easy to program. Software directions that were started in the early 80’s
(such as CMFortran and High Performance Fortran) were largely abandoned.
The payoff to finding better ways to program such systems and thus expand the
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domains in which these systems can be applied would appear to be large. The
move to distributed memory has forced changes in the programming paradigm
of supercomputing. The high cost of processor-to-processor synchronization and
communication requires new algorithms that minimize those operations. The
structuring of an application for vectorization is seldom the best structure for
parallelization on these systems. Moreover, despite some research successes in
this area, without some guidance from the programmer, compilers are generally
able neither to detect enough of the necessary parallelism, nor to reduce suffi-
ciently the inter-processor overheads. The use of distributed memory systems has
led to the introduction of new programming models, particularly the message
passing paradigm, as realized in MPI, and the use of parallel loops in shared
memory subsystems, as supported by OpenMP. It also has forced significant
reprogramming of libraries and applications to port onto the new architectures.
Debuggers and performance tools for scalable systems have developed slowly,
however, and even today most users consider the programming tools on parallel
supercomputers to be inadequate. Fortunately, there are a number of choices of
communication networks available in addition; there is generally a large differ-
ence in the usage of clusters and their more integrated counterparts: clusters
are mostly used for capacity computing while the integrated machines primarily
are used for capability computing. The first mode of usage meaning that the
system is employed for one or a few programs for which no alternative is readily
available in terms of computational capabilities. The second way of operating a
system is in employing it fully by using the most of its available cycles by many,
often very demanding, applications and users. Traditionally, vendors of large su-
percomputer systems have learned to provide for this last mode of operation as
the precious resources of their systems were required to be used as effectively as
possible. By contrast, Beowulf clusters are mostly operated through the Linux
operating system (a small minority using Microsoft Windows) where these oper-
ating systems either miss the tools or these tools are relatively immature to use
a cluster well for capacity computing. However, as clusters become on average
both larger and more stable, there is a trend to use them also as computational
capacity servers.

3.2 Intel-ization of the processor landscape

The HPC community had started to use commodity parts in large numbers in
the nineties already. MPPs and Constellations (the term Constellations refers
to cluster of SMPs) are typically using standard workstation microprocessors,
even so they still might use custom interconnect systems. There was however one
big exception, virtually nobody used Intel microprocessors. Lack of performance
and the limitations of a 32 bit processor design were the main reasons for this.
This changed with the introduction of the Pentium 3 and especially in 2001 with
the Pentium 4, which featured greatly improved memory performance due to its
front-side bus and full 64bit floating point support. The number of systems in
the TOP500 with Intel processors exploded from only 6 in November 2000 to
375 in June 2008 (Fig. 3).
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Fig. 3 Main processor families seen in the TOP500.

3.3 The Earth Simulator shock

The Earth Simulator (ES) was conceived, developed, and implemented by Ha-
jime Miyoshi. Dr. Hajime Miyoshi is regarded as the Seymour Cray of Japan.
Unlike his peers, he seldom attended conferences or gave public speeches. How-
ever, he was well known within the HPC community in Japan for his involvement
in the development of the first Fujitsu supercomputer in Japan, and later on of
the Numerical Wind Tunnel (NWT) at NAL. In 1997 he took up his post as the
director of the Earth Simulator Research & Development Center (ESRDC) and
led the development of the 40 Tflop/s Earth Simulator, which would serve as a
powerful computational engine for global environmental simulation.

Prior to the ES, global circulation simulations were made using a 100km
grid width although ocean-atmospheric interactive analyses were not performed.
To get quantitatively good predictions for the evaluation of environmental ef-
fects may require grid width of at most 10 km or 10 times finer meshes in x, y
and z directions and interactive simulation. Thus a supercomputer 1000 times
faster and larger than a 1995 conventional supercomputer might be required.
Miyoshi investigated whether such a machine could be built in the early 2000s.
His conclusion was that it could be realized if several thousand of the most ad-
vanced vector supercomputers of approximately 10 Gflop/s speed were clustered
using a very high-speed network. He forecasted that extremely high-density LSI
integration technology, high-speed network (crossbar) technology, as well as an
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efficient operating system and Fortran compiler all could be developed within the
next several years. He thought only a strong initiative project with government
financial support could realize this kind of machine.

The machine was completed in February, 2002 and presently the entire sys-
tem continues to be used as an end user service. He supervised the development
of NWT Fortran as the leader of NWT project and organized HPF (High Per-
formance Fortran) Japan Extension Forum, which is used on the ES. He knew
that a high-level vector/parallel language is critical for such a supercomputer.

The launch of the Earth Simulator created a substantial amount of concern
in the U.S. that it had lost the leadership in high performance computing. While
there was certainly a loss of national pride for the U.S. not to be first on a list of
the world’s fastest supercomputers, it is important to understand the set of issues
that surround that loss of leadership. The development of the ES represents a
large investment (approximately $500M, including a special facility to house the
system) and a large commitment over a long period of time. The U.S. has made
an even larger investment in HPC in the DOE Advanced Strategic Computing
(ASC) program, but the funding has not been spent on a single platform. Other
important differences are:

– ES was developed for basic research and is shared internationally, whereas
the ASC program is driven by national defense and the systems have re-
stricted domestic use.

– A large part of the ES investment supported NEC’s development of their
SX-6 technology. The ASC program has made only modest investments in
industrial R&D.

– ES uses custom vector processors; the ASC systems use commodity proces-
sors.

– The ES software technology largely originates from abroad – although it
is often modified and enhanced in Japan. For example, significant ES codes
were developed using a Japanese enhanced version of HPF. Virtually all
software used in the ASC program has been developed by the U.S.

Surprisingly, the Earth Simulator’s number one ranking on the TOP500 list
was not a matter of national pride in Japan. In fact, there is considerable resent-
ment of the Earth Simulator in some sectors of research communities in Japan.
Some Japanese researchers feel that the ES is too expensive and drains critical
resources from other science and technology projects. Due to the continued eco-
nomic crisis in Japan and the large budget deficits, it is getting more difficult to
justify government projects of this kind.

3.4 New architectures on the horizon

Interest in novel computer architectures has always been large in the HPC com-
munity, which comes at little surprise, as this field was borne and continues to
thrive on technological innovations. Some of the concerns of recent years were
the ever-increasing space and power requirements of modern commodity based
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supercomputers. In the BlueGene/L development, IBM addressed these issues
by designing a very power and space efficient system. BlueGene/L does not use
the latest commodity processors available but computationally less powerful and
much more power efficient processor versions developed mainly not for the PC
and workstation market but for embedded applications. Together with a drastic
reduction of the available main memory, this leads to a very dense system. To
achieve the targeted extreme performance level and unprecedented number of
these processors (up to 212,992) are combined using several specialized intercon-
nects.

There was and is considerable doubt whether such a system would be able
to deliver the promised performance and would be usable as a general-purpose
system. First results of the current beta-System are very encouraging and the
one-quarter size beta- System of the future LLNL system was able to claim the
number one spot on the November 2004 TOP500 list.

4 2005 and beyond

Three decades after the introduction of the Cray 1 the HPC market had changed
its face quite a bit. It used to be a market for systems clearly different from
any other computer systems. Today the HPC market is no longer an isolated
niche market for specialized systems. Vertically integrated companies produced
systems of any size. Components used for these systems are the same from an
individual desktop PC up to the most powerful supercomputers. Similar software
environments are available on all of these systems. This was the basis for a broad
acceptance at industrial and commercial customers.

The increasing market share of industrial and commercial installations had
several very critical implications for the HPC market. The manufacturers of su-
percomputers for numerical applications face in the market for small to medium
size HPC systems the strong competition of manufacturers selling their systems
in the very lucrative commercial market. These systems tend to have better
price/performance ratios due to the larger production numbers of systems ac-
cepted at commercial customers and the reduced design costs of medium size
systems. The market for the very high end systems itself is relatively small and
does not grow strongly if at all. It cannot easily support specialized niche market
manufacturers. This forces the remaining manufacturers to change the design for
the very high end away from homogeneous large scale systems towards cluster
concepts based on “off-the-shelf” components.

“Clusters” dominate as architecture in the TOP500. Some years ago in
November 1999 we had only 7 clusters in the TOP500 while in June 2008 the
list shows 400 cluster systems. At the same time the debate if we need new
architectures for very high end supercomputers has increased in intensity again.

Novel hybrid architectures are likely to appear in the TOP500 list. The
number one machine today, the IBM Roadrunner, is just such a system. The
Roadrunner is a hybrid design built from commodity parts. The system is com-
posed of two processor chip architectures, the IBM PowerXCell and the AMD
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Opteron which use Infiniband interconnect. The system can be characterized
as an Opteron based cluster with Cell accelerators. Each Opteron core has a
Cell chip (composed of 9 cores). The Cell chip has 8 vector cores and a conven-
tional PowerPC core. The vector cores provide the bulk of the computational
performance.

4.1 Dynamic of the market

The HPC market is by its very nature very dynamic. This is not only reflected
by the coming and going of new manufacturers but especially by the need to
update and replace systems quite often to keep pace with the general perfor-
mance increase. This general dynamic of the HPC market is well reflected in the
TOP500. In Fig. 4 we show the number of systems, which fall off the end of the
list within 6 month due to the increase in the entry level performance. We see
an average replacement rate of about 180 systems every half year or more than
half the list every year. This means that a system which is at position 100 at a
given time will fall off the TOP500 within 2-3 years. The June 2008 list shows
even a greater replacement with 301 systems being displaced from the previous
list.

Fig. 4 The replacement rate in TOP500 defined as number of systems omitted
because of their performance being too small.
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4.2 Consumer and producer

The dynamic of the HPC market is well reflected in the rapidly changing market
shares of the chip or system technologies, of manufacturers, customer types or
application areas. If we however are interested in where these HPC systems are
installed or produced we see a different picture.

Plotting the number of systems installed in different geographical areas in
Fig. 5 we see a more or less steady distribution. The number of systems installed
in the US is about half of the list, while the number of systems in Japan is slowly
decreasing. Europe has again started to acquire HPC systems as shown in Fig. 5.
While this can be interpreted as a reflection of increasing economical stamina
of these countries it also highlights the fact that it is becoming easier for such
countries to buy or even built cluster based systems themselves.

Fig. 5 The consumers of HPC systems in different geographical regions as seen
in the TOP500.

Fig. 6 shows the decrease in the number of HPC systems in Japan and an
initial use of such systems in China and India.

Looking at the producers of HPC system in Fig. 7 we see an even greater
dominance of the US, which actually slowly increases over time. European man-
ufacturers do not play any substantial role in the HPC market at all. Even
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Fig. 6 The consumers of HPC systems in Asia as seen in the TOP500.

the introduction of new architectures such as PC clusters has not changed this
picture.

4.3 Performance growth

While many aspects of the HPC market change quite dynamically over time,
the evolution of performance seems to follow quite well some empirical laws
such as Moore’s law mentioned at the beginning of this article. The TOP500
provides an ideal data basis to verify an observation like this. Looking at the
computing power of the individual machines presented in the TOP500 and the
evolution of the total installed performance, we plot the performance of the
systems at positions 1, 10, 100 and 500 in the list as well as the total accumulated
performance. In Fig. 8 the curve of position 500 shows on the average an increase
of a factor of 1.9 within one year. All other curves show a growth rate of 1.8 ±
0.05 per year.

4.4 Projections

Based on the current TOP500 data which cover the last thirteen years and
the assumption that the current performance development continue for some
time to come we can now extrapolate the observed performance and compare
these values with the goals of the mentioned government programs. In Fig. 9
we extrapolate the observed performance values using linear regression on the
logarithmic scale. This means that we fit exponential growth to all levels of
performance in the TOP500. These simple fitting of the data shows surprisingly
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Fig. 7 The producers of HPC systems as seen in the TOP500.

Fig. 8 Overall growth of accumulated and individual performance as seen in the
TOP500.
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Fig. 9 Extrapolation of recent growth rates of performance as seen in the
TOP500.

consistent results. In 1999 based on a similar extrapolation [6] we expected to
have the first 100 TFlop/s system by 2005. We also predicted that by 2005 also
no system smaller than 1 TFlop/s should be able to make the TOP500 any
longer. Both of these predictions are basically certain to be fulfilled next year.
Looking out another five years to 2010 we expected to see the first PetaFlops
system at about 2009 [6]. We hit the PetaFlop mark in 2008.

Looking even further in the future we could speculate that based on the cur-
rent doubling of performance every year the first system exceeding 100 Petaflop/s
should be available around 2015 and we should expect an Exaflop system in 2019.
Indeed we see an eleven year cycle of achieving three orders of magnitude in-
crease in performance. This has been true since 1986 with the first Gigaflop
system and in 1997 with the first Teraflop system and in 2008 with the first
Petaflop system.

Due to the rapid changes in the technologies used in HPC systems there
is however again no reasonable projection possible for the architecture of such
a system in ten years. Even as the HPC market has changed its face quite
substantially since the introduction of the Cray 1 four decades ago, there is no
end in sight for these rapid cycles of re-definition. And we still can say that in the
High Performance Computing Market “The Only Thing Constant Is Change”.
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Abstract. A survey of the development of algorithms for enforcing non-
negativity constraints in scientific computation is given. Special emphasis
is placed on such constraints in least squares computations in numerical
linear algebra and in nonlinear optimization. Techniques involving non-
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1 Historical comments on enforcing nonnegativity

Nonnegativity constraints on solutions, or approximate solutions, to numerical
problems are pervasive throughout science, engineering and business. In order
to preserve inherent characteristics of solutions corresponding to amounts and
measurements, associated with, for instance frequency counts, pixel intensities
and chemical concentrations, it makes sense to respect the nonnegativity so as
to avoid physically absurd and unpredictable results. This viewpoint has both
computational as well as philosophical underpinnings. For example, for the sake
of interprentation one might prefer to determine solutions from the same space,
or a subspace thereof, as that of the input data.

In numerical linear algebra, nonnegativity constraints very often arise in least
squares problems, which we denote as nonnegative least squares (NNLS). The
design and implementation of NNLS algorithms has been the subject of consid-
erable work the seminal book of Lawson and Hanson [45]. This book seems to
contain the first widely used method for solving NNLS. A variation of their algo-
rithm is available as lsqnonneg in Matlab. (For a history of NNLS computations
in Matlab see [75].)
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More recently, beginning in the 1990s, NNLS computations have been gen-
eralized to approximate nonnegative matrix or tensor factorizations, in order to
obtain low-dimensional representations of nonnegative data. A suitable represen-
tation for data is essential to applications in fields such as statistics, signal and
image processing, machine learning, and data mining. (See, e.g., the survey by
Berry et al. [8].) Low rank constraints on high dimensional massive data sets are
prevalent in dimensionality reduction and data analysis across numerous scien-
tific disciplines. Techniques for dimensionality reduction and feature extraction
include Principal Component Analysis (PCA), Independent Component Analy-
sis (ICA), and (approximate) Nonnegative Matrix Factorization (NMF).

In this paper we are concerned primarily with NNLS as well as NMF and
its extension to Nonnegative Tensor Factorization (NTF). A tensor can
be thought of as a multi-way array, and our interest is in the natural exten-
sion of concepts involving data sets represented by 2-D arrays to 3-D arrays
represented by tensors. Tensor analysis became immensely popular after Ein-
stein used tensors as the natural language to describe laws of physics in a way
that does not depend on the initial frame of reference. Recently, tensor analy-
sis techniques have become a widely applied tool, especially in the processing
of massive data sets. (See the work of Cichocki et al. [17] and Ho [32], as well
as the program for the 2008 Stanford Workshop on Modern Massive Data Sets
on the web page http://www.stanford.edu/group/mmds/.) Together, NNLS,
NMF and NTF are used in various applications which will be discussed and
referenced in this survey.

2 Preliminaries

We begin this survey with a review of some notation and terminology, some useful
theoretical issues associated with nonnegative matrices arising in the mathemat-
ical sciences, and the Karush-Kuhn-Tucker conditions used in optimization. All
matrices discussed are over the real numbers. For A = (aij) we write A ≥ 0 if
aij ≥ 0 for each i and j. We say that A is a nonnegative matrix. The notation
naturally extends to vectors, and to the term positive matrix.

Aspects of the theory of nonnegative matrices, such as the classical Perron-
Frobenius theory, have been included in various books. For more details the
reader is referred to the books, in chronological order, by Varga [83], by Berman
and Plemmons. [7], and by Bapat and Raghavan [1]. This topic leads naturally to
the concepts of inverse-positivity, monotonicity and iterative methods, and M-
matrix computations. For example, M-Matrices A have positive diagonal entries
and non-positive off-diagonal entries, with the added condition that A−1 is a
nonnegative matrix. Associated linear systems of equations Ax = b thus have
nonnegative solutions whenever b ≥ 0. Applications of M-Matrices abound in
numerical analysis topics such as numerical PDEs and Markov Chain analysis,
as well as in economics, operations research, and statistics, see e.g., [7, 83].

For the sake of completeness we state the classical Perron-Frobenious Theo-
rem for irreducible nonnegative matrices. Here, an n× n matrix A is said to be
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reducible if n ≥ 2 and there exists a permutation matrix P such that

PAPT =
[
B 0
C D

]
, (2.1)

where B and D are square matrices and 0 is a zero matrix. The matrix A is
irreducible if it is not reducible.

Perron-Frobenius theorem:

Let A be a n × n nonnegative irreducible matrix. Then there exists a real
number λ0 > 0 and a positive vector y such that

– Ay = λ0y.
– The eigenvalue λ0 is geometrically simple. That is, any two eigenvectors

corresponding to λ0 are linearly dependent.
– The eigenvalue λ0 is maximal in modulus among all the eigenvalues of A.

That is, for any eigenvalue µ of A, |µ| ≤ λ0.
– The only nonnegative, nonzero eigenvectors of A are just the positive scalar

multiplies of y.
– The eigenvalue λ0 is algebraically simple. That is, λ0 is a simple root of the

characteristic polynomial of A.
– Let λ0, λ1, . . . , λk−1 be the distinct eigenvalues of A with |λi| = λ0,

i = 1, 2, . . . , k − 1. Then they are precisely the solutions of the equation
λk − λk

0 = 0.

As a simple illustration of one application of this theorem, we mention that
a finite irreducible Markov process associated with a probability matrix S must
have a positive stationary distribution vector, which is associated with the eigen-
value 1 of S. (See, e.g., [7].)

Another concept that will be useful in this paper is the classical Karush-
Kuhn-Tucker conditions (also known as the Kuhn-Tucker or the KKT condi-
tions). The set of conditions is a generalization of the method of Lagrange mul-
tipliers.

Karush-Kuhn-Tucker conditions:

The Karush-Kuhn-Tucker (KKT) conditions are necessary for a solution in non-
linear programming to be optimal. Consider the following nonlinear optimization
problem:

Let x∗ be a local minimum of

minx f(x) subject to
{

h(x) = 0
g(x) ≤ 0

and suppose x∗ is a regular point for the constraints, i.e. the Jacobian of the
binding constraints at that point is of full rank. Then ∃ λ and µ such that
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∇f(x∗) + λT∇h(x∗) + µT∇g(x∗) = 0

µT g(x∗) = 0

h(x∗) = 0

µ ≥ 0.

(2.2)

Next we move to the topic of least squares computations with nonnegativity
constraints, NNLS. Both old and new algorithms are outlined. We will see that
NNLS leads in a natural way to the topics of approximate low-rank nonnegative
matrix and tensor factorizations, NMF and NTF.

3 Nonnegative least squares

3.1 Introduction

A fundamental problem in data modeling is the estimation of a parameterized
model for describing the data. For example, imagine that several experimental
observations that are linear functions of the underlying parameters have been
made. Given a sufficiently large number of such observations, one can reliably
estimate the true underlying parameters. Let the unknown model parameters be
denoted by the vector x = (x1, · · · , xn)T , the different experiments relating x be
encoded by the measurement matrix A ∈ Rm×n, and the set of observed values
be given by b. The aim is to reconstruct a vector x that explains the observed
values as well as possible. This requirement may be fulfilled by considering the
linear system

Ax = b,

where the system may be either under-determined (m < n) or over-determined
(m ≥ n). In the latter case, the technique of least-squares proposes to compute
x so that the reconstruction error

f(x) =
1
2
‖Ax− b‖2 (3.1)

is minimized, where ‖ · ‖ denotes the L2 norm. However, the estimation is not
always that straightforward because in many real-world problems the underlying
parameters represent quantities that can take on only nonnegative values, e.g.,
amounts of materials, chemical concentrations, pixel intensities, to name a few. In
such a case, problem (3.1) must be modified to include nonnegativity constraints
on the model parameters x. The resulting problem is called Nonnegative Least
Squares (NNLS), and is formulated as follows:
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NNLS problem:

Given a matrix A ∈ Rm×n and the set of observed values given by b ∈ Rm, find
a nonnegative a vector x ∈ Rn to minimize the functional f(x) = 1

2‖Ax− b‖2,
i.e.

min
x

f(x) =
1
2
‖Ax− b‖2,

subject to x ≥ 0.
(3.2)

The gradient of f(x) is ∇f(x) = AT (Ax− b) and the KKT optimality
conditions for NNLS problem (3.2) are

x ≥ 0
∇f(x) ≥ 0 (3.3)

∇f(x)T x = 0.

Some of the iterative methods for solving (3.2) are based on the solution of
the corresponding linear complementarity problem (LCP).

Linear Complementarity Problem:

Given a matrix A ∈ Rm×n and the set of observed values be given by b ∈ Rm,
find a vector x ∈ Rn to minimize the functional

λ = ∇f(x) = AT Ax−AT b ≥ 0
x ≥ 0

λT x = 0.

(3.4)

Problem (3.4) is essentially the set of KKT optimality conditions (3.3) for
quadratic programming. The problem reduces to finding a nonnegative x which
satisfies (Ax− b)T Ax = 0. Handling nonnegative constraints is computation-
ally nontrivial because we are dealing with expansive nonlinear equations. An
equivalent but sometimes more tractable formulation of NNLS using the residual
vector variable p = b−Ax is as follows:

min
x,p

1
2
pT p

s. t. Ax + p = b, x ≥ 0.
(3.5)

The advantage of this formulation is that we have a simple and separable ob-
jective function with linear and nonnegativity constraints.

The NNLS problem is fairly old. The algorithm of Lawson and Hanson [45]
seems to be the first method to solve it. (This algorithm is available as the
lsqnonneg in Matlab, see [75].) An interesting thing about NNLS is that it is
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solved iteratively, but as Lawson and Hanson show, the iteration always con-
verges and terminates. There is no cutoff in iteration required. Sometimes it
might run too long, and have to be terminated, but the solution will still be
“fairly good”, since the solution improves smoothly with iteration. Noise, as
expected, increases the number of iterations required to reach the solution.

3.2 Numerical approaches and algorithms

Over the years a variety of methods have been applied to tackle the NNLS
problem. Although those algorithms can straddle more than one class, in general
they can be roughly divided into active-set methods and iterative approaches.
(See Table 1 for a listing of some approaches to solving the NNLS problem.)

Table 1 Some Numerical Approaches and Algorithms for NNLS

Active Set Methods Iterative Approaches Other Methods

lsqnonneg in Matlab Projected Quasi-Newton NNLS Interior Point Method

Bro and de Jong’s Fast NNLS Projected Landweber method Principal Block Pivoting method

Fast Combinatorial NNLS Sequential Coordinate-wise Alg.

3.2.1 Active-set methods

Active-set methods [24] are based on the observation that only a small subset of
constraints are usually active (i.e. satisfied exactly) at the solution. There are n
inequality constraints in NNLS problem. The ith constraint is said to be active,
if the ith regression coefficient will be is negative (or zero) if unconstrained,
otherwise the constraint is passive. An active set algorithm uses the fact that
if the true active set is known, the solution to the least squares problem will
simply be the unconstrained least squares solution to the problem using only
the variables corresponding to the passive set, setting the regression coefficients
of the active set to zero. This can also be stated as: if the active set is known, the
solution to the NNLS problem is obtained by treating the active constraints as
equality constraints rather than inequality constraints. To find this solution, an
alternating least squares algorithm is applied. An initial feasible set of regression
coefficients is found. A feasible vector is a vector with no elements violating the
constraints. In this case the vector containing only zeros is a feasible starting
vector as it contains no negative values. In each step of the algorithm, variables
are identified and removed from the active set in such a way that the least
least squares fit strictly decreases. After a finite number of iterations the true
active set is found and the solution is found by simple linear regression on the
unconstrained subset of the variables.

The NNLS algorithm of Lawson and Hanson [45] is an active set method,
and was the de facto method for solving (3.2) for many years. Recently, Bro and
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de Jong [12] modified it and developed a method called Fast NNLS (FNNLS)),
which often speeds up the basic algorithm, especially in the presence of multiple
right-hand sides, by avoiding unnecessary re-computations. A recent variant of
FNNLS, called fast combinatorial NNLS [80], appropriately rearranges calcula-
tions to achieve further speedups in the presence of multiple right hand sides.
However, all of these approaches still depend on AT A, or the normal equations
in factored form, which is infeasible for ill-conditioned problems.

Lawson and Hanson’s algorithm:

In their landmark text [45], Lawson and Hanson give the Standard algo-
rithm for NNLS which is an active set method [24]. Mathworks [75] modified the
algorithm NNLS, which ultimately was renamed to “lsqnonneg”.

Notation: The matrix AP is a matrix associated with only the variables cur-
rently in the passive set P .

Algorithm lsqnonneg :

Input: A ∈ Rm×n, b ∈ Rm

Output: x∗ ≥ 0 such that x∗ = arg min ‖Ax− b‖2.
Initialization: P = ∅, R = {1, 2, · · · , n}, x = 0, w = AT (b−Ax)
repeat

1. Proceed if R 6= ∅ ∧ [maxi∈R(wi) > tolerance]
2. j = arg maxi∈R(wi)
3. Include the index j in P and remove it from R
4. sP = [(AP )T AP ]−1(AP )T b

4.1. Proceed if min(sP ) ≤ 0
4.2. α = −mini∈P [xi/(xi − si)]
4.3. x := x + α(s− x)
4.4. Update R and P
4.5. sP = [(AP )T AP ]−1(AP )T b
4.6. sR = 0

5. x = s
6. w = AT (b−Ax)

It is proved by Lawson and Hanson that the iteration of the NNLS algorithm
is finite. Given sufficient time, the algorithm will reach a point where the Kuhn-
Tucker conditions are satisfied, and it will terminate. There is no arbitrary cutoff
in iteration required; in that sense it is a direct algorithm. It is not direct in the
sense that the upper limit on the possible number of iterations that the algorithm
might need to reach the point of optimum solution is impossibly large. There is
no good way of telling exactly how many iterations it will require in a practical
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sense. The solution does improve smoothly as the iteration continues. If it is
terminated early, one will obtain a sub-optimal but likely still fairly good image.

However, when applied in a straightforward manner to large scale NNLS
problems, this algorithm’s performance is found to be unacceptably slow owing
to the need to perform the equivalent of a full pseudo-inverse calculation for each
observation vector. More recently, Bro and de Jong [12] have made a substantial
speed improvement to Lawson and Hanson’s algorithm for the case of a large
number of observation vectors, by developing a modified NNLS algorithm.

Fast NNLS fnnls :

In the paper [12], Bro and de Jong give a modification of the standard algo-
rithm for NNLS by Lawson and Hanson. Their algorithm, called Fast Nonneg-
ative Least Squares, fnnls, is specifically designed for use in multiway decom-
position methods for tensor arrays such as PARAFAC and N-mode PCA (See
the material on tensors given later in this paper.) They realized that large parts
of the pseudo-inverse could be computed once but used repeatedly. Specifically,
their algorithm precomputes the cross-product matrices that appear in the nor-
mal equation formulation of the least squares solution. They also observed that,
during alternating least squares (ALS) procedures (to be discussed later), solu-
tions tend to change only slightly from iteration to iteration. In an extension
to their NNLS algorithm that they characterized as being for “advanced users”,
they retained information about the previous iteration’s solution and were able
to extract further performance improvements in ALS applications that employ
NNLS. These innovations led to a substantial performance improvement when
analyzing large multivariate, multiway data sets.

Algorithm fnnls :

Input: A ∈ Rm×n, b ∈ Rm

Output: x∗ ≥ 0 such that x∗ = arg min ‖Ax− b‖2.
Initialization: P = ∅, R = {1, 2, · · · , n},x = 0,w = AT b− (AT A)x
repeat
1. Proceed if R 6= ∅ ∧ [maxi∈R(wi) > tolerance]
2. j = arg maxi∈R(wi)
3. Include the index j in P and remove it from R
4. sP = [(AT A)P ]−1(AT b)P

4.1. Proceed if min(sP ) ≤ 0
4.2. α = −mini∈P [xi/(xi − si)]
4.3. x := x + α(s− x)
4.4. Update R and P
4.5. sP = [(AT A)P ]−1(AT b)P

4.6. sR = 0
5. x = s
6. w = AT (b−Ax)
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While Bro and de Jong’s algorithm precomputes parts of the pseudo-inverse,
the algorithm still requires work to complete the pseudo-inverse calculation once
for each vector observation. A recent variant of fnnls, called fast combinatorial
NNLS [80], appropriately rearranges calculations to achieve further speedups in
the presence of multiple observation vectors bi, i = 1, 2, . . . , l. This new method
rigorously solves the constrained least squares problem while exacting essentially
no performance penalty as compared with Bro and de Jong’s algorithm. The new
algorithm employs combinatorial reasoning to identify and group together all
observations bi that share a common pseudo-inverse at each stage in the NNLS
iteration. The complete pseudo-inverse is then computed just once per group
and, subsequently, is applied individually to each observation in the group. As a
result, the computational burden is significantly reduced and the time required
to perform ALS operations is likewise reduced. Essentially, if there is only one
observation, this new algorithm is no different from Bro and de Jong’s algorithm.

In the paper [19], Dax concentrates on two problems that arise in the imple-
mentation of an active set method. One problem is the choice of a good starting
point. The second problem is how to move away from a “dead point”. The results
of his experiments indicate that the use of Gauss-Seidel iterations to obtain a
starting point is likely to provide large gains in efficiency. And also, dropping
one constraint at a time is advantageous to dropping several constraints at a
time.

However, all these active set methods still depend on the normal equations,
rendering them infeasible for ill-conditioned. In contrast to an active set method,
iterative methods, for instance gradient projection, enables one to incorporate
multiple active constraints at each iteration.

3.2.2 Algorithms based on iterative methods

The main advantage of this class of algorithms is that by using information
from a projected gradient step along with a good guess of the active set, one
can handle multiple active constraints per iteration. In contrast, the active-set
method typically deals with only one active constraint at each iteration. Some of
the iterative methods are based on the solution of the corresponding LCP (3.4).
In contrast to an active set approach, iterative methods like gradient projection
enables the incorporation of multiple active constraints at each iteration.

Projective quasi-Newton NNLS (PQN-NNLS)

In the paper [41], Kim, et al. proposed a projection method with non-diagonal
gradient scaling to solve the NNLS problem (3.2). In contrast to an active set ap-
proach, gradient projection avoids the pre-computation of AT A and AT b, which
is required for the use of the active set method fnnls. It also enables their method
to incorporate multiple active constraints at each iteration. By employing non-
diagonal gradient scaling, PQN-NNLS overcomes some of the deficiencies of
a projected gradient method such as slow convergence and zigzagging. An im-
portant characteristic of PQN-NNLS algorithm is that despite the efficiencies,
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it still remains relatively simple in comparison with other optimization-oriented
algorithms. Also in this paper, Kim et al. gave experiments to show that their
method outperforms other standard approaches to solving the NNLS problem,
especially for large-scale problems.

Algorithm PQN-NNLS:

Input: A ∈ Rm×n, b ∈ Rm

Output: x∗ ≥ 0 such that x∗ = arg min ‖Ax− b‖2.
Initialization: x0 ∈ Rn

+,S0 ← I and k ← 0
repeat

1. Compute fixed variable set Ik = {i : xk
i = 0, [∇f(xk)]i > 0}

2. Partition xk = [yk; zk], where yk
i /∈ Ik and zk

i ∈ Ik

3. Solve equality-constrained subproblem:
3.1. Find appropriate values for αk and βk

3.2. γk(βk;yk) ← P(yk − βkS̄k∇f(yk))
3.3. ỹ ← yk + α(γk(βk;yk)− yk)

4. Update gradient scaling matrix Sk to obtain Sk+1

5. Update xk+1 ← [ỹ; zk]
6. k ← k + 1

until Stopping criteria are met.

Sequential coordinate-wise algorithm for NNLS

In [23], the authors propose a novel sequential coordinate-wise (SCA) algo-
rithm which is easy to implement and it is able to cope with large scale problems.
They also derive stopping conditions which allow control of the distance of the
solution found to the optimal one in terms of the optimized objective function.
The algorithm produces a sequence of vectors x0,x1, . . . ,xt which converges to
the optimal x∗. The idea is to optimize in each iteration with respect to a single
coordinate while the remaining coordinates are fixed. The optimization with re-
spect to a single coordinate has an analytical solution, thus it can be computed
efficiently.

Notation: I = {1, 2, · · · , n}, Ik = I/k, H = AT A which is semi-positive
definite, and hk denotes the kth column of H.
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Algorithm SCA-NNLS:

Input: A ∈ Rm×n, b ∈ Rm

Output: x∗ ≥ 0 such that x∗ = arg min ‖Ax− b‖2.
Initialization: x0 = 0 and µ0 = f = −AT b
repeat For k = 1 to n

1. xt+1
k = max

(
0,xt

k − µt
k

Hk,k

)
, and xt+1

i = xt
i, ∀i ∈ Ik

2. µt+1 = µt + (xt+1
k − xt

k)hk

until Stopping criteria are met.

3.2.3 Other methods:

Principal block pivoting method

In the paper [13], the authors gave a block principal pivoting algorithm for
large and sparse NNLS. They considered the linear complementarity problem
(3.4). The n indices of the variables in x are divided into complementary sets
F and G, and let xF and yG denote pairs of vectors with the indices of their
nonzero entries in these sets. Then the pair (xF ,yG) is a complementary basic
solution of Equation (3.4) if xF is a solution of the unconstrained least squares
problem

min
xF∈R|F |

‖AF xF − b‖22 (3.6)

where AF is formed from A by selecting the columns indexed by F , and yG is
obtained by

yG = AT
G(AF xF − b). (3.7)

If xF ≥ 0 and yG ≥ 0, then the solution is feasible. Otherwise it is infeasible, and
we refer to the negative entries of xF and yG as infeasible variables. The idea of
the algorithm is to proceed through infeasible complementary basic solutions of
(3.4) to the unique feasible solution by exchanging infeasible variables between
F and G and updating xF and yG by (3.6) and (3.7). To minimize the number
of solutions of the least-squares problem in (3.6), it is desirable to exchange
variables in large groups if possible. The performance of the algorithm is several
times faster than Matstoms’ Matlab implementation [51] of the same algorithm.
Further, it matches the accuracy of Matlab’s built-in lsqnonneg function. (The
program is available online at http://plato.asu.edu/sub/nonlsq.html).
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Block principal pivoting algorithm:

Input: A ∈ Rm×n, b ∈ Rm

Output: x∗ ≥ 0 such that x∗ = arg min ‖Ax− b‖2.
Initialization: F = ∅ and G = 1, . . . , n, x = 0, y = −AT b, and p = 3, N = ∞.
repeat:

1. Proceed if (xF , yG) is an infeasible solution.
2. Set n to the number of negative entries in xF and yG.

2.1 Proceed if n < N ,
2.1.1 Set N = n, p = 3,
2.1.2 Exchange all infeasible variables between F and G.

2.2 Proceed if n ≥ N
2.2.1 Proceed if p > 0,

2.2.1.1 set p = p− 1
2.2.1.2 Exchange all infeasible variables between F and G.

2.2.2 Proceed if p ≤ 0,
2.2.2.1 Exchange only the infeasible variable with largest index.

3. Update xF and yG by Equation (3.6) and (3.7).
4. Set Variables in xF < 10−12 and yG < 10−12 to zero.

Interior point Newton-like method:

In addition to the methods above, Interior Point methods can be used to
solve NNLS problems. They generate an infinite sequence of strictly feasible
points converging to the solution and are known to be competitive with active
set methods for medium and large problems. In the paper [4], the authors present
an interior-point approach suited for NNLS problems. Global and locally fast
convergence is guaranteed even if a degenerate solution is approached and the
structure of the given problem is exploited both in the linear algebra phase and
in the globalization strategy. Viable approaches for implementation are discussed
and numerical results are provided. Here we give an interior algorithm for NNLS,
more detailed discussion could be found in the paper [4].

Notation: g(x) is the gradient of the objective function (3.2), i.e. g(x) =
∇f(x) = AT (Ax− b). Therefore, by the KKT conditions, x∗ can be found
by searching for the positive solution of the system of nonlinear equations

D(x)g(x) = 0, (3.8)

where D(x) = diag(d1(x), . . . , dn(x)), has entries

di(x) =
{

xi if gi(x) ≥ 0,
1 otherwise.

(3.9)
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The matrix W (x) is defined by W (x) = diag(w1(x), . . . , wn(x)), where wi(x) =
1

di(x)+ei(x) and for 1 < s ≤ 2

ei(x) =
{

gi(x) if 0 ≤ gi(x) < xs
i or gi(x)s > xi,

1 otherwise.
(3.10)

Newton Like method for NNLS:

Input: A ∈ Rm×n, b ∈ Rm

Output: x∗ ≥ 0 such that x∗ = arg min ‖Ax− b‖2.
Initialization: x0 > 0 and σ < 1
repeat

1. Choose ηk ∈ [0, 1)
2. Solve Zkp̃ = −W

1
2

k D
1
2
k gk + r̃k, ‖r̃k‖2 ≤ ηk‖WkDkgk‖2

3. Set p = W
1
2

k D
1
2
k p̃

4. Set pk = max{σ, 1− ‖p(xk + p)− xk‖2}(p(xk + p)− xk)
5. Set xk+1 = xk + pk

until Stopping criteria are met.

We next move to the extension of Problem NNLS to approximate low-rank
nonnegative matrix factorization and later extend that concept to approximate
low-rank nonnegative tensor (multiway array) factorization.

4 Nonnegative matrix and tensor factorizations

As indicated earlier, NNLS leads in a natural way to the topics of approximate
nonnegative matrix and tensor factorizations, NMF and NTF. We begin by
discussing algorithms for approximating an m×n nonnegative matrix X by a low-
rank matrix, say Y, that is factored into Y = WH, where W has k ≤ min{m,n}
columns, and H has k rows.

4.1 Nonnegative matrix factorization

In Nonnegative Matrix Factorization (NMF), an m×n (nonnegative) mixed data
matrix X is approximately factored into a product of two nonnegative rank-k
matrices, with k small compared to m and n, X ≈ WH. This factorization has
the advantage that W and H can provide a physically realizable representation
of the mixed data. NMF is widely used in a variety of applications, including air
emission control, image and spectral data processing, text mining, chemometric
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analysis, neural learning processes, sound recognition, remote sensing, and object
characterization, see, e.g. [8].

NMF problem: Given a nonnegative matrix X ∈ Rm×n and a positive inte-
ger k ≤ min{m,n}, find nonnegative matrices W ∈ Rm×k and H ∈ Rk×n to
minimize the function f(W,H) = 1

2‖X−WH‖2F , i.e.

min
H

f(H) = ‖X−
k∑

i=1

W(i) ◦H(i)‖ subject to W,H ≥ 0 (4.1)

where ′◦′ denotes outer product, W(i) is ith column of W, H(i) is ith column
of HT

Fig. 1 An illustration of nonnegative matrix factorization.

See Figure 1 which provides an illustration of matrix approximation by a
sum of rank one matrices determined by W and H. The sum is truncated after
k terms.

Quite a few numerical algorithms have been developed for solving the NMF.
The methodologies adapted are following more or less the principles of alter-
nating direction iterations, the projected Newton, the reduced quadratic ap-
proximation, and the descent search. Specific implementations generally can be
categorized into alternating least squares algorithms [57], multiplicative update
algorithms [35, 46, 47], gradient descent algorithms, and hybrid algorithms [60,
62]. Some general assessments of these methods can be found in [15, 50]. It ap-
pears that there is much room for improvement of numerical methods. Although
schemes and approaches are different, any numerical method is essentially cen-
tered around satisfying the first order optimality conditions derived from the
Kuhn-Tucker theory. Note that the computed factors W and H may only be
local minimizers of (4.1).
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Theorem 4.1. Necessary conditions for (W,H) ∈ Rm×p
+ × Rp×n

+ to solve the
nonnegative matrix factorization problem (4.1) are

W. ∗ ((X −WH)HT ) = 0 ∈ Rm×p,

H. ∗ (WT (X −WH)) = 0 ∈ Rp×n,

(X −WH)HT ≤ 0,

WT (X −WH) ≤ 0,

(4.2)

where ′.∗′ denotes the Hadamard product.

Alternating Least Squares (ALS) algorithms for NMF

Since the Frobenius norm of a matrix is just the sum of Euclidean norms over
columns (or rows), minimization or descent over either W or H boils down to
solving a sequence of nonnegative least squares (NNLS) problems. In the class
of ALS algorithms for NMF, a least squares step is followed by another least
squares step in an alternating fashion, thus giving rise to the ALS name. ALS
algorithms were first used by Paatero [57], exploiting the fact that, while the
optimization problem of (4.1) is not convex in both W and H, it is convex in
either W or H. Thus, given one matrix, the other matrix can be found with
NNLS computations. An elementary ALS algorithm in matrix notation follows.

ALS algorithm for NMF:

Initialization: Let W be a random matrix W = rand(m, k) or use another
initialization from [44]
repeat: for i = 1 : maxiter

1. (NNLS) Solve for H in the matrix equation WT WH = WT X by solving

min
H

f(H) =
1
2
‖X−WH‖2F subject to H ≥ 0,

with W fixed,
2. (NNLS) Solve for W in the matrix equation HHT WT = HXT by solving

min
W

f(W) =
1
2
‖XT −HT WT ‖2F subject to W ≥ 0

with H fixed.

end

Compared to other methods for NMF, the ALS algorithms are more flexible,
allowing the iterative process to escape from a poor path. Depending on the
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implementation, ALS algorithms can be very fast. The implementation shown
above requires significantly less work than other NMF algorithms and slightly
less work than an SVD implementation. Improvements to the basic ALS algo-
rithm appear in [44, 58].

We conclude this section with a discussion of the convergence of ALS al-
gorithms. Algorithms following an alternating process, approximating W, then
H, and so on, are actually variants of a simple optimization technique that has
been used for decades, and are known under various names such as alternating
variables, coordinate search, or the method of local variation [55]. While state-
ments about global convergence in the most general cases have not been proven
for the method of alternating variables, a bit has been said about certain special
cases. For instance, [64] proved that every limit point of a sequence of alternat-
ing variable iterates is a stationary point. Others [66, 67, 84] proved convergence
for special classes of objective functions, such as convex quadratic functions.
Furthermore, it is known that an ALS algorithm that properly enforces nonneg-
ativity, for example, through the nonnegative least squares (NNLS) algorithm
of Lawson and Hanson [45], will converge to a local minimum [10, 26, 49].

4.2 Nonnegative tensor decomposition

Nonnegative Tensor Factorization (NTF) is a natural extension of NMF to higher
dimensional data. In NTF, high-dimensional data, such as hyperspectral or other
image cubes, is factored directly, it is approximated by a sum of rank 1 nonneg-
ative tensors. The ubiquitous tensor approach, originally suggested by Einstein
to explain laws of physics without depending on inertial frames of reference,
is now becoming the focus of extensive research. Here, we develop and apply
NTF algorithms for the analysis of spectral and hyperspectral image data. The
algorithm given here combines features from both NMF and NTF methods.

Notation: The symbol ∗ denotes the Hadamard (i.e., elementwise) matrix
product,

A ∗B =




A11B11 · · · A1nB1n

...
. . .

...
Am1Bm1 · · · AmnBmn


 . (4.3)

The symbol ⊗ denotes the Kronecker product, i.e.

A⊗B =




A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB


 . (4.4)

And the symbol¯ denotes the Khatri-Rao product (columnwise Kronecker)[37],

A¯B = (A1 ⊗B1 · · · An ⊗Bn). (4.5)



Nonnegativity constraints in numerical analysis 125

where Ai,Bi are the columns of A,B respectively.
The concept of matricizing or unfolding is simply a rearrangement of the

entries of T into a matrix. For a three-dimensional array T of size m × n × p,
the notation T (m×np) represents a matrix of size m × np in which the n-index
runs the fastest over columns and p the slowest. The norm of a tensor, ||T ||, is
the same as the Frobenius norm of the matricized array, i.e., the square root of
the sum of squares of all its elements.

Nonnegative Rank-k Tensor Decomposition Problem:

min
x(i),y(i),z(i)

||T −
r∑

i=1

x(i) ◦ y(i) ◦ z(i)||, (4.6)

subject to:

x(i) ≥ 0, y(i) ≥ 0, z(i) ≥ 0

where T ∈ Rm×n×p,x(i) ∈ Rm, y(i) ∈ Rn, z(i) ∈ Rp.

Note that Equation (4.6) defines matrices X which is m×k, Y which is n×k,
and X which is p × k. Also, see Figure 2 which provides an illustration of 3D
tensor approximation by a sum of rank one tensors. When the sum is truncated
after, say, k terms, it then provides a rank k approximation to the tensor T .

Fig. 2 An illustration of 3-D tensor factorization.

Alternating least squares for NTF

A common approach to solving Equation (4.6) is an alternating least squares
(ALS) algorithm [22, 30, 77], due to its simplicity and ability to handle con-
straints. At each inner iteration, we compute an entire factor matrix while hold-
ing all the others fixed.
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Starting with random initializations for X, Y and Z, we update these quan-
tities in an alternating fashion using the method of normal equations. The mini-
mization problem involving X in Equation (4.6) can be rewritten in matrix form
as a least squares problem:

min
X
||T (m×np) −XC||2. (4.7)

where T (m×np) = X(Z ¯ Y )T , C = (Z ¯ Y )T .
The least squares solution for Equation (4.6) involves the pseudo-inverse of

C, which may be computed in a special way that avoids computing CT C with
an explicit C, so the solution to Equation (4.6) is given by

X = T (m×np)(Z ¯ Y )(Y T Y ∗ZT Z)−1. (4.8)

Furthermore, the product T (m×np)(Z ¯ Y ) may be computed efficiently if T is
sparse by not forming the Khatri-Rao product (Z ¯ Y ). Thus, computing X
essentially reduces to several matrix inner products, tensor-matrix multiplication
of Y and Z into T , and inverting an R×R matrix.

Analogous least squares steps may be used to update Y and Z. Following is
a summary of the complete NTF algorithm.

ALS algorithm for NTF:

1. Group xi’s, yi’s and zi’s as columns in X ∈ Rm×r
+ , Y ∈ Rn×r

+ and Z ∈ Rp×r
+

respectively.
2. Initialize X, Y .

(a) Nonnegative Matrix Factorization of the mean slice,

min ||A−XY ||2F . (4.9)

where A is the mean of T across the 3rd dimension.
3. Iterative Tri-Alternating Minimization

(a) Fix T , X,Y and fit Z by solving a NMF problem in an alternating
fashion.

Xiρ ← Xiρ
(T (m×np)C)iρ

(XCT C)iρ + ε
, C = (Z ¯ Y ) (4.10)

(b) Fix T , X, Z, fit for Y ,

Yjρ ← Yjρ
(T (m×np)C)jρ

(Y CT C)jρ + ε
, C = (Z ¯X) (4.11)

(c) Fix T , Y , Z, fit for X.

Zkρ ← Zkρ
(T (m×np)C)kρ

(ZCT C)kρ + ε
, C = (Y ¯X) (4.12)
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Here ε is a small number like 10−9 that adds stability to the calculation and
guards against introducing a negative number from numerical underflow.

If T is sparse a simpler computation in the procedure above can be ob-
tained. Each matricized version of T is a sparse matrix. The matrix C from
each step should not be formed explicitly because it would be a large, dense
matrix. Instead, the product of a matricized T with C should be computed spe-
cially, exploiting the inherent Kronecker product structure in C so that only the
required elements in C need to be computed and multiplied with the nonzero
elements of T .

5 Some applications of nonnegativity constraints

5.1 Support vector machines

Support Vector machines were introduced by Vapnik and co-workers [11, 18]
theoretically motivated by Vapnik-Chervonenkis theory (also known as VC the-
ory [81, 82]). Support vector machines (SVMs) are a set of related supervised
learning methodslearning used for classification and regression. They belong to
a family of generalized linear classifiers. They are based on the following idea:
input points are mapped to a high dimensional feature space, where a separating
hyperplane can be found. The algorithm is chosen in such a way to maximize
the distance from the closest patterns, a quantity that is called the margin. This
is achieved by reducing the problem to a quadratic programming problem,

F (v) =
1
2
vT Av + bT v, v ≥ 0. (5.1)

Here we assume that the matrix A is symmetric and semipositive definite. The
problem (5.1) is then usually solved with optimization routines from numerical
libraries. SVMs have a proven impressive performance on a number of real world
problems such as optical character recognition and face detection.

We briefly review the problem of computing the maximum margin hyperplane
in SVMs [81]. Let {(xi, yi)}N

i = 1} denote labeled examples with binary class
labels yi = ±1, and let K(xi, xj) denote the kernel dot product between inputs.
For brevity, we consider only the simple case where in the high dimensional
feature space, the classes are linearly separable and the hyperplane is required
to pass through the origin. In this case, the maximum margin hyperplane is
obtained by minimizing the loss function:

L(α) = −
∑

i

αi +
1
2

∑

ij

αiαjyiyjK(xi, xj), (5.2)

subject to the nonnegativity constraints αi ≥ 0. Let α∗ denote the minimum
of equation (5.2). The maximal margin hyperplane has normal vector w =∑

i α∗i yixi and satisfies the margin constraints yiK(w, xi) ≥ 1 for all examples
in the training set.
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The loss function in equation (5.2) is a special case of the non-negative
quadratic programming (5.1) with Aij = yiyjK(xi, xj) and bi = −1. Thus,
the multiplicative updates in the paper [72] are easily adapted to SVMs. This
algorithm for training SVMs is known as Multiplicative Margin Maximization
(M3). The algorithm can be generalized to data that is not linearly separable
and to separating hyper-planes that do not pass through the origin.

Many iterative algorithms have been developed for nonnegative quadratic
programming in general and for SVMs as a special case. Benchmarking experi-
ments have shown that M3 is a feasible algorithm for small to moderately sized
data sets. On the other hand, it does not converge as fast as leading subset
methods for large data sets. Nevertheless, the extreme simplicity and conver-
gence guarantees of M3 make it a useful starting point for experimenting with
SVMs.

5.2 Image processing and computer vision

Digital images are represented nonnegative matrix arrays, since pixel intensity
values are nonnegative. It is sometimes desirable to process data sets of images
represented by column vectors as composite objects in many articulations and
poses, and sometimes as separated parts for in, for example, biometric iden-
tification applications such as face or iris recognition. It is suggested that the
factorization in the linear model would enable the identification and classifi-
cation of intrinsic “parts” that make up the object being imaged by multiple
observations [14, 36, 46, 48]. More specifically, each column xj of a nonnegative
matrix X now represents m pixel values of one image. The columns wi of W are
basis elements in Rm. The columns of H, belonging to Rk, can be thought of as
coefficient sequences representing the n images in the basis elements. In other
words, the relationship

xj =
k∑

i=1

wihij , (5.3)

can be thought of as that there are standard parts wi in a variety of positions
and that each image represented as a vector xj making up the factor W of basis
elements is made by superposing these parts together in specific ways by a mixing
matrix represented by H. Those parts, being images themselves, are necessarily
nonnegative. The superposition coefficients, each part being present or absent,
are also necessarily nonnegative. A related application to the identification of
object materials from spectral reflectance data at different optical wavelengths
has been investigated in [61–63].

As one of the most successful applications of image analysis and understand-
ing, face recognition has recently received significant attention, especially during
the past few years. Recently, many papers, like [8, 36, 46, 49, 57] have proved that
Nonnegative Matrix Factorization (NMF) is a good method to obtain a repre-
sentation of data using non-negativity constraints. These constraints lead to
a part-based representation because they allow only additive, not subtractive,
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combinations of the original data. Given an initial database expressed by a n×m
matrix X, where each column is an n-dimensional nonnegative vector of the orig-
inal database (m vectors), it is possible to find two new matrices W and H in
order to approximate the original matrix

Xiµ ≈ (WH)iµ =
k∑

a=1

WiaHaµ. (5.4)

The dimensions of the factorized matrices W and H are n × k and k × m,
respectively. Usually, k is chosen so that (n+m)k < nm. Each column of matrix
W contains a basis vector while each column of H contains the weights needed
to approximate the corresponding column in X using the bases from W.

Other image processing work that uses non-negativity constraint includes
the work image restorations. Image restoration is the process of approximating
an original image from an observed blurred and noisy image. In image restora-
tion, image formation is modeled as a first kind integral equation which, after
discretization, results in a large scale linear system of the form

Ax + η = b. (5.5)

The vector x represents the true image, b is the blurred noisy copy of x, and
η models additive noise, matrix A is a large ill-conditioned matrix representing
the blurring phenomena.

In the absence of information of noise, we can model the image restoration
problem as NNLS problem,

min
x

1
2
‖Ax− b‖2,

subject to x ≥ 0.
(5.6)

Thus, we can use NNLS to solve this problem. Experiments show that enforc-
ing a nonnegativity constraint can produce a much more accurate approximate
solution, see e.g., [29, 38, 54, 70].

5.3 Text mining

Assume that the textual documents are collected in an matrix Y = [yij ] ∈ Rm×n.
Each document is represented by one column in Y. The entry yij represents the
weight of one particular term i in document j whereas each term could be de-
fined by just one single word or a string of phrases. To enhance discrimination be-
tween various documents and to improve retrieval effectiveness, a term-weighting
scheme of the form,

yij = tijgidj , (5.7)

is usually used to define Y [9], where tij captures the relative importance of term
i in document j, gi weights the overall importance of term i in the entire set of



130 Donghui Chen and Robert J. Plemmons

documents, and dj = (
∑m

i=1 tijgi)−1/2 is the scaling factor for normalization. The
normalization by dj per document is necessary, otherwise one could artificially
inflate the prominence of document j by padding it with repeated pages or
volumes. After the normalization, the columns of Y are of unit length and usually
nonnegative.

The indexing matrix contains lot of information for retrieval. In the context of
latent semantic indexing (LSI) application [9, 31], for example, suppose a query
represented by a row vector qT = [q1, ..., qm] ∈ Rm, where qi denotes the weight
of term i in the query q, is submitted. One way to measure how the query q
matches the documents is to calculate the row vector sT = qT Y and rank the
relevance of documents to q according to the scores in s.

The computation in the LSI application seems to be merely the vector-matrix
multiplication. This is so only if Y is a ”reasonable” representation of the rela-
tionship between documents and terms. In practice, however, the matrix Y is
never exact. A major challenge in the field has been to represent the indexing
matrix and the queries in a more compact form so as to facilitate the com-
putation of the scores [20, 59]. The idea of representing Y by its nonnegative
matrix factorization approximation seems plausible. In this context, the stan-
dard parts wi indicated in (5.3) may be interpreted as subcollections of some
”general concepts” contained in these documents. Like images, each document
can be thought of as a linear composition of these general concepts. The column-
normalized matrix A itself is a term-concept indexing matrix.

5.4 Environmetrics and chemometrics

In the air pollution research community, one observational technique makes use
of the ambient data and source profile data to apportion sources or source cate-
gories [34, 39, 68]. The fundamental principle in this model is that mass conser-
vation can be assumed and a mass balance analysis can be used to identify and
apportion sources of airborne particulate matter in the atmosphere. For exam-
ple, it might be desirable to determine a large number of chemical constituents
such as elemental concentrations in a number of samples. The relationships be-
tween p sources which contribute m chemical species to n samples leads to a
mass balance equation

yij =
p∑

k=1

aikfkj , (5.8)

where yij is the elemental concentration of the ith chemical measured in the
j th sample, aik is the gravimetric concentration of the ith chemical in the kth
source, and fkj is the airborne mass concentration that the kth source has con-
tributed to the j th sample. In a typical scenario, only values of yij are observable
whereas neither the sources are known nor the compositions of the local particu-
late emissions are measured. Thus, a critical question is to estimate the number
p, the compositions aik, and the contributions fkj of the sources. Tools that have
been employed to analyze the linear model include principal component analysis,
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factor analysis, cluster analysis, and other multivariate statistical techniques. In
this receptor model, however, there is a physical constraint imposed upon the
data. That is, the source compositions aik and the source contributions fkj must
all be nonnegative. The identification and apportionment problems thus become
a nonnegative matrix factorization problem for the matrix Y.

5.5 Speech recognition

Stochastic language modeling plays a central role in large vocabulary speech
recognition, where it is usually implemented using the n-gram paradigm. In a
typical application, the purpose of an n-gram language model may be to con-
strain the acoustic analysis, guide the search through various (partial) text hy-
potheses, and/or contribute to the determination of the final transcription.

In language modeling one has to model the probability of occurrence of a
predicted word given its history Pr(wn|H). N -gram based Language Models
have been used successfully in Large Vocabulary Automatic Speech Recognition
Systems. In this model, the word history consists of the N − 1 immediately pre-
ceding words. Particularly, tri-gram language models (Pr(wn|wn−1;wn−2)) offer
a good compromise between modeling power and complexity. A major weakness
of these models is the inability to model word dependencies beyond the span of
the n-grams. As such, n-gram models have limited semantic modeling ability.
Alternate models have been proposed with the aim of incorporating long term
dependencies into the modeling process. Methods such as word trigger mod-
els, high-order n-grams, cache models, etc., have been used in combination with
standard n-gram models.

One such method, a Latent Semantic Analysis based model has been pro-
posed [5]. A word-document occurrence matrix Xm×n is formed (m = size of
the vocabulary, n = number of documents), using a training corpus explic-
itly segmented into a collection of documents. A Singular Value Decomposition
X = USVT is performed to obtain a low dimensional linear space S, which is
more convenient to perform tasks such as word and document clustering, using
an appropriate metric. Bellegarda [5] gave the detailing explanation about this
method.

In the paper [56], Novak and Mammone introduce a new method with NMF.
In addition to the non-negativity, another property of this factorization is that
the columns of W tend to represent groups of associated words. This property
suggests that the columns of W can be interpreted as conditional word probabil-
ity distributions, since they satisfy the conditions of a probability distribution by
the definition. Thus the matrix W describes a hidden document space D = {dj}
by providing conditional distributions W = P(wi|dj). The task is to find a
matrix W, given the word document count matrix X. The second term of the
factorization, matrix H, reflects the properties of the explicit segmentation of
the training corpus into individual documents. This information is not of inter-
est in the context of Language Modeling. They provide an experimental result
where the NMF method results in a perplexity reduction of 16% on a database
of biology lecture transcriptions.
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5.6 Spectral unmixing by NMF and NTF

Here we discuss applications of NMF and NTF to numerical methods for the
classification of remotely sensed objects. We consider the identification of space
satellites from non-imaging data such as spectra of visible and NIR range, with
different spectral resolutions and in the presence of noise and atmospheric tur-
bulence. (See, e.g., [61] or [62, 63].) This is the research area of space object
identification (SOI).

A primary goal of using remote sensing image data is to identify materials
present in the object or scene being imaged and quantify their abundance esti-
mation, i.e., to determine concentrations of different signature spectra present
in pixels. Also, due to the large quantity of data usually encountered in hyper-
spectral datasets, compressing the data is becoming increasingly important. In
this section we discuss the use of MNF and NTF to reach these major goals:
material identification, material abundance estimation, and data compression.

For safety and other considerations in space, non-resolved space object char-
acterization is an important component of Space Situational Awareness. The
key problem in non-resolved space object characterization is to use spectral re-
flectance data to gain knowledge regarding the physical properties (e.g., func-
tion, size, type, status change) of space objects that cannot be spatially resolved
with telescope technology. Such objects may include geosynchronous satellites,
rocket bodies, platforms, space debris, or nano-satellites. rendition of a JSAT
type satellite in a 36,000 kilometer high synchronous orbit around the Earth.
Even with adaptive optics capabilities, this object is generally not resolvable
using ground-based telescope technology.

Fig. 3 Artist rendition of a JSAT satellite. Image obtained from the Boeing
Satellite Development Center.

Spectral reflectance data of a space object can be gathered using ground-
based spectrometers and contains essential information regarding the make up
or types of materials comprising the object. Different materials such as alu-
minum, mylar, paint, etc. possess characteristic wavelength-dependent absorp-
tion features, or spectral signatures, that mix together in the spectral reflectance
measurement of an object. Figure 4 shows spectral signatures of four materials
typically used in satellites, namely, aluminum, mylar, white paint, and solar cell.
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Fig. 4 Laboratory spectral signatures for aluminum, mylar, solar cell, and white
paint. For details see [63].

The objective is then, given a set of spectral measurements or traces of an
object, to determine i) the type of constituent materials and ii) the proportional
amount in which these materials appear. The first problem involves the detection
of material spectral signatures or endmembers from the spectral data. The second
problem involves the computation of corresponding proportional amounts or
fractional abundances. This is known as the spectral unmixing problem in the
hyperspectral imaging community.

Recall that in In Nonnegative Matrix Factorization (NMF), an m× n (non-
negative) mixed data matrix X is approximately factored into a product of two
nonnegative rank-k matrices, with k small compared to m and n, X ≈ WH.
This factorization has the advantage that W and H can provide a physically
realizable representation of the mixed data, see e.g. [61]. Two sets of factors,
one as endmembers and the other as fractional abundances, are optimally fitted
simultaneously. And due to reduced sizes of factors, data compression, spec-
tral signature identification of constituent materials, and determination of their
corresponding fractional abundances, can be fulfilled at the same time.
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Spectral reflectance data of a space object can be gathered using ground-
based spectrometers, such as the SPICA system located on the 1.6 meter Gemini
telescope and the ASIS system located on the 3.67 meter telescope at the Maui
Space Surveillance Complex (MSSC), and contains essential information regard-
ing the make up or types of materials comprising the object. Different materials,
such as aluminum, mylar, paint, plastics and solar cell, possess characteristic
wavelength-dependent absorption features, or spectral signatures, that mix to-
gether in the spectral reflectance measurement of an object. A new spectral
imaging sensor, capable of collecting hyperspectral images of space objects, has
been installed on the 3.67 meter Advanced Electrocal-optical System (AEOS) at
the MSSC. The AEOS Spectral Imaging Sensor (ASIS) is used to collect adap-
tive optics compensated spectral images of astronomical objects and satellites.
See Figure 4 for a simulated hyperspectral image of the Hubble Space Telescope
similar to that collected by ASIS.

Fig. 5 A blurred and noisy simulated hyperspectral image above the original
simulated image of the Hubble Space Telescope representative of the data col-
lected by the Maui ASIS system.

In [85] and [86] Zhang, et al. develop NTF methods for identifying space
objects using hyperspectral data. Illustrations of material identification, material
abundance estimation, and data compression are demonstrated for data similar
to that shown in Figure 5.

6 Summary

We have outlined some of what we consider the more important and interesting
problems for enforcing nonnegativity constraints in numerical analysis. Special
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emphasis has been placed nonnegativity constraints in least squares computa-
tions in numerical linear algebra and in nonlinear optimization. Techniques in-
volving nonnegative low-rank matrix and tensor factorizations and their many
applications were also given. This report also includes an effort toward a liter-
ature survey of the various algorithms and applications of nonnegativity con-
straints in numerical analysis. As always, such an overview is certainly incom-
plete, and we apologize for omissions. Hopefully, this work will inform the reader
about the importance of nonnegativity constraints in many problems in numer-
ical analysis, while pointing toward the many advantages of enforcing nonnega-
tivity in practical applications.
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Abstract. This view of the development of algorithms for nonlinear op-
timization is based on the research that has been of particular interest to
the author since 1959, including several of his own contributions. After a
brief survey of classical methods, which may require good starting points
in order to converge successfully, the huge impact of variable metric and
conjugate gradient methods is addressed. It encouraged the use of penalty
and barrier functions for expressing constrained calculations in uncon-
strained forms, which are introduced briefly, including the augmented
Lagrangian method. Direct methods that make linear approximations to
constraints became more popular in the late 1970s, especially sequential
quadratic programming, which receives attention too. Sometimes the lin-
ear approximations are satisfied only if the changes to the variables are
so large that the approximations become unsuitable, which stimulated
the development of trust region techniques that make partial corrections
to the constraints. That work is also introduced, noting that quadratic
models of the objective or Lagrange function do not have to be convex.
We consider the sequence of models that is given by the symmetric Broy-
den updating formula in unconstrained optimization, including the case
when first derivatives are not available. The emphasis of the paper is
on algorithms that can be applied without good initial estimates of the
variables.

1 Earlier algorithms

The year 1959 is stated in the title of this paper, because Davidon (1959) pub-
lished then the report that describes his variable metric method for the un-
constrained minimization of a general differentiable function, F (x), x∈Rn, all
underlined symbols being vectors. That work provides many of the ideas and
techniques that are fundamental to later developments, especially the construc-
tion and accumulation of useful second derivative information from changes in
first derivatives that become available as the iterations of the calculation pro-
ceed. The second derivative information is held in a positive definite matrix,
which gives a downhill search direction whenever the gradient ∇F (x) is nonzero.
Thus an initial vector of variables that is close to the solution is not required, and
usually the rate of convergence of the iterations is superlinear. It is a fortunate
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coincidence that I started my research on numerical analysis in 1959. There-
fore, beginning in Section 2, a personal view of major advances in nonlinear
optimization during my career is presented.

First we recall some classical foundations of optimization, beginning with
Newton’s method for solving the nonlinear system of equations f(x)=0, where
f is a continuously differentiable function from Rn to Rn. For any xk ∈Rn, let
J(xk) be the Jacobian matrix that has the elements

[J(xk)]ij = dfi(xk) / dxj , 1 ≤ i, j ≤ n. (1.1)

Then the first order Taylor series provides the approximation

f(xk+ dk) ≈ f(xk) + J(xk) dk, dk∈Rn. (1.2)

Newton’s method is based on the remark that, if dk is defined by equating the
right hand side of this expression to zero, then xk+dk may be a good estimate
of a vector that satisfies f(xk+dk)=0. Indeed, given a starting vector x1∈Rn,
the formula

xk+1 = xk − J(xk)−1 f(xk), k=1, 2, 3, . . . , (1.3)

is applied, assuming every J(xk) is nonsingular. It is well known that, if x∗

satisfies f(x∗)=0 and if J(x∗) is nonsingular, then xk converges at a superlinear
rate to x∗ as k→∞, provided that x1 is sufficiently close to x∗.

It happens often in practice, however, that such a starting point x1 is not
available. Then it is highly useful to employ dk = −J(xk)−1f(xk) as a search
direction, letting xk+1 be the vector

xk+1 = xk + αk dk (1.4)

for some choice of αk >0. A usual way of helping convergence is to seek a value
of αk that provides the reduction ‖f(xk+1)‖< ‖f(xk)‖ in the Euclidean norm
of f . This strict reduction can be achieved whenever J(xk) is nonsingular and
‖f(xk)‖ is nonzero. One way of establishing this property begins with the remark
that the first derivatives at α = 0 of the functions ‖f(xk +α dk)‖2, α ∈ R, and
φ(α)=‖f(xk)+α J(xk) dk‖2, α∈R, are the same due to the use of the first order
Taylor series. Moreover, φ(α), α∈R, is a nonnegative quadratic that takes the
values φ(0)=‖f(xk)‖2 and φ(1)=0. Thus we deduce the required condition

[ d

dα
‖f(xk + α dk)‖2

]
α=0

= φ ′(0) = −2 ‖f(xk)‖2 < 0. (1.5)

Probably this enhancement of Newton’s method is also classical. It is easy to
show that the line searches may fail to provide ‖f(xk)‖→0 as k→∞, by picking
a system of equations that does not have a solution.

Let every αk in the method of the last paragraph be the value of α that
minimizes ‖f(xk +α dk)‖2, α ≥ 0. It is possible for each iteration to be well-
defined, and for xk, k=1, 2, 3, . . ., to converge to a limit x∗ where the gradient of
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the function F (x)=‖f(x)‖2, x∈Rn, is nonzero, but of course J(x∗) is singular
(Powell, 1970). Then the search direction dk tends to be orthogonal to ∇F (xk)
as k→∞, which is unwelcome when seeking the least value of a differentiable
function F .

Such orthogonality is avoided as much as possible in the steepest descent
method for minimizing F (x), x∈Rn, where F is now any continuously differen-
tiable function from Rn to R. The k-th iteration sets dk =−∇F (xk), where x1

is given and where xk, k≥2, is provided by the previous iteration. Termination
occurs if ‖dk‖ is zero or acceptably small, but otherwise a positive step-length
αk is sought, in order to apply formula (1.4). Typically, values of αk that are
too long or too short are avoided by imposing the conditions

F (xk+ αk dk) ≤ F (xk) + c1 αk dT
k ∇F (xk)

dT
k ∇F (xk+ αk dk) ≥ c2 dT

k ∇F (xk)

}
, (1.6)

where c1 and c2 are prescribed constants that satisfy 0<c1 <0.5 and c1 <c2 <1.
Termination occurs too if, in the search for αk, it is found that F is not bounded
below. This method has a very attractive convergence property, namely that,
if the number of iterations is infinite and if the points xk remain in a bounded
region of Rn, then the sequence of gradients ∇F (xk) tends to zero as k→∞.

Often in practice, however, the steepest descent method is intolerably slow.
For example, we let m and M be positive constants and we apply the method
to the quadratic function

F (x) = m x2
1 + M x2

2, x∈R2, (1.7)

starting at the point x1 =(M,m)T . Further, we satisfy the line search conditions
(1.6) by letting αk provide the least value of F (xk+1)=F (xk +αk dk) on every
iteration. A simple calculation shows that xk+1 has the components M θk and
m (−θ)k, k=1, 2, 3, . . ., where θ=(M−m)/(M+m). Thus, if ∇2F (x∗) is very ill-
conditioned, then a large number of iterations may be required to obtain a vector
of variables that is close enough to the solution x∗ = 0. This slow convergence
occurs for most starting points x1, but our choice of x1 simplifies the analytic
derivation of xk+1.

The classical way of achieving a superlinear rate of convergence when min-
imizing a twice continuously differentiable function F (x), x ∈ Rn, is to apply
the Newton–Raphson algorithm. In its basic form it is identical to Newton’s
method for calculating x ∈ Rn that solves the nonlinear system ∇F (x) = 0.
Putting f =∇F in the definition (1.1) gives a symmetric Jacobian matrix with
the elements

[G(xk)]ij = d 2F (xk) / dxi dxj , 1 ≤ i, j ≤ n, (1.8)

so equation (1.3) takes the form

xk+1 = xk −G(xk)−1∇F (xk), k=1, 2, 3, . . . . (1.9)
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The line search version (1.4), with dk =−G(xk)−1∇F (xk), can help convergence
sometimes when x1 is not sufficiently close to the optimal vector of variables
x∗. Then, as in the given extension to Newton’s method, one may seek a step-
length αk that provides the reduction ‖∇F (xk+1)‖<‖∇F (xk)‖. This approach
is objectionable, however, because trying to solve ∇F (x)=0 can be regarded as
seeking a stationary point of F without paying any attention to minimization.
Therefore it may be more suitable to let αk be an estimate of the value of α
that minimizes F (xk+α dk), α∈R, but this minimum may occur at α=0, even
if ∇F (xk) is nonzero.

The remarks of this section have exposed some major disadvantages of clas-
sical methods for optimization. Thus we may be able to appreciate better the
gains that have been achieved since 1959.

2 Two major advances in unconstrained optimization

I was fortunate in 1962 to obtain a copy of the report of Davidon (1959), after
finding a reference to it in a monograph. The report describes an algorithm for
unconstrained minimization, which I programmed for a Ferranti Mercury com-
puter, in order to try some numerical experiments. The results were staggering,
especially the minimization of a periodic function F (x), x∈Rn, with 100 vari-
ables, although problems with n = 20 were considered large at that time. The
k-th iteration requires a vector of variables xk, an n×n positive definite symmet-
ric matrix Hk, and the gradient ∇F (xk), which is available from the (k−1)-th
iteration for k≥2. The sequence of iterations is terminated if ‖∇F (xk)‖ is suf-
ficiently small, but otherwise formula (1.4) gives the next vector of variables,
dk being the search direction dk =−Hk∇F (xk), which has the downhill prop-
erty dT

k ∇F (xk) < 0, and αk being a step-length that satisfies the conditions
(1.6), usually with |dT

k ∇F (xk+αk dk)| much less than |dT
k ∇F (xk)|. Finally, the

iteration replaces Hk by the matrix

Hk+1 = Hk − Hk γ
k
γ T

k
Hk

γ T
k

Hk γ
k

+
δk δ T

k

δ T
k γ

k

, (2.1)

where δk =xk+1−xk, where γ
k
=∇F (xk+1)−∇F (xk), and where the superscript

“T” distinguishes a row vector from a column vector. The positive definiteness
of Hk+1 is inherited from Hk, because the second of the conditions (1.6) implies
δ T

k γ
k
>0.

Davidon (1959) explains that, if the objective function F is strictly convex
and quadratic, and if each αk is the value of α that minimizes F (xk +α dk),
α > 0, which is the condition dT

k ∇F (xk +αkdk) = 0, then, in exact arithmetic,
the least value of F is calculated after at most n iterations. His arguments
include some variable metric points of view, familiar to experts in the theory
of relativity, but many researchers including myself do not understand them
properly. Therefore other proofs of quadratic termination have been constructed,
which depend strongly on the fact that the algorithm with exact line searches
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gives the conjugacy property dT
k ∇2F dj = 0, j 6= k, in the quadratic case. Thus

the orthogonality conditions

dT
j ∇F (xk+1) = 0, j =1, 2, . . . , k, (2.2)

are achieved. There are no restrictions on the choices of x1 and the symmetric
matrix H1 for the first iteration, except that H1 must be positive definite.

The brilliant advantage of this algorithm over classical methods is that it can
be applied easily to minimize a general differentiable function F , even if a good
initial vector of variables x1 is not available, and it gives fast convergence when F
is quadratic. Not having to calculate second derivatives is welcome, and it brings
two more benefits over the Newton–Raphson procedure. Firstly there is no need
to devise a remedy for loss of positive definiteness in ∇2F (x), and secondly
the amount of routine work of each iteration is only O(n2) instead of O(n3).
Another attractive property is invariance under linear transformations of the
variables. Specifically, let xk, k=1, 2, 3, . . ., and zk, k=1, 2, 3, . . ., be the vectors
of variables that are generated when the algorithm is applied to the functions
F (x), x∈Rn, and F (S−1z), z ∈Rn, respectively, where S is any constant real
n×n nonsingular matrix. Then, if the initial vector of variables in the second
case is z1 = S x1, if the initial positive definite matrix is changed from H1 to
S H1S

T for the second case, and if there are no changes to the procedure for
choosing each step-length αk, then the second sequence of variables is zk =S xk,
k=1, 2, 3, . . . . It follows that good efficiency does not require the variables to be
scaled so that their magnitudes are similar. Furthermore, one can simplify the
theoretical analysis when F is quadratic by assuming without loss of generality
that ∇2F is the unit matrix.

The investigations of Roger Fletcher into Davidon’s recent algorithm were
similar to my own, so we reported them in a joint paper (Fletcher and Powell,
1963), and the original algorithm has become known as the DFP method. One
can view Bk+1 = H−1

k+1 as an approximation to ∇2F , partly because equation
(2.1) gives Hk+1γk

= δk, which implies γ
k

= Bk+1δk, while γ
k

=∇2F δk holds
when F is quadratic. The matrix Bk+1 =H−1

k+1 can be calculated directly from
Bk =H−1

k , equation (2.1) being equivalent to the formula

Bk+1 =
(

I − γ
k
δ T

k

δ T
k γ

k

)
Bk

(
I − δk γ T

k

δ T
k γ

k

)
+

γ
k
γ T

k

δ T
k γ

k

. (2.3)

It is sometimes helpful that working with Bk provides the quadratic model

F (xk+ d) ≈ F (xk) + dT∇F (xk) + 1
2 dT Bk d, d∈Rn. (2.4)

Expression (2.3) allows the Cholesky factorization of Bk+1 to be derived from
the Cholesky factorization of Bk in O(n2) operations. Thus positive definiteness
is preserved in the presence of computer rounding errors, and it is inexpensive
to obtain the usual search direction dk = −Hk∇F (xk) from the linear system
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Bkdk =−∇F (xk). A comparison of equations (2.1) and (2.3) suggests the formula

Hk+1 =
(

I − δk γ T
k

δ T
k γ

k

)
Hk

(
I − γ

k
δ T

k

δ T
k γ

k

)
+

δk δ T
k

δ T
k γ

k

. (2.5)

If it replaces equation (2.1) in the DFP method, then we have the well-known
BFGS method, which is usually faster than the DFP method in practice.

The other major advance in unconstrained optimization that we consider in
this section is the conjugate gradient method of Fletcher and Reeves (1964). It
can be applied to general differentiable functions F (x), x ∈ Rn, it is designed
to be efficient when F is quadratic, and it has the strong advantage over the
variable metric algorithm of not requiring any n×n matrices. It can be regarded
as an extension of the steepest descent method, retaining d1 = −∇F (x1), but
the search directions of later iterations have the form

dk = −∇F (xk) + βk dk−1, k≥2, (2.6)

where βk is allowed to be nonzero. Then a line search picks the step-length that
provides the new vector of variables (1.4), which completes the description of
the k-th iteration except for the choices of αk and βk.

These choices are made in a way that achieves the orthogonality conditions
(2.2) for each iteration number k when F is a strictly convex quadratic function,
assuming exact arithmetic and termination if ‖∇F (xk)‖=0 occurs. We satisfy
dT

k ∇F (xk+1)=0 by letting αk be the α that minimizes F (xk+αdk), α>0, while
the (k−1)-th of the conditions (2.2) defines βk. Specifically, because the line search
of the previous iteration gives dT

k−1∇F (xk) = 0, we require dT
k−1{∇F (xk+1)−

∇F (xk)} = 0, which is equivalent to {∇F (xk)−∇F (xk−1)}T dk = 0 in the
quadratic case. It follows from equation (2.6) that βk should take the value

βk = {∇F (xk)−∇F (xk−1)}T ∇F (xk)
/
{∇F (xk)−∇F (xk−1}T dk−1

= {∇F (xk)−∇F (xk−1)}T ∇F (xk)
/
‖∇F (xk−1)‖2, (2.7)

the denominator in the second line being derived from exact line searches and
the form of dk−1. The description of the algorithm is now complete when F is
quadratic, and we note that∇2F is not required. Further analysis in this case can
establish the first k−2 of the conditions (2.2). It exposes not only the conjugacy
property dT

k ∇2F dj =0, j 6=k, but also that the gradients ∇F (xk), k=1, 2, 3, . . . ,
are mutually orthogonal.

The second line of expression (2.7) states the formula for βk that is preferred
by Polak and Ribière (1969) for general F , but Fletcher and Reeves (1964)
propose βk =‖∇F (xk)‖2/‖∇F (xk−1)‖2. These two choices are equivalent in the
theory of the quadratic case, due to the mutual orthogonality of gradients that
has been mentioned, but they are quite different for general F , especially if the
changes to ∇F (xk) become relatively small as k is increased. The alternative of
Polak and Ribière seems to be more efficient in practice, and it is even better
to increase their βk to zero if it becomes negative. Another reason for modifying
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βk (or αk−1) is that, if βk is nonzero, then the conditions (1.6) of the previous
iteration may fail to supply the descent property dT

k ∇F (xk)<0.
We see that the conjugate gradient technique is nearly as easy to apply as

steepest descents, and usually it provides huge gains in efficiency. The DFP and
BFGS algorithms with H1 =I (the unit matrix) are equivalent to the conjugate
gradient method when F is quadratic and all line searches are exact, but the use
of the matrices Hk, k = 1, 2, 3, . . ., brings a strong advantage for general F . In
order to explain it, we assume that the sequence xk, k=1, 2, 3, . . ., converges to
x∗, say, and that F becomes exactly quadratic only in a neighbourhood of x∗,
which hardly ever happens in practice. The excellent convergence properties of
variable metric algorithms are enjoyed automatically when the points xk enter
the neighbourhood, without any restrictions on the current xk and the positive
definite matrix Hk. On the other hand, the corresponding convergence properties
of the conjugate gradient method require a special choice of the initial search
direction, d1 = −∇F (x1) being suitable, except that the implications of this
choice would be damaged by the generality of F on the early iterations. The
perfect remedy would set βk = 0 as soon as the variables xk stay within the
neighbourhood, and perhaps on some earlier iterations too. In practice, βk can
be set to zero when, after the most recent steepest descent iteration, a substantial
loss of orthogonality in the sequence of gradients ∇F (xk) is observed.

3 Unconstrained objective functions for constrained
problems

The methods of Section 2 provide huge improvements over classical algorithms
for unconstrained optimization. Therefore it was attractive in the 1960s to in-
clude constraints on the variables by modifying the objective functions of un-
constrained calculations. In particular, the techniques in the book of Fiacco and
McCormick (1968) were very popular. Some of them are addressed below.

Let the least value of F (x), x ∈ Rn, be required, subject to the inequality
constraints

ci(x) ≥ 0, i=1, 2, . . . ,m. (3.1)

Then a typical objective function of a barrier method has the form

Φ(x, µ) = F (x) + µ
∑m

i=1 {ci(x)}−1

or Φ(x, µ) = F (x)− µ
∑m

i=1 log{ci(x)}

}
, x∈Rn, (3.2)

if x satisfies all the constraints (3.1) as strict inequalities, but otherwise Φ(x, µ)
is defined to be +∞. Here µ is a positive parameter that remains fixed during
the unconstrained minimization of Φ(x, µ), x∈Rn. The starting point x1 of this
calculation has to satisfy ci(x1)>0, i=1, 2, . . . , m, because Φ(x1, µ) is required to
be finite. Let x[µ] be the vector of variables that is produced by this calculation.

The constraints (3.1) are also satisfied as strict inequalities at x[µ], because
the unconstrained algorithm provides Φ(x[µ], µ)≤Φ(x1, µ) automatically, but it
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is usual for the solution, x∗ say, of the original problem to be on the boundary
of the feasible region. In this case, the theory of barrier methods requires F and
ci, i = 1, 2, . . . , m, to be continuous functions, and it requires every neighbour-
hood of x∗ to include a strictly interior point of the feasible region. Then it is
straightforward to establish F (x[µ])<F (x∗)+ε for sufficiently small µ, where ε
is any positive constant, assuming that Φ(x[µ], µ) is sufficiently close to the least
value of Φ(x, µ), x∈Rn.

Equality constraints, however, cannot be included in barrier function meth-
ods, because they cannot be satisfied as strict inequalities. Therefore, when min-
imizing F (x), x∈Rn, subject to the conditions

ci(x) = 0, i=1, 2, . . . ,m, (3.3)

it was usual to apply an algorithm for unconstrained minimization to the function

Φ(x, µ) = F (x) + µ−1
∑m

i=1 {ci(x)}2

or Φ(x, µ) = F (x) + µ−1
∑m

i=1 |ci(x)|

}
, x∈Rn, (3.4)

where µ is still a positive parameter, fixed during each unconstrained calcula-
tion, that has to become sufficiently small. A new difficulty is shown by the
minimization of F (x) = x3, x ∈R, subject to x = 1, namely that, for any fixed
µ> 0, the functions (3.4) are not bounded below. On the other hand, if x[µ] is
the minimizer of Φ(x, µ), x∈Rn, if the points x[µ], µ>0, all lie in a compact re-
gion of Rn, and if the objective and constraint functions are continuous, then all
limit points of the sequence x[µ] as µ→0 are solutions of the original problem.
The two main ingredients in a proof of this assertion are that the constraints
are satisfied at the limit points, and that, for every positive µ, F (x[µ]) is a lower
bound on the required value of F .

Penalty function methods are also useful for inequality constraints. If ci(x)=0
were replaced by ci(x) ≥ 0, then, in expression (3.4), it would be suitable to
replace the terms {ci(x)}2 and |ci(x)| by {min[0, ci(x)]}2 and max[0,−ci(x)],
respectively.

The dependence of the error x[µ]−x∗ on µ, for both the inequality and
equality constrained problems that have been mentioned, can be investigated
by comparing the condition for an unconstrained minimum of Φ(x, µ), x∈Rn,
with the KKT conditions for a solution of the original problem. We consider
this approach briefly when the constraints are the equations (3.3), when Φ is
the first of the functions (3.4), when the objective and constraint functions have
continuous first derivatives, when ∇F (x∗) is nonzero, and when the constraint
gradients ∇ci(x∗), i=1, 2, . . . ,m, are linearly independent. Then ∇Φ(x[µ], µ)=0
is the equation

∇F (x[µ]) + 2 µ−1 ∑m
i=1 ci(x[µ])∇ci(x[µ]) = 0, (3.5)

while the first order KKT conditions include the existence of unique Lagrange
multipliers λ∗i ∈R, i=1, 2, . . . ,m, not all zero, such that∇F (x∗) can be expressed
in the form

∇F (x∗) =
∑m

i=1 λ∗i ∇ci(x∗). (3.6)
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Therefore, if x[µ] tends to x∗ as expected when µ→ 0, we have the estimates
ci(x[µ])≈− 1

2µλ∗i , i = 1, 2, . . . , m. It follows that the distance from x[µ] to any
point in Rn that satisfies the constraints is at least of magnitude µ. Typically,
‖x[µ]−x∗‖ is also of this magnitude, but there are exceptions, such as the min-
imization of x4

1 +x1x2 +x2, x ∈ R2, subject to x2 = 0. We will return to this
example later.

The efficiency of these barrier and penalty function methods depends strongly
on suitable stopping conditions for the unconstrained calculations, on the size
of the reductions in µ, and on obtaining a good starting vector and second
derivative estimates for each new unconstrained problem from the sequence of
unconstrained problems that have been solved already. Research on interior point
methods has given much attention to these questions during the last twenty
years, because the path x[µ], µ > 0, in Rn is a part of the central path of
a primal-dual algorithm (see Wright, 1997, for instance). In the early 1970s,
however, barrier and penalty function methods became unpopular, due to the
development of new techniques for constraints that avoid the difficulties that
arise when µ is tiny. In particular, the functions Φ(x, µ), x ∈Rn, tend to have
some huge first derivatives, so a descent method for unconstrained minimization
can reach the bottom of a cliff easily. Then the remainder of the route to x[µ]
has to stay at the bottom of the cliffs that are caused by the barrier or penalty
terms, which is a daunting situation, especially if the constraints are nonlinear.

The augmented Lagrangian method, proposed by Hestenes (1969) and Powell
(1969) independently, is a highly useful extension to the minimization of the first
of the functions (3.4), when seeking the least value of F (x), x∈Rn, subject to
the equality constraints (3.3). The new penalty function has the form

Λ(x, λ, µ) = F (x) − ∑m
i=1 λi ci(x) + µ−1 ∑m

i=1 {ci(x)}2, x∈Rn, (3.7)

its unconstrained minimum being calculated approximately for each fixed choice
of the parameters λ ∈ Rm and µ > 0. Let this calculation give the vector of
variables x[λ, µ]. The main feature of the augmented Lagrangian method is that
it tries to satisfy the constraints ci(x[λ, µ]) = 0, i = 1, 2, . . . , m, by adjusting
λ ∈ Rm without further reductions in µ when µ becomes sufficiently small. It
follows from equation (3.6) and from the assumed linear independence of the
constraint gradients that, if µ>0, then the solution x∗ of the original problem is
at the unconstrained minimum of the function (3.7) only if λ has the components
λi =λ∗i , i=1, 2, . . . ,m.

In the awkward problem that has been mentioned of minimizing x4
1+x1x2+x2,

x∈R2, subject to x2 =0, we find λ∗1 =1 and that expression (3.7) is the function

Λ(x, λ∗, µ) = x4
1 + x1 x2 + µ−1 x2

2, x∈R2, (3.8)

which is stationary at the required solution x∗=0. Unfortunately this stationary
point is never a minimum when µ is fixed and positive. However, the second
order condition dT {∇2F (x∗)−∑m

i=1 λ∗i∇2ci(x∗)}d > 0, where d is any nonzero
vector that is orthogonal to ∇ci(x∗), i = 1, 2, . . . , m, is usually satisfied for the
given problem. In this case, the function (3.7) with λ=λ∗ is not only stationary
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at x=x∗, but also the second derivative matrix ∇2Λ(x∗, λ∗, µ) is positive definite
for sufficiently small µ. It follows that x∗ can be calculated by the unconstrained
minimization of Λ(x, λ∗, µ), x∈Rn.

The initial choice of µ and any later reductions should provide suitable local
minima in the unconstrained calculations and should help the achievement of
λ→λ∗. Usually the components of λ are set to zero initially. A convenient way of
adjusting λ is based on the remark that, if x is a stationary point of the function
(3.7), then it satisfies the equation

∇Λ(x, λ, µ) = ∇F (x) − ∑m
i=1 {λi − 2 µ−1 ci(x)}∇ci(x) = 0. (3.9)

Specifically, a comparison of equations (3.6) and (3.9) suggests the formula

λi ← λi − 2 µ−1 ci(x[λ, µ]), i=1, 2, . . . ,m, (3.10)

where “←” denotes “is replaced by”. The success of this technique requires µ to
be sufficiently small. Other techniques for updating λ have been derived from the
remark that λ∗ should be the value of λ that maximizes Λ(x[λ, µ], λ, µ), λ∈Rm.
Indeed, the calculation of x[λ, µ] should provide the bound

Λ(x[λ, µ], λ, µ) ≤ Λ(x∗, λ, µ) = F (x∗) = Λ(x∗, λ∗, µ) (3.11)

for every choice of λ, the last two equations being elementary consequences of
the constraints ci(x∗)=0, i=1, 2, . . . ,m.

The augmented Lagrangian method became even more useful when Rockafel-
lar (1973) proposed and analysed a version of expression (3.7) that is suitable for
inequality constraints. Specifically, when the original problem is the minimiza-
tion of F (x), x∈Rn, subject to the conditions (3.1), then x[λ, µ] is calculated
by applying an algorithm for unconstrained minimization to the function

Λ(x, λ, µ) = F (x) + µ−1 ∑m
i=1 {min[0, ci(x)− 1

2µλi]}2, x∈Rn, (3.12)

for a sequence of fixed values of λ ∈ Rm and µ ∈ R. Again the constraints are
satisfied by adjusting only λ if possible for sufficiently small µ. We see that, if x
is a stationary point of the new Λ(x, λ, µ), x∈Rn, then it satisfies the equation

∇F (x)−∑m
i=1 max[0, λi − 2µ−1ci(x)]∇ci(x) = 0. (3.13)

Therefore we modify formula (3.10) for adjusting λ by letting max[0,λi−2µ−1ci(x)]
at x = x[λ, µ] be the new right hand side. Thus the components of λ are non-
negative, as required in the KKT condition (3.6) of the original problem when
the constraints are inequalities. Further, λ∗i should be zero in equation (3.6) for
every i that satisfies ci(x∗)>0, and, if µ is sufficiently small, the modification of
formula (3.10) gives λi this property automatically. A mixture of equality and
inequality constraints can be treated by taking their contributions to Λ(x, λ, µ)
from expressions (3.7) and (3.12), respectively.
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4 Sequential quadratic programming

Often the methods of the last section are too elaborate and too sophisticated.
An extreme example is the minimization of F (x), x ∈ Rn, subject to xn = 0.
The constraint allows the number of variables to be decreased by one, and then
a single unconstrained calculation with n−1 variables can be solved, instead
of a sequence of unconstrained calculations with n variables. The sequence of
subproblems can also be avoided when the constraints are nonlinear by mak-
ing linear approximations to the constraints. In particular, if the least value of
F (x) is required subject to the equality constraints (3.3), and if the objective
and constraint functions have continuous second derivatives, then one can apply
Newton’s method for solving nonlinear equations to the system that is given
by the first order KKT conditions at the solution. That approach has several
disadvantages. Many of them were removed by the development of sequential
quadratic programming (SQP), which is addressed below, because SQP became
a popular successor to the augmented Lagrangian method for constrained cal-
culations in the late 1970s.

In the application of Newton’s method that has just been mentioned, the
unknowns are not only the variables xi, i = 1, 2, . . . , n, but also the Lagrange
multipliers of condition (3.6). Specifically, we seek vectors x ∈ Rn and λ ∈ Rm

that satisfy the square system of equations

∇F (x)−∑m
i=1 λi∇ci(x) = 0 and

−ci(x) = 0, i=1, 2, . . . , m,

}
(4.1)

the signs of the equality constraints (3.3) being reversed in order that the Jaco-
bian matrix of Newton’s method is symmetric. Let f(x, λ), x∈Rn, λ∈Rm, be the
vector in Rm+n whose components are the left hand sides of expression (4.1).
As in Section 1, the k-th iteration of Newton’s method without line searches
calculates xk+1 = xk +dk and λk+1 = λk +η

k
by equating to zero a first order

Taylor series approximation to the function f(xk +d, λk +η), d ∈ Rn, η ∈ Rm.
Specifically, the analogue of equation (1.3) is that dk and η

k
are derived from

the linear system
(

W (xk, λk) −J(xk)T

−J(xk) 0

)(
dk

η
k

)
=

(
−∇F (xk) + J(xk)T λk

c(xk)

)
, (4.2)

where W (x, λ)=∇2F (x)−∑m
i=1 λi∇2ci(x), where J(x) is now the m×n matrix

that has the elements

[J(x)]ij = dci(x)/dxj , 1≤ i≤m, 1≤j≤n, (4.3)

and where c(x) is the vector in Rm with the components ci(x), i=1, 2, . . . , m.
This application of Newton’s method has the following three disadvantages.

The calculation breaks down if the partitioned matrix of the linear system (4.2)
becomes singular. No attempt is made to help convergence when good initial
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values of the variables are not available. The minimization ingredient of the
original problem is absent from the formulation (4.1). On the other hand, the
method provides a highly useful answer to a very important question, which is
to identify the second derivatives that are usually sufficient for a fast rate of
convergence. We see that the k-th iteration in the previous paragraph requires
second derivatives of the objective and constraint functions only to assemble the
matrix W (xk, λk). Therefore, when second derivatives are estimated, one should
construct an approximation to the combination ∇2F (x)−∑m

i=1 λi∇2ci(x), which
is much more convenient than estimating all the matrices ∇2F (x) and ∇2ci(x),
i=1, 2, . . . ,m, separately.

We recall from Section 2 that variable metric algorithms for unconstrained
optimization bring huge advantages over the Newton–Raphson method by work-
ing with positive definite approximations to ∇2F . Similar gains can be achieved
in constrained calculations over the Newton iteration above by making a pos-
itive definite approximation to W (xk, λk) in the system (4.2). We let Bk be
such an approximation, and we consider the minimization of the strictly convex
quadratic function

Qk(xk+ d) = F (xk) + dT∇F (xk) + 1
2 dTBk d, d∈Rn, (4.4)

subject to the linear constraints

ci(xk) + dT∇ci(xk) = 0, i=1, 2, . . . , m, (4.5)

still assuming that the constraint gradients are linearly independent. The vector
d=dk is the solution to this problem if and only if it satisfies the constraints (4.5)
and the gradient ∇Qk(xk+dk)=∇F (xk)+Bkdk is in the linear space spanned
by ∇ci(xk), i=1, 2, . . . , m. In other words, dk has to satisfy the equations (4.2)
with W (xk, λk) replaced by Bk, the partitioned matrix of the new system being
nonsingular due to the given assumptions. Thus the calculation of dk by the
Newton iteration is equivalent to the solution of the strictly convex quadratic
programming problem, which captures the minimization ingredient that has been
mentioned. A more important benefit of the alternative calculation of dk is that
it has a natural extension for inequality constraints, by continuing to let dk be
the vector d that minimizes the strictly convex quadratic function (4.4) subject
to first order Taylor series approximations to all the constraints. Specifically, for
each constraint index i, the original constraint ci(x)=0 or ci(x)≥0 contributes
the condition ci(xk)+dT∇ci(xk)=0 or ci(xk)+dT∇ci(xk)≥ 0, respectively, to
the quadratic programming problem, without any change to Qk(xk+d), d∈Rn,
after Bk has been chosen.

The DFP formula (2.3) (or the well-known BFGS formula) may be used to
define Bk+1 for the next iteration, where δk is the step xk+1−xk as before, but
the selection of γ

k
requires further consideration. The updating formula gives

Bk+1δk = γ
k
, so γ

k
must satisfy δT

kγ
k

> 0, in order that Bk+1 inherits positive
definiteness from Bk. On the other hand, because Bk+1 should be an estimate
of the combination ∇2F (xk+1)−

∑m
i=1 λi∇2ci(xk+1), as mentioned already, it it
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suitable to let the difference

γ̂
k

= ∇F (xk+1)−∇F (xk)−∑m
i=1 λi {∇ci(xk+1)−∇ci(xk)} (4.6)

be a provisional choice of γ
k
, where the multipliers λi, i = 1, 2, . . . , m, can be

taken from the quadratic programming problem that defines dk, even if some of
the constraints are inequalities. It is possible, however, for the original problem to
be the minimization of F (x)=− 1

2‖x‖2, x∈Rn, subject to constraints that are all
linear. Then equation (4.6) gives γ̂

k
=−xk+1+xk =−δk, which implies δ T

k γ̂
k
<0,

although we require δ T
k γ

k
> 0. Therefore the form γ

k
= θkγ̂

k
+(1−θk)Bkδk is

proposed in Powell (1978) for the DFP or BFGS updating formula, where θk is
the largest number from [0, 1] that satisfies δ T

k γ
k
≥0.1 δ T

k Bkδk. A device of this
kind was necessary in order to provide software.

Another challenge for SQP software is forcing convergence from poor starting
points. A remedy in Section 1 is to seek xk+1 by a line search from xk along the
direction dk, but, if all the early iterations require tiny step-lengths, then the
progress towards constraint boundaries is very slow, even if the constraints are
linear. Therefore some implementations of the SQP method employ two kinds of
changes to the variables, namely horizontal and vertical steps, where horizontal
steps include line searches and try to reduce the objective function without
worsening constraint violations, and where the main purpose of vertical steps
is to correct the departures from feasibility (see Coleman and Conn, 1982, for
instance). Several techniques have also been proposed for deciding whether or
not to accept a trial step in a line search, the difficulty being that improvements
in the objective function and decreases in constraint violations may not occur
together. The usual compromise is to seek a reduction in the penalty function

Φ(x, µ) = F (x) + µ−1{∑
i∈E |ci(x)|+ ∑

i∈I max [0,−ci(x)] }, (4.7)

where E and I contain the indices of the equality and inequality constraints,
respectively, and where µ has to be selected automatically. Alternatively, instead
of taking dubious decisions in the line searches, one can keep options open by
applying the filter method of Fletcher and Leyffer (2002). Many different versions
of the SQP method have been developed for constrained calculations when first
derivatives are available, and usually they are excellent at keeping down the total
number of function and gradient evaluations.

5 Trust region methods

We recall that, in line search methods for forcing convergence from general start-
ing points, the sequence of iterations gives the variables

xk+1 = xk + αk dk, k=1, 2, 3, . . . , (5.1)

where usually the search direction dk is derived from a simple model of the origi-
nal problem, and where the choice of the step-length αk should make xk+1 better
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than xk according to the criteria of the original problem, the simplest example
being the condition F (xk+1) < F (xk) when the least value of F (x), x ∈ Rn, is
required. We expect the model of the k-th iteration to provide useful accuracy
in a neighbourhood of xk, but xk+dk may be far from that neighbourhood, so
often the step-lengths of line search methods are substantially less than one for
many consecutive iterations. Then it is reasonable to take the view that each new
value of ‖xk+1−xk‖ is not going to be much larger than the magnitudes of the
changes to the variables of recent iterations. Under this assumption, one may be
able to make much better use of the simple model. For example, moves to con-
straint boundaries can be made more quickly in the situation that is mentioned
in the last paragraph of Section 4. Therefore a bound of the form ‖dk‖ ≤ ∆k

is imposed by a trust region method, the remaining freedom in dk being taken
up by consideration of the current simple model. The positive parameter ∆k

is chosen automatically before the start of the k-th iteration. Some details and
advantages of this technique are addressed below, because, since the 1970s, trust
region methods have become fundamental within many highly successful algo-
rithms for optimization.

We begin with the unconstrained minimization of F (x), x ∈Rn, when first
derivatives are available, and when the calculation of xk+1 from xk employs the
model

F (xk+ d) ≈ Qk(xk+ d) = F (xk) + dT∇F (xk) + 1
2 dTBk d, d∈Rn, (5.2)

as in expressions (2.4) and (4.4), but now there is no need for the symmetric ma-
trix Bk to be positive definite. We assume that termination occurs if ‖∇F (xk)‖
is sufficiently small. Otherwise, we require dk to be an estimate of the vector d
that minimizes Qk(xk+d), d∈Rn, subject to ‖d‖≤∆k. If dk is an exact solution
to this subproblem, then there exists λk≥0 such that the equation

(Bk+ λk I) dk = −∇F (xk) (5.3)

holds, and Bk+λkI is positive definite or semi-definite, where I is the identity
matrix. Thus reliable procedures for calculating dk with control of accuracy are
given by Moré and Sorensen but often they are too expensive when n is large.
Instead it is usual to apply the conjugate gradient minimization procedure of
Section 2 to the quadratic model (5.2), starting at d=0. It generates a piecewise
linear path in Rn, the difference between the end and the beginning of the `-th
line segment of the path being the change that is made to the vector of variables
d on the `-th iteration. The conjugate gradient iterations are terminated if the
path reaches the boundary of the region {d : ‖d‖≤∆k}, or if the reduction in
Q(xk+d) by an iteration is much less than the total reduction so far. Then dk

is chosen to be the final point of the path, except that some algorithms seek
further reductions in Qk(xk+d) in the case ‖dk‖=∆k (Conn, Gould and Toint,
2000).

After picking dk, the new function value F (xk+dk) is calculated. The ratio

ρk = {F (xk)− F (xk+ dk)} / {Qk(xk)−Qk(xk+ dk)} (5.4)
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is important, because a value close to one suggests that the current model is good
for predicting the behaviour of F (xk+d), ‖d‖≤∆k. Therefore the value of ∆k+1

for the next iteration may be set to max[∆k, 2‖dk‖], ∆k or 1
2‖dk‖ in the cases

ρk≥0.8, 0.2≤ρk <0.8 or ρk <0.2, respectively, for example. No other values of
F are calculated on the k-th iteration of most trust region methods, xk+1 being
either xk or xk+dk. It seems obvious to prefer xk+1 =xk+dk whenever the strict
reduction F (xk +dk) < F (xk) is achieved, which is the condition ρk > 0. Many
trust region algorithms, however, set xk+1 to xk +dk only if ρk is sufficiently
large. If F (xk+dk)≥F (xk) occurs in a trust region method, then the conditions
xk+1 =xk and ‖dk+1‖≤∆k+1 <‖dk‖ are satisfied. Hence, if the vector xk+1+dk+1

of the (k+1)-th iteration is regarded as the result of a step from xk, then the
length of the step is less than ‖dk‖ automatically. Thus trust region methods
include a main ingredient of line search methods. Attention is given later to the
choice of the new matrix Bk+1 at the end of the k-th iteration.

As in Section 4, a difficulty in constrained calculations is the need for a
balance between reducing F (x), x ∈ Rn, and correcting violations of the con-
straints. We retain the compromise of the penalty function (4.7), and we estimate
Φ(xk+d, µ), d∈Rn, by the model

Ξk(xk+ d, µ)=F (xk)+dT∇F (xk)+ 1
2 dTBk d + µ−1{∑

i∈E |ci(xk) + dT∇ci(xk)|
+

∑
i∈I max [0,−ci(xk)− dT∇ci(xk)] }, d∈Rn, (5.5)

which reduces to expression (5.2) if there are no constraints. It is usual to termi-
nate the sequence of iterations if the residuals of the first order KKT conditions
are sufficiently small at x = xk. Otherwise, dk and µ are chosen in a way that
satisfies ‖dk‖≤∆k and Ξk(xk+dk, µ)<Ξk(xk, µ). Let F (·) and Qk(·) be replaced
by Φ(·, µ) and Ξk(·, µ) throughout the remarks of the previous paragraph, the
new version of the definition (5.4) being the ratio

ρk = {Φ(xk, µ)− Φ(xk+ dk, µ)} / {Ξk(xk, µ)−Ξk(xk+ dk, µ)}. (5.6)

The modified remarks give suitable techniques for choosing ∆k+1 and xk+1 in
calculations with constraints on the variables.

If the ∞-norm is used instead of the 2-norm in the bound ‖d‖ ≤∆k, then
the minimization of the function (5.5) for fixed µ subject to the bound is a
quadratic programming problem. Thus the dk of the previous paragraph can be
calculated (Fletcher, 1985), with occasional decreases in µ if necessary in order
to give enough weight to the constraints. Another way of generating dk begins
by letting d̂k be an estimate of the d that minimizes Γk(d), d∈Rn, subject to
‖d‖≤ 1

2∆k, where Γk(d) is the term inside the braces of expression (5.5). Then
dk has to satisfy ‖dk‖ ≤ ∆k and Γk(dk) ≤ Γk(d̂k), which leaves some freedom
in dk. It is taken up by trying to make Qk(xk +dk) substantially smaller than
Qk(xk + d̂k), where Qk(xk +d) is still the quadratic term (5.2). This technique
has the property that dk is independent of µ, which is adjusted separately in a
way that controls the required reduction Ξk(xk+dk, µ)<Ξk(xk, µ).
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Several advantages are provided by the fact that, in trust region methods,
the second derivative matrix Bk of the model does not have to be positive def-
inite. In particular, if the sparsity structure of ∇2F is known in unconstrained
optimization, then Bk+1 may be required to have the same structure in addition
to satisfying the equation Bk+1δk =γ

k
of Section 2, which may not allow Bk+1

to be positive definite, even if we retain δ T
k γk > 0. Moreover, we recall from

Section 4 that, in constrained calculations, it is suitable to replace the condition
Bk+1δk = γ

k
by Bk+1δk = γ̂

k
, where γ̂

k
is the difference (4.6). There is now

no need for an unwelcome device to maintain positive definiteness, as described
after equation (4.6). In both of these situations the conditions on the elements of
Bk+1 are linear equality constraints. A highly successful and convenient way of
taking up the freedom in Bk+1 is to minimize ‖Bk+1−Bk‖F , where the subscript
F denotes the Frobenius norm. In other words, we let the new model be as close
as possible to the old model subject to the linear constraints, where closeness
is measured by the sum of squares of the changes to the elements of the second
derivative matrix of the model. Some very useful properties of this technique are
given in the next section.

Trust region methods are also more robust than line search methods when
the Newton iteration (1.3) is modified, in case the starting point x1 is not “suf-
ficiently close” to a solution. We recall that a line search method applies for-
mula (1.4), but a trust region method would choose between the alternatives
xk+1 =xk+dk and xk+1 =xk, where dk is an estimate of the vector d that min-
imizes ‖f(xk)+J(xk)d‖ subject to ‖d‖≤∆k. The usual ways of selecting xk+1

and ∆k+1 for the next iteration are similar to those that have been described
already.

6 Further remarks

In my experience, the question that has been most useful to the development of
successful algorithms for unconstrained optimization is “Does the method work
well when the objective function is quadratic?”. The answer is very welcome and
encouraging for the updating of second derivative matrices of quadratic models
by the symmetric Broyden method, which is the technique of taking up freedom
in the new model by minimizing ‖Bk+1−Bk‖F , mentioned in the paragraph
before last. We are going to consider this method in unconstrained calculations
when the current quadratic model has the form

F (xk+ d) ≈ Qk(xk+ d) = F (xk) + dTg
k

+ 1
2 dTBk d, d∈Rn, (6.1)

where F (xk) and Bk are retained from expression (5.2), but g
k

is allowed to be
an estimate of ∇F (xk) that is given to the k-th iteration, which is useful if first
derivatives of F are not available.

Some constraints on the parameters of the new model

Qk+1(xk+1+ d) = F (xk+1) + dTg
k+1

+ 1
2 dTBk+1 d, d∈Rn, (6.2)
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have been stated already for algorithms that employ first derivatives. In addition
to g

j
=∇F (xj), j =1, 2, 3, . . ., they include the equation

Bk+1 δk = γ
k

= ∇F (xk+ δk)−∇F (xk), (6.3)

where δk is xk+1−xk or dk in a line search or trust region method, respectively.
In algorithms without derivatives, however, the new model Qk+1 may be derived
from the current model Qk and from interpolation conditions of the form

Qk+1(zj) = F (zj), j =1, 2, . . . , m, (6.4)

where the points zj , j =1, 2, . . . ,m, are chosen automatically, one of them being
xk+1. I prefer to keep m fixed at about 2n+1 and to change only one of the
interpolation points on each iteration, which can provide suitable data for the
selection of both g

k+1
and Bk+1. The matrix Bk+1 is required to be symmetric

in all of these algorithms, and sometimes Bk+1 is given the sparsity structure of
∇2F .

Let F (x), x ∈Rn, be a quadratic function. Then all the constraints on the
parameters of Qk+1 in the previous paragraph are satisfied if we pick Qk+1≡F .
It follows from the linearity of the constraints that they allow any multiple of
the difference F −Qk+1 to be added to Qk+1. Therefore, if Bk+1 is calculated
by minimizing ‖Bk+1−Bk‖F subject to the constraints, which is the symmetric
Broyden method, then the least value of φ(θ)=‖Bk+1−Bk+θ (∇2F−Bk+1)‖2F ,
θ∈R, occurs at θ=0. We consider this remark algebraically by introducing the
notation 〈V, W 〉 for the sum

∑n
i=1

∑n
j=1 VijWij , where V and W are any n×n

symmetric matrices. The definition of the Frobenius norm gives the expression

φ(θ) = 〈 (Bk+1−Bk)+ θ (∇2F −Bk+1), (Bk+1−Bk)+θ (∇2F −Bk+1) 〉, (6.5)

θ∈R, which is least at θ=0 if and only if the scalar product 〈Bk+1−Bk,∇2F−
Bk+1〉 is zero. This remark implies the identity

‖∇2F −Bk+1‖2F = ‖∇2F −Bk‖2F − ‖Bk+1−Bk‖2F , (6.6)

which is a well-known property of least squares projection methods. Thus, if
F is quadratic, the symmetric Broyden method causes the Frobenius norms of
the error matrices ∇2F −Bk, k = 1, 2, 3, . . ., to decrease monotonically as the
iterations proceed.

Equation (6.6) is highly relevant to the important breakthrough in conver-
gence theory by Broyden, Dennis and Moré (1973). They find that, if ∇F is
available in the unconstrained minimization of F (x), x ∈ Rn, then usually the
sequence xk, k = 1, 2, 3 . . ., converges at a superlinear rate if the matrices Bk

have the property

lim k→∞ ‖∇F (xk+ δk)− {∇F (xk) + Bk δk}‖ / ‖δk‖ = 0, (6.7)

for the choices of δk considered already. The term ∇F (xk)+Bkδk is the estimate
of ∇F (xk+δk) given by the quadratic model (6.1) in the case g

k
=∇F (xk). Many
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researchers had believed previously, however, that fast convergence in practice
would require Bk to be sufficiently close to ∇2F (xk). Equation (6.6) shows that
‖Bk+1−Bk‖F tends to zero as k increases. Therefore ‖Bk+1δk−Bkδk‖/‖δk‖
tends to zero too, and we let Bk+1 be constrained by condition (6.3). Thus the
condition (6.7) for superlinear convergence is satisfied by the symmetric Broyden
method even if ‖∇2F−Bk‖F does not become small.

Some successes of the symmetric Broyden method in minimization without
derivatives are stunning. In the NEWUOA software of Powell (2006), the con-
straints on the parameters of the new model (6.2) are the interpolation conditions
(6.4) and the symmetry condition B T

k+1 =Bk+1. The volume of the convex hull
of the points zj , j =1, 2, . . . ,m, is forced to be nonzero, in order that both g

k+1

and Bk+1 are defined uniquely when they provide the least value of ‖Bk+1−Bk‖F

subject to the interpolation and symmetry constraints. The test function that
was used most in the development of NEWUOA has the form

F (x) =
2n∑

i=1

{
bi −

n∑

j=1

(
Sij sin(θjxj) + Cij cos(θjxj)

)}2

, x∈Rn, (6.8)

which is equation (8.5) of Powell (2006). Details are given there, including the
choices of the parameters bi, Sij , θj and Cij and of a starting point x1, several
choices being made randomly for each n. In each experiment, the objective func-
tion (6.8) is minimized to high accuracy and the total number of calculations of
F (x) is noted. The average values of these counts with m=2n+1 are 931, 1809,
3159 and 6013 for n=20, 40, 80 and 160, respectively. We see that these figures
are roughly proportional to n, which is not very surprising if one attributes the
good rate of convergence to the property ‖Bk+1−Bk‖F →0. On the other hand,
an algorithm that constructed a careful quadratic model would require more
than n2/2 calculations of F (x). These observations are analogous to the remark
that, if ∇F is available, if F (x), x∈Rn, is minimized by one of the methods of
Section 2, and if n is large, then it is not unusual for the required accuracy to
be achieved in far fewer than n iterations.

The material of this paper leans strongly towards my own contributions to
nonlinear optimization. Therefore the presentation should be regarded as a per-
sonal view of an active researcher instead of an attempt at being comprehensive.
Most of the algorithms that have been addressed do not require a review, be-
cause they, with several other methods, are now studied carefully in books, such
as Fletcher (1987), Nocedal and Wright (1999) and Sun and Yuan (2006). The
main exception is the brief consideration of minimization without derivatives in
the previous paragraph, the NEWUOA software being only five years old. An
excellent survey of another part of this field is given by Kolda, Lewis and Tor-
czon (2003). It includes some work on optimization without derivatives when
there are constraints on the variables. There is a strong need in that area for
new algorithms that provide high accuracy efficiently.
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Abstract. An account is given of the history and development of nu-
merical analysis in Scotland. This covers, in particular, activity in Ed-
inburgh in the first half of the 20th century, the collaboration between
Edinburgh and St Andrews in the 1960s, and the role played by Dundee
from the 1970s. I will give some reminiscences from my own time at both
Edinburgh and Dundee.

1 Introduction

To provide a historical account of numerical analysis (or of anything else), it is
necessary to decide where to begin. If numerical analysis is defined to be the
study of algorithms for the problems of continuous mathematics [16], then of
course it has a very long history (see, for example, [6], [13]). But “modern”
numerical analysis is inextricably linked with computing machines. It is usually
associated with programmable electronic computers, and is often said to have
its origins in the 1947 paper by von Neumann and Goldstine [10]. The name
apparently was first used around that time, and was given formal recognition in
the setting up of the Institute for Numerical Analysis, located on the campus of
the University of California at Los Angeles [3]. This was a section of the National
Applied Mathematics Laboratories of the National Bureau of Standards headed
by J. H. Curtiss, who is often given credit for the name.

Others consider modern numerical analysis to go back further than this; for
example Todd [15] suggests it begins around 1936, and cites papers by Comrie
and Turing. But if what is required is a systematic study of what we now think of
as numerical analysis, in conjunction with the use of calculating machines, then
the origin of numerical analysis in Scotland can be traced back even further, to
the early years of the 20th century.

2 Edinburgh: early years

To be specific, the story begins in Edinburgh, with the arrival of E. T. Whittaker
(1873–1956). From a Lancashire family, Whittaker won a Scholarship to Trinity

I would like to dedicate this article to the memory of Gene Golub and Ron Mitchell.
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College, Cambridge in 1892. He graduated in Mathematics, and he then taught
at Cambridge where he developed an interest in Astronomy. This led in due
course to his appointment as Astronomer Royal of Ireland in 1906, and at the
same time he became Professor of Astronomy at the University of Dublin. How-
ever, on the death of George Chrystal, he came to the University of Edinburgh in
1912 to fill the Chair of Mathematics. In 1913, he opened a Mathematical Lab-
oratory in Edinburgh where students were trained to do machine calculations.
Subjects to be taught included interpolation, difference formulae, determinants,
linear equations, the numerical solution of algebraic equations, numerical inte-
gration, least squares and the numerical solution of differential equations. When
the list of topics became known, it generated such interest that the Edinburgh
Mathematical Society organized a colloquium in the summer of 1913 with the
primary aim of providing instruction in aspects of numerical mathematics.

E.T. Whittaker in 1930.

Of course, the association of Edinburgh with calculating machines can be
traced back further than that, at least to John Napier (1550 – 1617), who was
born in Edinburgh. He was the inventor of logarithms and “Napier’s Bones”
(numbering rods made of ivory, used for mechanically multiplying, dividing and
taking square roots and cube roots) [9].

But the arrival of Whittaker in Edinburgh saw various branches of what we
now think of as numerical analysis taught in a systematic way, probably for the
first time in any British University. David Gibb was one of the two lecturers on
the staff in Edinburgh when Whittaker arrived, and in 1915 he published a book



Numerical analysis in Scotland 163

[5] based on some of this material in the Edinburgh Mathematical Tracts series
(edited by Whittaker). In a “Preliminary note on computation”, he says:

“Each desk [in the Mathematical Laboratory] is supplied with a copy of
Barlow’s Tables,. . . a copy of Crelle’s multiplication table (which gives
at sight the product of any two numbers each less than 1000) and with
tables giving the values of the trigonometric functions and logarithms.
These may . . . be supplemented by . . . any of the various calculating
machines now in use . . . Success in computation depends partly on the
proper choice of a formula and partly on a neat and methodical arrange-
ment of the work.”

Apparently, when asked by a girl student: “Sir, what is the formula for itera-
tion?”, Gibb replied “There is no formula; you just iterate.”

George Robinson was also a member of Whittaker’s staff in Edinburgh, and
the book by Whittaker and Robinson [19], first published in 1924, is a collection
of the material taught in the Laboratory. In the preface it says: “The present
volume represents courses of lectures given at different times during the years
1913 – 1923 by Professor Whittaker to undergraduate and postgraduate students
in the Mathematical Laboratory of the University of Edinburgh, and may be
regarded as a manual of teaching and practice of the Laboratory.”

A. C. Aitken (1895–1967) was born and educated in New Zealand and came to
Edinburgh in 1923 to study for a PhD with Whittaker. In 1925 he was appointed
to a lectureship in Actuarial Mathematics, in due course became Reader in
Statistics, and in 1946 succeeded Whittaker to the Chair in Mathematics, a post
he held till his retirement in 1965. According to Tee [14], Whittaker was the only
person in the UK teaching determinants and matrices when Aitken arrived in
Edinburgh. Aitken became interested in this area, and applied matrix algebra to
numerical analysis and statistics. What we now think of as Householder matrices
appeared in Aitken’s book with H. W. Turnbull, Professor of Mathematics at
St Andrews [17]. Aitken also published papers on polynomial equations and
eigenvalue problems: the QD algorithm developed by Heinz Rutishauser in the
1950s essentially generalizes some of his results and turns them into an effective
algorithm. The acceleration process which bears his name is still used today, for
example in applications to the Schwarz method for domain decomposition [4],
[8]).

An honours course entitled Mathematical Laboratory existed from about
1920 to 1960. The name was changed to Numerical Analysis from the academic
year 1960-61, so this was the first time in Edinburgh that this name was used
for an honours course. Aitken took over the teaching from Whittaker about
1946 (although he may have contributed before that time), and continued to
teach it until 1961. The Mathematics Department had lots of hand calculating
machines; for the benefit of the students, Aitken would appear to operate one
of the machines, but would actually do the calculations in his head. The change
of name may have been at the instigation of James Fulton, who took over the
teaching of the course in 1961-62, as Aitken’s health was giving cause for concern.
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A.C. Aitken.

In 1961, the University Grants Committee had a funding round for equip-
ment, covering all Universities in the UK. When contacted by the Committee,
the Administration in Edinburgh referred this to Aitken, who did not see any
requirement for a computer. Nevertheless, Edinburgh University set up a Com-
puter Unit in 1963 with Sidney Michaelson (1925–1991) as Director. Michaelson
had been appointed to a Lectureship in Mathematics at Imperial College in
London in 1949, and he worked on numerical analysis throughout the 1950s and
early 1960s, but his main interest was in the design and construction of digital
computers. Working with K. D. Tocher, in the early 1950s he built a machine
(ICCE1), using cheap war-surplus parts, which had a novel modular design. By
1957, Michaelson and Tocher were well on the way towards the construction
of a valve machine, when funding was almost completely cut off: Imperial Col-
lege thought that the successful development of this machine would inhibit the
acquisition of a new Ferranti Mercury computer.

In any event, Michaelson moved to Edinburgh. He brought with him M. R.
Osborne as Assistant Director of the Computer Unit. Osborne was born in 1934
in Australia. After a BA degree in Melbourne, he was employed from 1957 as a
Scientific Officer for the Royal Australian Navy. He was posted to the UK where
he spent some time in the Mathematics Division of the Admiralty Research
Laboratory (ARL). He then had spells as Lecturer at the University of Reading
and also at Imperial College, during which time he completed a PhD at Imperial
College, supervised by Michaelson. Osborne was mainly interested at that time
in finite difference methods for both ordinary and partial differential equations.
He was joined in the Computer Unit by Donald Kershaw. Kershaw became
interested in numerical analysis when he joined the Mathematics Division at
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ARL in 1957, after two years with Vickers-Armstrong (Aircraft) in Weybridge.
Following a period at ARL (where for a time he shared an office with Osborne),
he moved to Edinburgh in March 1964 to teach numerical analysis. Kershaw’s
main interests were differential and integral equations.

Michaelson set up a landline link from the Computer Unit to the University
of Manchester Atlas Computer, which came into general use in 1963. The link
was largely the result of a Manchester initiative, and was accepted by Edin-
burgh University following protests (mainly by chemists) about the failure to
acquire a computer in the 1961 funding round. When a Post Office technician
came to install the landline in the Computer Unit, he was unsure how to pro-
ceed, so Michaelson drew a circuit diagram on the spot and correctly installed
the connections while the technician watched. Edinburgh was allocated 15 min-
utes computing time per day; programmes were written in Atlas Autocode and
punched on to paper tape.

The Manchester Atlas Console.

3 How I became a numerical analyst

There was no tradition of University attendance in my family, but as I progressed
through school and passed various examinations, it became clear that this would
be possible. My main interests were in Science and Mathematics, and I decided
I wanted to study engineering, with the intention of becoming an aeronautical
engineer. When I told my Science teacher this, he gave me the only piece of
career advice I ever got: “Engineers are ten a penny; do pure science.” Whether
this was good advice or not, I will never know, but I took it and entered the



166 G. Alistair Watson

University of Edinburgh in October 1960 to take a BSc in Physics. Of course,
I also studied Mathematics, and as a first year student attended lectures by
Aitken on the material in his book “Determinants and Matrices” [1]. He was
always keen to highlight his prodigious memory, and some time in his lectures
was usually set aside for tricks and demonstrations. But, as mentioned above,
his health was failing.

As an aside, I last saw Aitken when I attended a public lecture he gave (maybe
in 1964) where he argued the case for a duodecimal system for currency rather
than the decimal system at that time being proposed for the UK. I remember
him saying (so he probably said it more than once): “They scratch, but we
punch!” first making scratching motions with his 10 fingers and thumbs and
then pointing to the 12 knuckles on the fingers of one hand.

After two years studying, I decided I preferred Mathematics to Physics and
switched to a degree in Mathematical Sciences. In my third year, in early 1963,
I could choose between a course on Numerical Analysis and one on Statistics,
and having tried both for a while, decided I did not like Statistics much and
continued with the Numerical Analysis option. Topics covered included round-
ing errors, interpolation, orthogonal expansions, Fourier and Chebyshev series,
finite differences, various difference operators, numerical integration, initial value
problems for ordinary differential equations, iterative methods for solving equa-
tions, the power method for eigenvalue problems, and Gaussian elimination. In
addition to large books of multiplication tables, which when opened, measured
about two feet by three feet, various calculating machines were available, mainly
Facits and Brunsvigas, hand operated. There were also some electric calculators.
The recommended book was by R. A. Buckingham [2].

Brunsviga (left) and Facit.
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I took the Numerical Analysis course in both my third and fourth years. It
was taught mainly by Fulton, but in 1964, he decided to make use of the expertise
available in the Computer Unit and so it contained some lectures by Osborne
on the numerical solution of boundary value problems in ordinary differential
equations. Also, least squares problems and harmonic analysis were treated.

During my fourth year, I attended some job interviews and accepted a job
with ICI in Billingham. After my graduation ceremony in Edinburgh in July
1964, I was speaking with a class mate, Alex Wight, who told me he had a
summer job in the Edinburgh University Computer Unit, and suggested I go
round to see the place. Of course, there was no computer there at the time, so
what there was to see was not immediately obvious. But I was introduced to
Osborne, and at some point he said there was a vacancy for a Demonstrator and
indicated that if I was interested, I could likely get it, with the opportunity to
do an MSc. The possibility of something like this had never previously crossed
my mind, and of course I already had a job. However, it was an attractive idea,
the salary was the same as being offered by ICI, so I thought it over, applied,
and was duly offered the job. Before accepting, I wrote to tell ICI and suggested
joining them later on, but they said just to apply to them again, which of course
I never did.

So I started work in the Edinburgh University Computer Unit in October
1964. I attended lectures on computing and numerical methods, given as part
of a postgraduate diploma course started that year, and learned to write pro-
grammes in Atlas Autocode. Part of my job included examining output when
it arrived back from Manchester, and helping users to identify programming er-
rors. Unfortunately the link was somewhat unreliable, and for a time ordinary
mail was used to send programs. So it took maybe three days to find out that a
comma or something had been omitted from the program, causing it to fail: of
course great care was taken to avoid trivial errors!

I also embarked on research with Osborne. He had widened his interests to
include Chebyshev approximation, and he asked me to look at linear Chebyshev
approximation problems, and the way in which linear programming could be
used, as part of an MSc project. I wrote programmes in Atlas Autocode to run
on the Manchester Atlas. But I also recall on one occasion travelling through
to Glasgow to run some programmes on the KDF9 there, for which an Atlas
Autocode compiler had been written.

A DEC PDP/8 was installed in the Computer Unit in late 1965 and caused
great excitement.

4 St Andrews

A. R. Mitchell (1921–2007) was born in Dundee. He was educated at Morgan
Academy, and in 1938 went to University College Dundee, at that time a college
of the University of St Andrews, to study Mathematics. Partly due to the war,
student numbers were low, and he was the only Honours student in Mathematics.
On graduating in 1942, he was called up for military service and went to the
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wartime Ministry of Aircraft Production in London, where he remained until
the end of the war. His duties included the interrogation of captured Luftwaffe
pilots; some years later he met one of them at a conference.

In 1946, Mitchell decided he would like to do a PhD, and returned to Dundee
to see if this was possible. There was no available supervisor in Dundee, but he
made contact with D. E. Rutherford in St Andrews, who agreed to act as su-
pervisor if Mitchell would become an Assistant Lecturer for the duration of
his PhD. His thesis was concerned with relaxation methods in compressible flow
(Rutherford’s main research interest was Lattice Theory, so the supervision must
have been fairly nominal), but he developed an interest in numerical analysis,
initially as a means of tackling fluid dynamics problems using Southwell’s relax-
ation methods.

On completion of his PhD in 1950, Mitchell remained at St Andrews as a Lec-
turer. In 1953, J. D. Murray became his first PhD student, working on a topic in
boundary layer fluid dynamics, and his second was J. Y. Thompson, who started
in 1954 working on numerical aspects of fluid dynamics. J. D. Lambert was a
student at St Andrews and a member of the Honours class in 1953–54 when
Mitchell taught a course in numerical analysis, the first time numerical analysis
had been taught in St Andrews. After graduating, Lambert worked at the Ad-
miralty Research Laboratory (in the Fluid Dynamics Group) from 1954–1957,
before having short spells at Memorial University of Newfoundland in Canada
and Magee University College, Londonderry, Northern Ireland. He returned to
St Andrews as a Lecturer in 1959, and became Mitchell’s third PhD student,
working on an idea of Mitchell’s of incorporating higher derivatives into methods
for ODEs. Other PhD students who came in the 1960s were Graeme Fairweather,
Sandy Gourlay, Pat Keast (who had been in my class at Edinburgh), John Morris
(all supervised by Mitchell), and Brian Shaw (who was supervised by Lambert).

In 1964, St Andrews acquired an IBM 1620 Model II. Apparently this was
capable of solving Laplace’s equation in a cube using an optimal alternating
direction finite difference method with a 5 × 5 × 5 mesh in 15 minutes; in a
square, a 20 × 20 mesh could be tackled. The Computer was housed in the
Observatory, over a mile from the Department of Mathematics, and hands-on
access was provided for an hour each morning and afternoon, with no exceptions,
even when the printer ribbon wrapped itself round the type bar, a frequent
occurrence. Batch jobs could run at other times.

In 1965, Mitchell started going to evening classes in Dundee to learn Russian.
He was then able to keep up with the Russian literature and was perhaps one of
the first in the West to appreciate the importance of the work being done in the
USSR on high order difference methods for PDEs, in particular by Samarskii,
Andreyev and D’Yakonov. He met D’Yakonov at the ICM meeting in Moscow
in 1966, and as a consequence, the latter visited Mitchell a few years later. A
byproduct was that many others in the West became much more aware of the
activity in the USSR concerning split operator techniques.
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5 Collaboration between St Andrews and Edinburgh

A numerical analysis course was given in the University of Aberdeen in 1958–59
by F. W. Ponting. This was the first in Aberdeen, and was based on material
from the book by D. R. Hartree [7], maybe the first book on numerical analysis
to use the name. Some numerical analysis was apparently taught in the Uni-
versity of Glasgow in the early 1960s, using the English Electric DEUCE and
then a KDF9: Glasgow was the first University in Scotland to have an electronic
computer, when the DEUCE was installed in 1958. But the main centres for
numerical analysis in Scotland by the mid 1960s were undoubtedly Edinburgh
and St Andrews. In particular Osborne and Mitchell were keen for more inter-
action between their research groups and it was Osborne who initiated the idea
of a conference. A detailed history of the origins of that conference are given in
[18], and so a full account will not be given here. But about 25 people met in
June 1965 in St Andrews for two (or maybe three) days, with Mitchell (the main
organizer) and the other three members of the organizing committee (Osborne,
Kershaw and Lambert) giving the main talks. I still have a folder (unfortunately
now empty of its original contents) with “Symposium on Solution of DEs, St
Andrews, June 1965” written on it. Although intended mainly for the two Scot-
tish groups, a number of English based numerical analysts attended, with John
Mason from Oxford probably travelling furthest.

A. R. Mitchell (left) and M. R. Osborne in Dundee in 1997
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A one-day meeting on Chebyshev approximation was also organized by Os-
borne in Edinburgh, which was attended by the St Andrews group and others
from as far afield as London. There were four speakers: Osborne and I gave talks,
and also M. J. D. Powell and A. R. Curtis, both of whom had been invited up
from Harwell. It was the first talk I had ever given, I was in very distinguished
company, and I remember it as a rather traumatic experience.

Osborne left Edinburgh for Australia at the end of 1965, to become Director
of the Computer Centre at the Australian National University, and I followed him
there to start a PhD about four months later. Also in late 1965 Lambert moved
from St Andrews to Aberdeen. However, in 1967 Mitchell organized a second
meeting in St Andrews. This was held from 26-30 June, and called “Colloquium
on the Numerical Solution of Differential Equations”. There were 85 participants,
18 main speakers, each giving a 50 minute talk, and 19 shorter talks. Two of the
main speakers were from overseas, but it was very much a UK event.

Incidentally when I arrived at ANU in June 1966, an IBM 360/50 had just
been installed. The first thing I did was learn a new programming language,
PL/1, which had just been developed by IBM. The name was originally NPL
(New Progamming Language) but was changed to avoid confusion with the Na-
tional Physical Laboratory. Programmes were put onto punched cards. At first
the machine was only generally available during office hours. But I was able to
go into the Computer Centre in the evening, switch it on, get it up and running
(I recall this included mounting large disks on disk drives), put my deck of cards
in a hopper, run my programme and print the output. After a few runs, I would
switch everything off and go home. Of course usage grew rapidly, normal hours
were extended, and this experience of “personal computing” did not last long!
Nor did PL/1 at ANU, because Osborne decided after a visit to Europe that it
should be replaced, and so we all started to use Fortran.

6 Dundee

D. S. Jones was appointed to the Ivory Chair of Mathematics in Queen’s Col-
lege, Dundee in 1965. Queen’s College was part of the University of St Andrews,
although as a consequence of the report of the Committee on Higher Educa-
tion produced under the Chairmanship of Lord Robbins in 1963, the processes
necessary to establish Dundee as a separate University were well under way.

Jones had the foresight to see numerical analysis as a growth area. He
started up an MSc in Numerical Analysis and Programming, taught mainly
by R. P. Pearce, the only staff member at Dundee at the time who could be con-
sidered a numerical analyst: Pearce had collaborated with Mitchell in the early
1960s (three joint papers were published in 1962 and 1963 on finite difference
methods).

Queen’s College separated from St Andrews to become the University of
Dundee on 1st August 1967. Jones had obtained approval for a Chair of Numer-
ical Analysis in Dundee, and also in 1967 Mitchell (then a Reader at St Andrews)
was appointed. Mitchell was joined in Dundee by Lambert and Gourlay as Senior



Numerical analysis in Scotland 171

Lecturer and Lecturer respectively, and research students and postdoctoral re-
search fellows were attracted, the latter largely through funding from NCR (The
National Cash Register Company) and the MoD (Ministry of Defence). Despite
losing Mitchell and his group, St Andrews brought in replacements to main-
tain a presence in numerical analysis. In particular, G. M. Phillips, who worked
mainly in Approximation Theory, was appointed from Southampton University
in 1967. Other numerical analysts who came to St Andrews then or later on were
M. A. Wolfe, J. H. McCabe and G. E. Bell.

But with the Edinburgh group diminished, the appointment of Mitchell re-
sulted in the centre of gravity of numerical analysis in Scotland clearly shifting
to Dundee. I arrived to take up an MoD Fellowship in September 1969, just
missing the third conference, a “Conference on the Numerical Solution of Dif-
ferential Equations”, the first such meeting to be held in Dundee. It attracted
148 participants, with 8 invited speakers all from overseas, and around 45 others
from outside the UK. So this was the first conference with a truly international
flavour.

Among others to hold Research Fellowships in Dundee by 1970 were John
Morris, Sean McKee and Nancy Nichols. Traffic was not all one way, of course.
Pearce had left in 1967 for Imperial College (he was eventually to be appointed
to a Chair in Meteorology in Reading), and Gourlay left in 1970 to work for
IBM, although this was a good move for me, as I was appointed to the vacant
Lectureship.

The academic year 1970-71 was a special one for numerical analysis in Dundee,
and really put Dundee (and Scotland) on the numerical analysis map. Mitchell
obtained funding from the UK Science Research Council for a Numerical Analy-
sis Year in Dundee. The aim was to promote the theory of numerical methods and
to upgrade the study of numerical analysis in British universities and technical
colleges. This was done by arranging lecture courses, seminars and conferences
in Dundee so that workers in the field would have the opportunity to hear about
and to discuss recent research. Some 34 of the world’s leading numerical analysts
visited Dundee during this period, some for short periods and others for longer
periods up to the full year. Of course I enjoyed being in the company of so many
big names.

Five conferences were held in Dundee during that year. As well as three
smaller meetings, there was a “Conference on Applications of Numerical Analy-
sis” held from 23–26 March, 1971, with 170 participants, organized by Morris, by
now a Lecturer in Dundee. I also organized a “Conference on Numerical Meth-
ods for Nonlinear Optimization” which was held from 28 June–1 July, 1971, with
198 participants. One of the main speakers at the March meeting was Lothar
Collatz from Hamburg, making the first of many visits to Dundee. Another was
G. H. Golub, who first came to Dundee in 1970, and who also returned many
times. Indeed their enthusiasm and support for these and subsequent meetings
played a large part in attracting participants from outside the UK. Among the
UK invited speakers at the March meeting were K. W. Morton and M. J. D. Pow-
ell, both of whom had also been invited to the 1967 St Andrews meeting. They
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went on to be regular participants (not just as invited speakers), and the series
benefitted greatly from the continuing presence of numerical analysts such as
these.

In 1973, a “Conference on the Numerical Solution of Differential Equations”
was held from July 3–6, organized by Morris who had taken over as the main
conference organizer. There were 234 participants, with 20 invited speakers, and
43 submitted papers presented in parallel sessions. I edited the Proceedings (of
the invited talks), and said in the Preface: “This was the 5th in a series of biennial
conferences in numerical analysis, originating in St Andrews University, and held
in Dundee since 1969”. So this was perhaps the first explicit acknowledgement
of the numbering system, with the March 1971 meeting probably interpreted as
the fourth in the series.

Also in 1973, Roger Fletcher moved from Harwell to Dundee. He was (and
continues to be) a leading figure in optimization, and this was a major strength-
ening of numerical analysis in Scotland, and of the numerical analysis group in
Dundee. It also represented a significant broadening of the numerical analysis
base, and this was reflected in the fact that the 1975 meeting was a “Conference
on Numerical Analysis”, a name which was retained. About 200 people attended
the meeting from July 1-4, with 16 invited talks and 45 contributed talks.

So the biennial series was now well into its stride, and with a fairly well
established pattern. It survived the departure from Dundee of Morris, who
moved to Waterloo in 1975, leaving me to shoulder the main organizational
load. D. F. Griffiths, who was appointed to Dundee in 1970, had shifted his in-
terests to numerical analysis, and started to work with Mitchell, in particular on
finite element methods. Mitchell’s interest in finite element methods had begun
in the late 1960s, apparently prompted by the arrival of Dick Wait as a PhD
student, as he announced that he would like to do a PhD in that area. Griffiths
organized the 1983 meeting when I was on sabbatical leave in Australia and New
Zealand, and from 1985 onwards, we shared the organizational load.

The 1991 Conference celebrated Mitchell’s 70th birthday, and an “A.R. Mit-
chell lecture” was established. The inaugural lecture was given by G. H. Golub,
and he is pictured below at the 2005 Conference dinner, along with L. N. Tre-
fethen (A. R. Mitchell lecturer in 2005 and after-dinner speaker in 2007). Golub
and Collatz were both given honorary degrees by the University of Dundee.

7 The evolution of computing facilities in Dundee

Let me digress a little to say something about the tools which we as numerical
analysts used, and the changes to computing facilities in Dundee, most of which
I experienced. Of course, corresponding changes occurred in other places.

The first computer in Dundee was a Stantec Zebra, which was purchased (for
£13,000) from College funds and private donations in 1961. Numerical results
in the Mitchell and Pearce papers were obtained on this machine. In charge
was A. J. Cole, who did his PhD in number theory, and had been appointed
as a Lecturer in Mathematics in Dundee. He subsequently went on to establish
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L.N. Trefethen (left) and G.H. Golub at the 2005 Conference dinner.

Computer Science in St Andrews (part of Computer Science is now housed in
the Jack Cole building, a new building which was named after him in March
2005). The Zebra was a valve machine and input and output was on paper tape.
Apparently the start-up procedure involved some banging with fists to ensure
that the valves were all properly seated. There was no permanent storage and
the memory consisted of 8K words kept on a magnetic drum. It was about as
powerful as a 1990s pocket calculator, though a lot slower.

The first proper Computing Laboratory in Dundee was established in 1965
with J. M. Rushforth as Director and one other member of staff. Rushforth had
been appointed a Lecturer in Mathematics in 1953, and took over from Cole
in looking after the Stantec Zebra in 1962. (He remained as Director until his
retirement in 1992.) In 1965, the Flowers report was published (A Report of
a Joint Working Group on Computers for Research). In Scotland, Edinburgh
was proposed as a regional centre. Replacements or upgrades for machines then
being used (such as the Stantec Zebra in Dundee, Sirius machines at Strathclyde
and Heriot-Watt, a KDF9 at Glasgow and an Elliott 803 in Aberdeen), were
proposed. The recommendation for Dundee was an ICL machine, but Dundee
did not like this proposal, and asked for and got an Elliott 4130 which was
installed in 1967. This machine had 32K memory, 2 µsec access time, 48 bit word,
magnetic tapes and Algol and Fortran as high level languages. Programmes were
punched onto cards and run as batch jobs. It took about one hour every morning
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to “boot up ” the machine and to carry out testing of store, card reader, half-inch
magnetic tape, etc.

Punched card and card punch machine.

About 1971, the Kent Operating System provided on-line remote program-
ming to the Elliott 4130 using BASIC. Teletypes laboriously printed at about
110 Baud (10 characters per second). A Modular One minicomputer was added
as a front-end processor for remote access which by 1974 allowed dial-up modems
at 2400 Baud. The Elliott 4130 was replaced in 1977 by a DEC System 10. Mi-
crocomputers arrived in 1979 (the BBC micro was about as powerful at the
Elliott 4130), and around this time, email became possible to a limited range of
contacts. The campus was wired for remote access to the DEC10. Mathematics
acquired (black and white) VDUs (Visual Display Units), some of which could
work at 4800 Baud, while others only managed 1200 Baud.

In 1984 JANET (Joint Academic Network) was created, which connected
about 50 sites in the UK. Terminal access became available for logging into
campus and national computers, for file transfer and for email. Colour screens
on micros came in about 1985. In 1987 the DEC 10 in Dundee was replaced by
a Prime 6350, and an Alliant miniSupercomputer was added the following year,
the first true UNIX system.

But distributed systems had started to compete with large mainframe com-
puters. Around 1987, members of the Department of Mathematics and Computer
Science (as it was then) in Dundee acquired a large number of SUN Workstations.
A SUN 3/160 file server was installed first and there was progressive expansion
to SUN3s, then SUN4s. Email still required to use designated gateways: there
was a convoluted system where each day’s email was downloaded to the Prime.
However, by the end of the 1980s, links became available to most networks in
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the world. Initially, the UK and the US adopted different address formats, which
caused some problems, but this was eventually standardized to the US system.

Up to the mid 1980s, it was customary for secretaries to type papers and
documents. The advent of document processing systems changed much of that.
I remember first using nroff and troff (developed for the Unix operating system)
to produce papers, before LATEX became universal in the numerical analysis
community.

By 1990, things had moved a long way towards the kind of facilities which
we take for granted today.

8 Postscript

My intention here has been primarily to try to give a systematic account of
the development of numerical analysis in Scotland from my base year of 1913. I
have chosen to take a particular route, which I judge to be the main highway.
However, in sticking to this, I have inevitably passed many side roads without
stopping, and I should not leave the impression that numerical analysis was only
carried out in those places in Scotland so far mentioned.

For example L. F. Richardson (1881–1953), who is well known for his work
on finite differences for solving differential equations, was an Englishman, did
much of his work in England, but spent time in Scotland. From 1913 to 1916,
he worked for the Meteorological Office as Superintendent of the Eskdalemuir
Observatory, located in the south of Scotland. Later on, he spent the period
from 1929–1940 as Principal of Paisley College of Technology and School of Art.
He retired in 1940 so that he could concentrate on his research.

Ben Noble (1922–2006) was born near Aberdeen in Scotland. After grad-
uating from the University of Aberdeen in radiophysics, he (like some others
mentioned in this article) worked at the Admiralty Research Laboratory. After
the war he obtained a master’s degree from Cambridge, where he was influenced
by lectures from Hartree, and stayed on at the newly established Cambridge
Mathematical Laboratory. Following a spell working for the Anglo-Iranian Oil
Company (now BP) and three years at the University of Keele, he spent the
period from 1955 to 1962 at the Royal College of Science and Technology in
Glasgow where he continued to teach while doing a DSc at the University of
Aberdeen. He published two books on numerical analysis shortly after this [11],
[12] in the Oliver and Boyd University Mathematical Texts Series, edited by
Aitken and Rutherford. He moved to the USA in 1962, eventually succeeding J.
B. Rosser as director of the Mathematics Research Center at the University of
Wisconsin-Madison.

In 1964, the Royal College of Science and Technology became the University
of Strathclyde. A Chair of Numerical Analysis was established in 1966 (one year
before Dundee), and this was held by D. S. Butler till his retirement in 1994.
D. M. Sloan, who joined the staff of Strathclyde in 1965, succeeded Butler, and
was instrumental in building up numerical analysis in that institution.
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In fact, there have been significant changes in the Scottish scene since the
1990s, precipitated mainly by alterations to University funding arrangements.
Dundee lost Research Council funding for its Numerical Analysis MSc course,
and although it continued to run for a few years for self-funded students, Univer-
sity pressure to rationalize courses with small numbers contributed to its closure
in 1997. Those Mathematics Departments with secure income streams based on
large undergraduate student numbers were well placed for growth, and other
Universities in Scotland started to build up numerical analysis groups, in par-
ticular Strathclyde, as already mentioned, but also Edinburgh and Heriot-Watt.

D. B. Duncan did a PhD at Dundee and after spending some time in Canada
moved to Heriot-Watt in 1986. He and Sloan were responsible for the orga-
nization of a one day meeting held at Strathclyde University in 1992 (“The
Scottish Computational Mathematics Symposium”), whose stated aim was to
bring together mathematicians and others who develop computer algorithms to
solve mathematical problems. This continues as an annual event, normally with
meetings alternating between Strathclyde and Heriot-Watt. The final Dundee
biennial conference was held in 2007, ending a 42 year span of such meetings,
although it is intended to continue the series from 2009 at Strathclyde. There are
now as many numerical analysts at Strathclyde as mathematicians (of all kinds)
in Dundee. Indeed Strathclyde currently has one of the largest and most diverse
numerical analysis groups in the UK, and the reality is that there has over the
last decade or so been a shift in the centre of gravity of numerical analysis in
Scotland.
Acknowledgement I am grateful to many people whose memories I jogged
in preparing this paper, in particular Graham Blackwood, Alex Craik, Graeme
Fairweather, Philip Heywood, Pat Keast, Jack Lambert, John Morris, David
Murie, Mike Osborne. The pictures of Whittaker and Aitken are courtesy of
the School of Mathematics and Statistics, University of St Andrews, and the
picture of the Manchester Atlas Console is from the Manchester Atlas site
(http://www.chilton-computing.org.uk/acl/technology/atlas/p009.htm).
The other pictures are from my collection.
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The applied mathematician and numerical analyst Philip (Phil, Pinchas,
Pinny) Rabinowitz was born in Philadelphia on August 14, 1926, and passed
away on July 21, 2006, in Jerusalem. Philip Davis recounts reminiscences from
his early scientific career; while Aviezri Fraenkel relates some of his activities
at the Weizmann Institute of Science, where he began work in 1955, as well as
snapshots from earlier periods.

Philip J. Davis

I had a long and fruitful friendship and collaboration with Phil (Pinny) Rabi-
nowitz that began in the fall of 1952 at the National Bureau of Standards (NBS:
now NIST) in Washington, D.C. When I began my employment there in the late
summer of 1952, Phil was already there.

Phil (I never called him Pinny) grew up in Philadelphia. He got his Ph.D.
degree from the University of Pennsylvania in 1951 under the supervision of
Walter Gottschalk with a thesis titled Normal Coverings and Uniform Spaces. Of
course, this topic in topology was irrelevant to the work of the bureau, and Phil
was immediately pulled into numerical analysis, computation, programming, and
running mathematical models of importance to members of other portions of the
bureau and of the U.S. government.

At that time, the Bureau of Standards had one of the very few electronic
digital computers in the world. It came on line in 1950 and was known as the
SEAC (Standards Electronic Automatic Computer). Within a very short period
of time Phil became an expert programmer on SEAC.

If I remember correctly, some of the features of SEAC were as follows: It had
128 memory cells, and one programmed it in what was called “the four address
system”. A line of code went typically as follows: take the number in cell 28,
combine it with the number in cell 37 according to standard operation S, store
the result in cell 6 and go to cell 18 to pick up the next instruction. Computations
were in fixed-point arithmetic so that scalings had to be introduced to keep the
numbers in bounds. The lines of code were first set out in pencil on standard

The permission to reprint this text was kindly provided by the American Mathe-
matical Society. The paper appeared originally in the Notes of the AMS, vol. 54,
no. 11, pp. 1502–1506, December 2007.
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coding sheets; these were transferred to punch cards or teletype tape, thence to
magnetic wire from which they were inserted in SEAC.

In retrospect SEAC would be called a first generation computer. Though
many numerical strategies (algorithms) had been worked out for a wide variety
of mathematical problems in pre-electronic days, the new computers expanded
the algorithmic possibilities tremendously. But it was important to work out
by trial and error (and occasionally by theory) which of these strategies were
optimal vis-a-vis the limitations of time, storage, money, and the difficulties
inherent within the algorithm itself such as complexity, divergence, instability,
ill-posedness, etc.

The 1950s were a transitional age computationally speaking. Until about
1955 or so, the electronic computers were still grinding out tables of Special
Mathematical Functions and publishing them in bound volumes. Later, this was
seen as largely unnecessary; special software would be incorporated into scientific
computational packages and would produce values of special functions on call
and as needed.

One of Phil’s first publications (1954) was a Table of Coulomb Wave Func-
tions done jointly with Milton Abramowitz (head of the Bureau of Standards
Computation Laboratory) and Carl-Erik Fröberg, a numerical analyst from
Lund, Sweden.

Shortly after I arrived in Washington, Phil worked on a project that teamed
up Kenneth Cole of the National Institutes of Health and Henry Antosiewicz
of NBS. Cole was a biomathematician who studied the Hodgkin-Huxley equa-
tions of impulse transmission down a nerve fiber. If I remember correctly the
H-H model consisted of a system of ordinary nonlinear differential equations.
Antosiewicz was an expert in that field. This very successful work was reported
as “Automatic Computation of Nerve Excitation” and appeared in the Vol. 3,

P.J. Davis (left) and P. Rabinowitz (right)
laying out an algorithmic strategy.

Circa 1955.

Photograph courtesy of the authors

September 1955 issue of the Journal of
the Society for Industrial and Applied
Mathematics (SIAM).

Some incidental gossip: SIAM was
founded around 1952 essentially by Ed
Block who was a Ph.D. classmate of
mine and who for many years was
its managing director. In 1963, Alan
Hodgkin and Andrew Huxley won the
Nobel Prize in physiology for their
work on nerve excitation, and it seems
likely to me that the work of Cole, An-
tosiewicz, and Rabinowitz contributed
a bit towards this award. Many years
later, around 1988, my wife Hadassah
and I met Hodgkin and his American
wife socially in Cambridge, England. I

told Hodgkin this NBS story, but I do not now remember what his reaction was.
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In Washington, my friendship with Phil grew, and Hadassah and I grew to
know Phil’s family: his wife Terry and his children. One of his sons was born in
Washington, and we were invited to the brit. There we met Phil’s father and his
mother. His father was a major chassidic rabbi in Philadelphia and “held court”
there with many followers.

Some years later, on one of my professional trips to Philadelphia, I was able
to meet Phil’s sister, Margola. I believe she had or was getting a degree in
philosophy from the University of Pennsylvania. She showed me around tourist
Philadelphia and later we took in a summer theatre production of “Amphitryon
38” (Giradoux/S.N. Behrman) with Kitty Carlyle Hart in one of the roles. In the
course of our wandering, Margola told me quite a bit about how it was growing
up in a chassidic court in Philadelphia in the late 1940s. I was so amazed and
intrigued by what I heard that I told her she ought to do a book of reminiscences.
Perhaps she has.

In one of my first jobs at the NBS and as part of an extensive project, I
was confronted with the necessity of doing some approximate integrations in the
complex plane very accurately. I worked on this with Phil3. I thought a good
strategy would be to use a very subtle and accurate scheme derived in the early
1800s by the great Carl Friedrich Gauss. Prior to 1954, the Gaussian integration
rules were available only up to n = 16 points. The values had been calculated
on desk calculators — an extremely laborious task — by Lowan, Davids, and
Levenson. It was also the case that the Gaussian rules were out of favor in the
days of paper-and-pencil scientific computation, as the numbers involved were
helter-skelter irrational decimals, impossible to remember and difficult to enter
on a keyboard without error. It was my plan to carry the computation beyond
n = 16. I suggested to Phil that we attempt the Gaussian computation on the
SEAC. He was game. I anticipated that it would be desirable to work in double-
precision arithmetic to about 30 decimal places, and Phil, who was much more
skillful at SEAC coding than I, agreed to write the code that would effectuate the
double precision. But first I had to devise a numerical strategy. The n abscissas
of the Gaussian integration rules are the roots of the Legendre polynomials
of degree n. The weights corresponding to the abscissas can be obtained from
the abscissas by a number of relatively simple formulas. I proposed to get the
Legendre polynomials pointwise by means of the known three-term recursion
relation. I would get their roots by using Newton’s iterative method, starting
from good approximate values. These starting values would be provided by a
beautiful asymptotic formula that had been worked out in the 1930s by the
Hungarian-American mathematician Gabor Szegő. I didn’t know whether this
strategy would work. It might fail for three or four different reasons. I was willing
to try, and if it worked, good; if it didn’t — well, something is always learned by
failure. We could give the failure some publicity, and other mathematicians would

3 P. Davis and P. Rabinowitz, “Some SEAC computations of subsonic fluid flows
by Bergman’s method of integral operators” (1953), in M. Z. v. Krzywoblocki,
Bergman’s Linear Integral Operator Method in the Theory of Compressible Fluid
Flow, Springer, Vienna, 1960.
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avoid the pitfalls and might then be able to suggest more successful strategies.
I wrote the code and Phil wrote the doubleprecision part. I tried to anticipate
what scaling would be necessary. I reread my code and checked it for bugs. Phil
checked it for bugs. I (or Phil) punched up the code on teletype tape and checked
that out. The tape was converted automatically to a wire, and the wire cartridge
was inserted in the SEAC. We manually set n = 20, crossed our fingers, held our
breath, and pushed the button to run the program.

The SEAC computed and computed and computed and computed. Our ten-
sion mounted. Finally, the computer started to output the Gaussian abscissas
and weights. Numbers purporting to be such started to spew out at the teletype
printer. The numbers had the right look and smell about them. We punched in
n = 24 and again pushed the “run” button. Again, success. And ditto for even
higher values of n.

View of SEAC, circa 1952
Photograph courtesy of the authors.

The staff of the
NBS computing lab
declared us “Heroes
of the SEAC”, a ti-
tle awarded in those
days to programmers
whose programs ran
on the first try – a
rare event – and for
some while we had
to go around wearing
our “medals,” which
were drawn freehand in crayon on the back of used teletype paper. (The word
“hero” was in parody of the practice in the Soviet Union of declaring persons
“Heroes of the Soviet Union” for this and that accomplishment.)

This was the first electronic digital computation of the Gaussian integration
rules. In the years since, alternative strategies have been proposed, simplified,
and sharpened (by Gautschi, Golub, and others). And though all the theoretical
questions that kept us guessing in 1955 have been decided positively, there are
many problems as yet unsolved surrounding the Gauss idea.

Phil and I also worked together — in an experimental fashion — on the
numerical solution of elliptic partial differential equations using expansions in
orthogonal functions, and published a number of papers on that topic.

For Phil and me, our success and our continued interest in approximate inte-
gration led to numerous papers and to a book on the topic which, over the years,
has been widely used and referenced. Our Methods of Numerical Integration,
Academic Press, has gone through three editions. Sometime in the mid-1950s
Phil decided to “make aliya” to Israel. An opportunity opened up for him at the
Weizmann Instuitute of Science in Rehovot, in connection with the WEIZAC
computer (1954) and the GOLEM (1964). He was hired by Chaim Pekeris who
headed up the applied math group at the Weizmann Institute. Although we were
now separated, our interest in producing a book on numerical integration per-
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sisted. We worked together on the book in several places; in Providence, where
Phil and his family spent two semesters at Brown in 1965-6, and from February
to May 1970 in Rehovot where my wife and two of our children, Ernie and Joey,
spent three months. Again, in 1972, I was by myself in Rehovot for about a
month, staying in the San Martin Guest House of the Weizmann Institute.

With the publication of the third edition of Methods of Numerical Integra-
tion in 1975, my interest in the subject slackened, though I believe that Phil
published papers in the topic from time to time. He also did a book A First
Course in Numerical Analysis with Anthony Ralston which has gone through
several editions.

In between and in the years that followed, I would see Phil from time to time
at conferences in different parts of the world. In 1969 we were at a conference
at the University of Lancaster. The first moon landing occurred during the con-
ference on July 20 and the sessions were suspended while — all agog — we all
watched on the TV. The last day of the conference occurred on Tisha b’Av. Phil
prepared to leave the conference early and return to London. I asked him why.
He replied that sundown occurred earlier in London than in Lancaster and so
he would be able to break his fast sooner. An example of his humor.

Aviezri S. Fraenkel 4

Pinny (I never called him Phil) grew up in Philadelphia in a chassidic-zionist
family. Since there was no Jewish day school there at the time, he studied Jew-
ish subjects with a private tutor who came to his house for a few hours on a
daily basis. While in high school, and later at the University of Pennsylvania,
he attended Talmud lessons given in various synagogues in Philadelphia. He
continued these studies until his deathbed.

At the university he studied medicine, but at the end of the first year he
did not take a test that took place on Saturday, in order not to desecrate the
sanctity of the Sabbath, so he switched to math. He got his first, second, and
third degree from the University of Pennsylvania during 19461951. There was
an important interlude: during 1948-9, Pinny was chosen to go to the new Ser-
vomechanism Laboratory at MIT, where he joined the Whirlwind Computer
Project numerical analysis group. There he acquired his first experience in writ-
ing programs for a digital computer, interacting with people such as Alan Perlis
(numerical solutions of integral equations), J. W. Carr (2-register method for
floating point computations), Charles Adams (programming languages), Alex
Orden and Edgar Reich (solution of linear equations). In Boston he also met
Terry, whom he married shortly after getting his Ph.D. in 1951. During 1951-
55 he worked at the Computation Laboratory, National Bureau of Standards,
Washington, DC.

In 1954, the first digital computer in Israel was constructed under the lead-
ership of Jerry Estrin, who was a member of the team that had just finished
4 A shorter version of this part, in Hebrew, appeared recently in a Weizmann Institute

publication.
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constructing John von Neumann’s first “stored program” computer at the Insti-
tute for Advanced Study, Princeton. Jerry later went to the Engineering Depart-
ment at the University of California, Los Angeles. The initiator of WEIZAC’s
construction was the late Chaim L. Pekeris, head of the Applied Mathemat-
ics Department at the Weizmann Institute. The WEIZAC project was recently
recognized by the Institute for Electrical and Electronics Engineers as a Mile-
stone in the History of Computing. The unveiling of the plaque took place at
the Institute on December 5, 2006. On that occasion the team members who
constructed the machine received the WEIZAC Medal. Pinny and some others
got it posthumously.

The front of WEIZAC
Image courtesy of the Weizmann Institute of Science.

Major operation
times of WEIZAC
were, addition: 50 mi-
crosecs; multiplication:
750 microsecs on the
average; division: 850
microsecs. It had one
of the first ferrite core
memories with 4,096
words; memory access
time: 10 microsecs. A
unique feature of the
machine was its word
length: 40 bits. In-
put/output was via
punched paper tape.

Pekeris invited
Pinny to head the

software development, which Pinny began in 1955, after relocating in Israel.
Pinny wrote the first utility programs and built up the scientific software li-
brary, in the form of subroutines, which constituted the basic infrastructure for
numerical solutions of mathematical problems. In addition he gave programming
courses at various levels to many people who later became the leading program-
mers in Israel. In addition to Institute scientists, key personnel from government,
defense, and industry participated. Pinny was the pioneer who triggered the large
potential of software and high-tech industries in Israel.

Pinny taught numerical analysis at the Hebrew University, Jerusalem, and
Tel Aviv and Bar Ilan Universities, in addition to the Weizmann Institute, and
helped various colleges to establish computer science programs. In 1968 he re-
ceived the annual prize of the Israeli Information Processing Society, the Israeli
parallel of the U.S.-based Association for Computing Machinery. He traveled
extensively, collaborating with mathematicians all over the continents. A con-
ference “Numerical Integration”, the core of his scientific interests, was dedicated
to his sixtieth birthday. The meeting took place in Halifax, Nova Scotia, in Au-
gust, 1986.
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He helped the defense establishment in writing their first programs. During
the tense days preceding the 6-day war, he wrote new programs and backup
programs at the Institute, as fallback protection in case the defense department’s
main computer should become incapacitated.

Among his students were applied mathematician Nira Dyn of Tel Aviv Uni-
versity and computer scientist Mira Balaban of Ben Gurion University. In 1991
Mira organized an international conference on numerical analysis at Tel Aviv
University, to mark Pinny’s retirement. Mira is interested in artificial intelli-
gence, especially computer music. She wrote her Ph.D. thesis on this topic,
under the joint supervision of Pinny and Eli Shamir of Hebrew University. This
enabled Pinny to fuse his loves for science and art.

Pinny was a passionate connoisseur of the fine arts, especially paintings,
and a frequent visitor at modern art galleries. A large collection of modern
paintings decorated every free inch of the walls of his home. He had a sharp eye
for recognizing young talents, whose creations he purchased before they became
famous, thus encouraging budding talents. As a token of thanks, some of them,
such as Menashe Kadishman, dedicated some of their creations to him. He loved
music ardently, especially that of Jean Sibelius.

He also encouraged and guided young mathematical talents. David Harel
began concentrating on topology for his M.Sc. degree at Tel Aviv University.
After one year he decided to leave his studies and become a programmer. Pinny
advised him to meet Amir Pnueli. As a result, David wrote his M.Sc. degree
in computer science under Amir. Both later got the Israel Prize in computer
science. Amir is also a Turing Prize laureate. In June 1956 Shaula and I got
married. Weeks before, Pinny secretly began hoarding the colored “holes” of
the punched paper tape. When we paraded to the podium where the marriage
ceremony took place, Pinny tossed the confetti on our heads. During the hot and
humid summers of Rehovot, home of the Weizmann Institute, Pinny usually went
abroad working with colleagues. During later years, when he reduced his travel,
he purchased a house in Efrat, near Jerusalem, where his daughter lives, and
the climate is cooler and drier. There he and Terry spent the summers. During
winter they lived in Rehovot. Over the years, those winters became shorter and
the summers got longer. During the last winter of his illness he also stayed in
Efrat.

Pinny’s personality reflected a harmonious fusion of Judaic values, love for
the land of Israel, science, and the fine arts. May his memory be blessed.
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The cover page of the proceedings “Numerical Integration”,
NATO Series, Math. and Physical Sciences, vol. 203, 1987

Image courtesy of the authors.
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It may be a piece of vanity to write about my personal experiences as opposed
to the general state of the art. But I take comfort for this limitation by the words
of the great biographer Lytton Strachey:

“Human beings are too important to be treated as mere symbols of
the past. They have a value which is independent of any temporal pro-
cess. . . and must be felt for their own sake.” – Eminent Victorians

Hopefully, the general state of the art in the time frame I have selected will
emerge from what follows here.

I attended High School in Lawrence, Massachusetts during the years 1935-
1939. In our classes in “advanced” mathematics, we did some drilling with log-
arithms and trigonometric tables. I recall having to use the side bars that gave
“proportional parts”. Drilling was tedious work. In those years also, I discovered
for myself what I later learned was known as the Newton forward difference
interpolation formula.

Quite by accident, since my elder brother had gone to MIT, I came to own a
discarded copy of David Gibbs’ A course in interpolation and numerical integra-
tion for the mathematical laboratory London, 1915. The laboratory in question
was at the University of Edinborough and run by the distinguished applied math-
ematician Edmund Whittaker. This laboratory was rare in academic circles. The
following quote from Gibbs’ book gives a vivid and amusing picture of the state
of the art.

“Each desk [in the Mathematical Laboratory at the University of Ed-
inburgh] is equipped with a copy of Barlow’s Tables, (square, cubes,
square roots, etc.) a copy of Crelle’s Tables which gives at sight the
product of any two numbers less than 1000. For the neat and method-
ical arrangement of the work, computing paper is essential. . . . It will
be found conducive to speed and accuracy if, instead of taking down a
number one digit at a time, the computer takes it down two digits at a
time.”

For a graduation present from High School I asked my elder brother for a
good slide rule and he gave me a Keuffel & Esser log-log slide rule – one on
which fractional exponents could be done.

I attended Harvard College during the years 1939-1943, majoring in math-
ematics. Computation of whatever sort was not part of the curriculum. I don’t
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believe the Department of Mathematics had an electric adding machine. One
would have to go to the Physics or Astronomy Departments to find one.

There were few relevant English language books on scientific computation.
One of them was E. T. Whittaker and G. Robinson’s The Calculus of Obser-
vations; a Treatise on Numerical Mathematics (1929). Joseph Lipka’s Graphical
and Mechanical Computation, 1918, was another. I hardly need to say that there
were no courses in numerical analysis (I believe this term was coined in early
1950’s by George Forsythe, and the word “algorithm”, though of medieval origin,
had hardly been employed.)

The social status of computation among theoretical mathematicians was low;
this despite the fact that famous mathematicians had worked on numerical prob-
lems related to navigation, astronomy, geodesy, tides, etc. Think of “Newton’s
method” of “Gauss elimination.” But if one wanted to learn such material, one
had to pick it up oneself.

The United States entered WW II in December, 1941. I was then in my junior
year in college. Science students were draft - deferred for a while. Professors
encouraged us to take a variety of science courses. The younger faculty were
dropping out of teaching to join groups that worked on radar, cryptography,
meteorology, operations research, feedback and control theory or the Manhattan
atomic bomb project.

I received my bachelor’s degree in mathematics in 1943 and in that summer,
entering graduate school, I took mechanics and dynamics with Prof. Garrett
Birkhoff. Shortly thereafter, since scientific talent was mobilized for the “war
effort,” I was alerted to and accepted a position at the National Advisory Com-
mittee for Aeronautics (NACA, the precursor of NASA), at its Langley Field,
Hampton, Virginia laboratory. Somewhat later I was inducted into the United
States Air Force, placed on reserve status, and sent back to the NACA with the
equivalent salary of a Second Lieutenant.

As I’ve said, this was in the middle of WW II with the United States on a
total war footing. Though there was social upset with millions of young men and
many women in the armed services and such things as food and gas rationing,
there was nothing in the United States that compared to the enormous physical,
moral, bodily and psychological devastation experienced in Europe.

In moving from Cambridge, Massachusetts to Hampton, Virginia in early
1944, I experienced two kinds of minor shock. One was cultural, the other was
scientific. The cultural shock arose from experiencing at first hand the severe
prejudice and restrictions then suffered by Afro-Americans in the South of which
Virginia was a part.

The scientific or organizational shock arose from this: that I (and all the
young scientists who were similarly commandeered) was thrust into a well es-
tablished scientific-technological environment with well seasoned old-timers, a
set of problems and goals, specialized terms and ideas, and a set of preferred
practices and strategies for their solution. Now sink or swim! And do more than
swim: innovate if you can or if you are allowed to.
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No college course can train for all the possibilities and necessities that exist
in “real world” practice! In college, as a major in mathematics, I learned that the
real number system was a complete Archimedean ordered field. I learned that
measurable functions had little to do with physical measurements. Useless infor-
mation. The noted numerical analyst and information theorist Richard Hamming
wrote much later something like: “If the safety of an airplane depended on the
distinction between the Riemann and the Lebesgue integrals, I would be afraid
to fly.”

However, from my college courses experiences, I knew something about Fourier
series and complex analytic functions and these theories were quite relevant and
useful. [A side remark: I did complex variable theory under David V. Widder
— the “Laplace Transform Man.” As reading period assignment, I studied the
complex gamma function. My interest in this function continued over the years
so that I wrote up as Chapter Six of the famous Abramowitz & Stegun Handbook
of Mathematical Functions, (1964).]

The NACA was divided into a number of divisions: theoretical, full scale
tunnel, compressibility, structures, etc. My job was in NACA’s Aircraft Loads
Division, which studied dynamic loads on the components of aircraft – often
fighter planes – during a variety of flight maneuvers. I was partially a computer—
working with the raw data provided by flight instrumentation, accelerometers,
and pressure gauges— partially an interpreter of what I had computed. Later on,
I thought of myself as an “algorithmiker”, i.e., devising computational strategies.

My colleagues and I worked with slide rules, planimeters, charts, nomograms,
French curves and other drawing instruments. We had various electromechanical
desk-top calculators such as Marchants and Friedens. We had other computa-
tional aids: the WPA tables of special functions. We made use of these and other
tables computed some years before — many in England. We had available com-
pendia of formulas. We worked with experimental results from wind tunnel and
flight data, “rules of thumb”, theoretical books (e.g., the books and lectures of
Ludwig Prandtl, the five volumes on aeronautics edited by William F. Durand,
or the Theory of Flight by Richard von Mises). We worked with published in-
house reports or reports from other laboratories that were often mimeographed
or photocopied.

In those years, the word “computer” did not designate a mechanical or elec-
tronic device; it designated a person who computed. I know this at first hand
because my wife (we were married early), and who had had two courses in col-
lege mathematics, was employed as a computer in the Structures Division of the
NACA. It was widely believed and very likely the case that women were better
and more reliable than men in carrying out computations, and in those years
there were extensive employment opportunities open to them. My wife adds that
the computers were treated as machines by the engineers for whom they worked:
do this, do that with hardly any explanation as to what they were doing or why.

In thinking through my work at the NACA which lasted from Spring, 1944
to September, 1946, I can distinguish five major jobs that I was given to work
on. The last one led to my first published paper.
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1. Experimental pressure distribution on the wing profile during flight maneu-
vers.

2. Finding theoretically the pressure (lift) distribution over a two dimensional
airfoil. (Potential flow: no compressibility, no viscosity.)

3. The inverse problem. Find the airfoil shape corresponding to a experimental
pressure distribution with compressibility at higher Mach numbers.

4. Analysis of V-G diagrams (i.e., velocity-acceleration) during flight maneu-
vers,

5. Analysis of the failure of a flying boat tail structure under test maneuvers.

I’ll now comment briefly on these jobs from the point of view of the compu-
tational procedures used.

1) A series of pressure holes over the wing profile provided the flight data.
This pointwise flight data was carefully plotted and then, using French curves,
“faired” to provide a continuous record. The area and the moment under the
curve were then obtained by running the planimeter over the contour.

From my knowledge of the contents of Gibbs’ book I felt certain that ap-
proximate integration methods applied directly to the raw data would provide
equivalent accuracy, but it was done the way I just described and I had no desire
to upset the computational apple cart in the middle of a war. Nonetheless, this
experience and later experiences when I was employed at the National Bureau
of Standards in Washington during the years of the first generation of electronic
digital computers led me a to collaborate with Philip Rabinowitz on Approximate
Integration, a book that has now gone through several editions.

2) In the years 1931-33, Theodorsen and Garrick, both employed at the
NACA, had worked out a satisfactory algorithm. They mapped the exterior
of the airfoil conformally onto the exterior of the unit circle (where the pressure
distribution had long been known) by a rapidly convergent process involving the
Joukowsky Transformation. This involved making a harmonic analysis of the air-
foil contour. This analysis was accomplished by using blueprinted stencils for 24,
36, 48 point analyses. These stencils derived from the work of the German math-
ematician Carl Runge: Rechenschablonen für harmonische Analyse und Synthese
nach Carl Runge, von P. Terebesi.

Runge’s insight was to make use of the inherent symmetries in the sine and
cosine functions when the number of points employed was highly composite. It
took a computer perhaps all day to work through and check a 48 point analysis.

Here, then, was an early version of the Cooley-Tukey’s FFT (the Fast Fourier
Transform) which, now in chipified form, is accomplished in nanoseconds.

3) The inverse problem was: given the experimental pressure distribution
from a high speed plane (high Mach numbers had already been achieved in flight)
find the theoretical airfoil shape that gave rise to it under the assumptions of 1),
i.e., potential flow. There was no theory behind this problem and the numerical
methods I employed were essentially those of 1).

I suppose that the purpose of this investigation was to infer something about
airfoil shapes that would be efficient at high Mach numbers. Despite vagueness
in my mind as to what I had accomplished, I was asked to present my results to
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an audience of aerodynamicists and Air Force Officers. This was the first time I
gave a scientific talk; just placards; no overhead projectors, no Power Point, no
subsequent publication.

I’ve recently learned about the considerable work in the early ’70’s, both
theoretical and algorithmic, of Paul Garabedian, David Korn et alia on the
inverse problem of finding shock-free airfoil shapes.

4) The job of V-G analysis involved finding significant patterns empirically by
more or less eyeballing the diagrams and doing a bit of averaging. Considering the
presence of such phenomena as aerodynamic stall, his information was important
in setting aerodynamically safe limits to flight maneuvers, particularly in fighter
planes such as the P-40 or the P-51.

5) The Glenn Martin “Flying Boat” Mars was designed in the early ’40’s
for the US Navy as a long range “flying dreadnought”. During some initial
flight-test maneuvers, the Mars, flying flat at low altitudes over Chesapeake
Bay, experienced a break in its vertical tail. Why did this happen? My boss,
Henry A. Pearson, a man with vast experience in aeronautics, suspected that
during the testing process in which the test pilot executed the required fish-tail
maneuver of oscillating the rudder, the natural frequency of the plane in flight
(considered as a spring system) would be reached with a corresponding large
build up of the vertical tail load.

Pearson suggested to my colleague John Boshar and me that we set up a
mathematical model, use wind tunnel and various parameters from flight records,
and see whether we could reproduce the build up computationally. Confining
the motion to one degree of freedom (yawing motion), we set up the dynamic
equation as a second order linear differential equation with the rudder deflection
as the forcing function on the right hand side.

We employed the well-known method of the Duhamel Integral which solves
the equation essentially as the convolution of the forcing function against a
damped sinusoid, the latter requiring the eigenvalues of the differential operator.
The various constants in the equation had first to be calculated as complicated
combinations of aerodynamic parameters. Then, the unit impulse response – the
sinusoid was calculated, and finally the convolution integral. Again we worked
with a planimeter, Frieden machines and the full panoply of charts, reports, etc.
from which we extracted the parameters.

Our work was successful in that it showed the possibility of serious tail over-
loads, and resulted in my first technical paper: Consideration of Dynamic Loads
On the Vertical Tail By The Theory Of Flat Yawing Maneuvers. NACA, Report
No.838, 1946.

The possibility and actuality of tail failure in aircraft is today still an ongoing
concern. This can be learned from scanning search engine displays under this
heading.

In retrospect it would have been an extremely difficult and time consuming
job, in those days, to reproduce numerically the three dimensional trajectory
of an airplane (pitch, yaw, and roll) corresponding to deflections of its various
control surfaces. The development of the electronic digital computer received a
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tremendous boost from the computational necessities of the airplane and space
industries.

But lest we be too proud: consider all the buildings, bridges, and planes built
before electronic digital computers were available. The first supersonic airplane,
the X-1, a joint project of the US Army and Air Force, the NACA, and Bell
Aircraft in Buffalo, New York, flew on Oct. 14, 1947 and achieved a speed of Mach
1.06 at a time when the electronic digital computers were just getting started.
The “digital wind tunnel” has not yet (2008) replaced physical experimentation,
and in the opinion of some authorities, it never will.

The computers that have made flights to Mars possible have changed applied
mathematics as well as our lives on Earth in ways that could not have been
imagined in 1946.
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Abstract. The Russian mathematician Pavnuty Chebyshev, born in
1821, worked on mechanical linkage design for over thirty years, which
led to his work on his polynomials. The application of Chebyshev poly-
nomials in numerical analysis starts with a paper by Lanczos in 1938.
Now the computing literature abounds with papers on approximation
of functions, computation of integrals and solution of differential equa-
tions, using Chebyshev polynomials. In this paper we give a survey of the
role of Chebyshev polynomials in the research results of the Numerical
Analysis division of the K.U.Leuven.

1 Introduction

Pavnuty Chebyshev was born in 1821 in Russia. His early education was at
home where his cousin Avdotia taught him French and arithmetic. Later he
would benefit from his fluency in the French language, which allowed him to
communicate mathematics with the leading European mathematicians. His early
research was devoted to number theory. He defended his doctoral thesis “Teoria
sravneny” (Theory of congruences) in 1849. In 1850 he became extraordinary and
in 1860 full professor of Mathematics at Petersburg University. This was the start
of intensive research work in various fields. Besides research in probability which
resulted in a generalization of the law of large numbers and a corresponding
generalization of the central limit theorem of De Moivre and Laplace, he began
his remarkable studies on the theory of mechanisms.

The Industrial Revolution, a period in the late 18th and early 19th century,
was the golden age of mechanical linkages. Mechanical linkages are rigid links
connected with joints to form a closed chain. They are designed to take an input
and produce a different output, altering the motion, velocity or acceleration.
Linkages are often the simplest, least expensive and most efficient mechanisms
to perform complicated motions.

Design of many simple mechanisms that seem obvious today, required some
of the greatest minds of the era.
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Leonhard Euler (1707-1783) was one of the first mathematicians which study
synthesis of linkages and James Watt (1736-1819), pioneer of the steam engine,
invented the Watt linkage to support his engine’s piston.

Chebyshev’s interest, both in the theory of mechanisms and in the theory of
approximation comes from a trip he made to France, England and Germany in
1852, where he had the chance to investigate various steam engines. From then
on, he worked on mechanical linkage design for over thirty years. He studied
the so-called Watt-parallelogram, a hinge mechanism employed in steam engines
for transforming a rotating into a rectilinear movement. Since it is impossible to
obtain strictly rectilinear movement by hinge mechanisms, Chebyshev elaborated
a sound theory to reduce the deviation of the resultant movement from the
rectilinear. This problem is closely related to the theory of best approximations
of functions.

The paper “Théory des mécanismes connus sous le nom de parallélogrammes”
(1854) was first in a series of works in this area. In this paper, Chebyshev deter-
mined the polynomials of the nth degree with leading coefficient equal to unity
which deviates least from zero on the interval [−1, 1]. This polynomial is

Tn(x) = cos(n arccos(x))

and is called now the Chebyshev polynomial of degree n.
The Chebyshev linkage is a three bar mechanism that converts rotational

motion to approximate straight line motion (Fig. 1).

y P

A B

LL1 2

L 3

x

Fig. 1 The Chebyshev linkage

In Figure 1, L1 : L2 : L3 : L4 = 5 : 5 : 2 : 4 (where L4 is the distance between
A and B). Point P is located midway along L3. When L1 rotates around A, the
trajectory of P is nearly a horizontal straight line. In Figure 2, the deviation of
the trajectory of P from the horizontal line y = 2.00244 is depicted (for the size
L1 = L2 = 2.5, L3 = 1 and L2 = 2).
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Fig. 2 The Chebyshev linkage: Deviation from the straight line.

The polynomials Tn(x) form an orthogonal system on [−1, 1] with respect to
the weight function (1− x2)−1/2.

The application of Chebyshev polynomials in numerical analysis starts with
a paper of Lanczos [9] in 1938. The coming of the digital computer gave further
emphasis to this development. From the middle of the 20th century, the nu-
merical analysis literature abounds with papers on approximation of functions,
computation of integrals and solution of differential equations, using Chebyshev
polynomials. We mention especially the work of Lanczos [10, 11], Clenshaw [1–3],
Luke [12–15], and the handbooks of Fox and Parker [6] and Rivlin [25].

Chebyshev polynomials play also an important role in network synthesis,
especially for the construction of equal ripple approximations to ideal low-pass
filters.

In this paper we give a survey of the use of Chebyshev polynomials in the
numerical computation of integrals and integral transforms and the solution of
integral equations. The survey is restricted to research results of the Numerical
Analysis division of the K.U.Leuven.

2 Properties of the Chebyshev polynomials

The popularity of Chebyshev polynomials in numerical analysis is due to a lot
of important but simple properties:

(i) The already mentioned property of least deviation from zero and the con-
tinuous an discrete orthogonality property.

(ii) The recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x).

(iii) The differential equation

(1 + x2)T ′′n (x)− xT ′n(x) + n2Tn(x) = 0.
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(iv) The difference-differential relation

(1− x2)T ′n(x) = n(Tn−1(x)− xTn(x)) =
n

2
(Tn−1(x)− Tn+1(x)).

(v) The expression for the indefinite integral
∫

Tn(x)dx =
1
2

(
Tn+1(x)
n + 1

− Tn−1(x)
n− 1

)
, n ≥ 1.

(vi) The expression as a hypergeometric function

Tn(x) = F

(
−n, n;

1
2
;
1− x

2

)
.

(vii) The relatively easy formulae for constructing near least-squares approxima-
tions of a function f(x):

f(x) ≈
n∑

k=0

′ckTk(x), x ∈ [−1, 1],

ck =
2
N

N∑

l=0

′′f(xl)Tl(xk),

xk = cos
(

kπ

N

)
, n ≤ N,

where the prime denotes that the first term is taken with factor 1
2 , and

where the double prime denotes that the first and the last term was taken
with factor 1

2 .
The Chebyshev coefficients ck can be evaluated using an efficient and nu-
merically stable algorithm, based on FFT-techniques [8].

(viii) Chebyshev polynomials are members of larger families of orthogonal polyno-
mials. (Jacobi polynomials and ultraspherical polynomials.) In many practi-
cal cases, the Chebyshev series expansion of a function is the best between
all expansions into ultraspherical polynomials.

3 Inversion of the Laplace transform

The main difficulty in applying Laplace transform techniques is the determina-
tion of the original function f(t) from its transform F (p). In many cases, nu-
merical methods must be used. The computation of f(t) from values of F (p) on
the real axis is not well-posed, so that regularization is recommended. Inverting
the approximation

F (p) ≈ p−α
N∑

n=0

cnTn

(
1− b

p

)
(3.1)
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yields

f(t) ≈ tα−1

Γ (α)

N∑
n=0

cnϕn

(
bt

2

)
, (3.2)

where

ϕn(x) = 2F2

(−n, n
1/2, α

; x
)

.

Here, ϕn(x) is a polynomial of degree n which satisfies the recurrence formulae
[17]

ϕn(x)+ (A+Bx)ϕn−1(x)+ (C +Dx)ϕn−2(x)+Eϕn−3(x) = 0, n = 3, 4, . . .

where

A = −αn + 3n2 − 9n− 3α + 6
(n− 2)(α + n− 1)

,

B =
4

α + n− 1
,

C =
n(3n− 9− α) + 6
(n− 2)(α + n− 1)

,

D = 4
n− 1

(n− 2)(α + n− 1)
,

E =
(n− 1)(n− α− 2)
(n− 2)(α + n− 1)

,

ϕ0(x) = 1,

ϕ1(x) = 1− 2x

α
,

ϕ2(x) = 1− 8x

α
+

8x2

α(α + 1)
.

The polynomial ϕn(x) has n real positive zeros. This means that the interval
[0,∞) can be divided into an oscillation interval, in which lie the zeros and an
interval in which the polynomial increases monotonically. In the oscillation inter-
val, ϕn(x) oscillates with strongly increasing amplitude. In evaluating expression
(3.2), this fact produce some difficulty, because, for large values of t, the errors
on the coefficients cn are multiplied by a large number, especially for large n.
Regularization consists in restricting the value of N in (3.1).

4 Solution of the Abel integral equation

The Abel integral equation
∫ x

0

φ(x)(x− y)−αdy = f(x), (0 < α < 1), (4.1)
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occurs in a number of engineering problems.
If f(x) is differentiable, the solution of (4.1) is explicitly given by

φ(x) =
sin(απ)

π

[
f(0)
x1−α

+
∫ x

0

f ′(y)
(x− y)1−α

dy

]
.

However, this formula is not of practical value in problems where no explicit
mathematical expression for f(x) is known. In the case that f(x) is obtainable
only from measured data, Clenshaw’s curve fitting method [2] can be used to
construct an approximation in the form

f(x) ≈ xβ
N∑

k=0

ckTk(1− 2x),

where β > −α is essentially a free parameter, which can be used to optimize the
approximation, taking into account a singular behaviour for x → 0.

The approximate solution of (4.1) is now [23]

φ(x) ≈ xα+β−1

Γ (α + β)
Γ (1 + β)
Γ (1− α)

N∑
n=0

cnfn(x),

where

fn(x) = 3F2

(−n, n, β + 1
1/2, α + β

;x
)

.

Using Fasenmyer’s technique [24], a recurrence formula for the computation of
fn(x) can be derived namely

fn(x) + (An + Bnx)fn−1(x) + (Cn + Dnx)fn−2(x) + Enfn−3(x) = 0. (4.2)

where

An = − 1
n− 2

[
n− 3 +

(n− 1)(2n− 3)
n + α + β − 1

]

Bn = 4
n + β

n + α + β − 1
,

Cn =
1

n− 2

[
−1 +

n− 1
n + α + β − 1

(3n− α− β − 5)
]

,

Dn = −4
(n− β − 3)(n− 1)

(n + α + β − 1)(n− 2)
,

En = − (n− α− β − 2)(n− 1)
(n + α + β − 1)(n− 2)

.

Starting values for (4.2) are

f0(x) = 1,

f1(x) = 1− 2(β + 1)
α + β

x,

f2(x) = 1− 8(β + 1)
α + β

x +
8(β + 1)(β + 2)

(α + β)(α + β + 1)
x2.
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The recurrence formula(4.2) is a difference equation of Poincaré’s type. Forward
recursion is numerically stable [16].

5 The computation of Laplace, Fourier and Hankel
transforms

The Laplace transform of f is defined as

L{f} = F (s) =
∫ ∞

0

e−sxf(x)dx.

The function f(x) is approximated on [0,∞) by

f(x) ≈ (1 + x)−α
N∑

k=0

akT ∗k

(
1

1 + x

)
.

where T ∗k is the shifted Chebyshev polynomial of degree k and where α > 0 is a
real parameter, which can be chosen freely, although its value affects strongly the
quality of the approximation. The coefficients ak are computed as the Chebyshev
series coefficients of

g(z) =
(

z + 1
2

)−α

f

(
1− z

1 + z

)
.

An approximation of F (s) is now given by

F (s) ≈
N∑

k=0

akIk(α, s), (5.1)

where

Ik(α, s) = 21−αe−s

∫ +1

−1

(x + 1)α−2e2s/(x+1)Tk(x)dx.

Here Ik(α, s) satisfies the linear recurrence relation [18]

−(k + α + 1)Ik+2 + 2(2s− k − 2)Ik+1 + 2(α− 3− 4s)Ik

+2(2s + k − 2)Ik−1 + (k − α− 1)Ik−2 = 0. (5.2)

In (5.1) and (5.2), s may be replaced by jω, so that the formulae are applicable for
the computation of Fourier integrals. Starting values for the recurrence relations
and numerical stability are discussed in [20].

The Hankel transform of f(x) is defined as

Hν{f} = Fν(s) =
∫ ∞

0

xf(x)Jν(sx)dx,
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where Jν(x) is the Bessel function of the first kind and order ν. The inversion
formula is, when ν > − 1

2 :

f(x) = H−1
ν {Fν(s)} =

∫ ∞

0

sFν(s)Jν(sx)ds.

Both direct and inverse transform are integrals of the form

I(s) =
∫ ∞

0

ϕ(x)Jν(sx)dx,

which are difficult to compute numerically. However, of ϕ(x) is rapidly decaying
to zero, the infinite integration range may be truncated to a finite interval [0, A].
We have then

I(s) ≈ A

∫ 1

0

ϕ(Ax)Jν(ω)dx,

where ω = sA.
Here the approximant on [0, 1]

ϕ(Ax) ≈ xα
N∑

k=0

ckT ∗k (x)

yields

I(s) ≈ A

N∑

k=0

ckMk(ω, ν, α),

where

Mk(ω, ν, α) =
∫ 1

0

xαJν(ωx)T ∗k (x)dx.

These modified moments satisfy the following homogeneous, linear, nine-term
recurrence relation:

ω2

16
Mk+4 +

[
(k + 3)(k + 3 + 2α) + α2 − ν2 − ω2

4

]
Mk+2

+ [4(ν2 − α2)− 2(k + 2)(2α− 1)]Mk+1

−
[
2(k2 − 4) + 6(ν2 − α2)− 2(2α− 1)− 3ω2

8

]
Mk

+ [4(ν2 − α2) + 2(k − 2)(2α− 1)]Mk−1

+
[
(k − 3)(k − 3− 2α) +

(
α2 − ν2 − ω2

4

)]
Mk−2 +

ω2

16
Mk−4 = 0.

(5.3)
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6 Solution of integral equations of the second kind using
modified moments

We consider

φ(x) = f(x)−
∫ +1

−1

k(x, y)φ(y)dy, (6.1)

where φ is the function to be determined. The kernel function k and the function
f are given. We assume that −1 ≤ x ≤ 1. The use of Chebyshev polynomials
for the numerical solution of such equations has been considered in [5, 6, 26].
The use of modified moments is proposed in [19]. The solution φ(x) of (6.1) is
approximated by

p(x) = ω(x)
N∑

k=0

ckTk(x), (6.2)

where the coefficients ck are to be determined. If it is known that φ(x) shows a
singular behaviour, the singularities can be catched in the function ω(x).

Substituting (6.2) into (6.1) we have

N∑

k=0

ck[ω(x)Tk(x) + Ik(x)] = f(x), (6.3)

where

Ik(x) =
∫ +1

−1

k(x, y)ω(y)Tk(y)dy.

Substituting at least N + 1 values of x into (6.3) yields a system of linear equa-
tions, the solution of which gives approximate values of the Chebyshev coeffi-
cients ck.

In many practical cases, efficient evaluation of Ik(x) is possible due to recur-
rence relations for modified moments. As an example, we consider Love’s integral
equation

φ(x) = 1± 1
π

∫ +1

−1

a

a2 + (x− y)2
φ(y)dy

the solution of which is the field of two equal circular coaxial conducting disks,
separated by a distance a and on equal or opposite potential, with zero potential
at infinity. We choose ω(x) = 1. The method of solution requires the evaluation
of

Ik(x) =
∫ +1

−1

a

a2 + (x− y)2
Tk(y)dy.
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When a is small, the kernel function a/(a2 + (x− y)2) shows a strongly peaked
behaviour, which is a handicap for numerical integration.

The recurrence relation, however,

Ik+2(x)− 4xIk+1(x) + (2 + 4a2 + 4x2)Ik(x)− 4xIk−1(x) + Ik−2(x)

= (4a/(1− k2))[1 + (−1)k] (6.4)

allows efficient computation.
Starting values are

I0(x) = arctan
(

1− x

a

)
+ arctan

(
1 + x

a

)
,

I1(x) = xI0(x) +
a

2
ln

(1− x)2 + a2

(1 + x)2 + a2
,

I2(x) = 4xI1(x)− (2a2 + 2x2 + 1)I0(x) + 4a,

I3(x) = −(4a2 − 12x2 + 3)I1(x)− 8x(a2 + x2)I0(x) + 16xa.

Forward recursion of (6.4) is not completely numerically stable, but the stability
is sufficient for practical purposes.

7 An extension of Clenshaw-Curtis quadrature to
oscillating and singular integrals

We want to compute an approximation to the integral

I =
∫ +1

−1

w(x)f(x)dx,

where w(x) contains the singular or oscillating factor of the integrand and where
f(x) is smooth in [−1, 1].

When

f(x) ≈
N∑

j=0

′′cjTj(x),

then

I ≈
N∑

j=0

′′cjMj ,

where Mj is the modified moment

Mj =
∫ +1

−1

w(x)Tj(x)dx.
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When w(x) = 1, this method is the Clenshaw-Curtis quadrature [3]. In [18]
recurrence relations are given and discussed for the computation of the modified
moments connected with the following weight functions:

w1(x) = (1− x)α(1 + x)β ,

w2(x) = (1− x)α(1 + x)β exp(−ax),
w3(x) = (1− x)α(1 + x)β ln((1 + x)/2) exp(−ax),
w4(x) = exp(−ax2),
w5(x) = (1− x)α(1 + x)β exp(−a(x + 1)2),
w6(x) = (1− x)α(1 + x)β exp(−a/(x + 1)),
w7(x) = (1− x)α(1 + x)β exp(−a/x2),
w8(x) = (1− x)α(1 + x)β exp(−a/(x + 1)2),
w9(x) = (1− x)α(1 + x)β ln((1 + x)/2),

w10(x) = (1− x)α(1 + x)β ln((1 + x)/2) ln((1− x)/2),
w11(x) = |x− a|α,

w12(x) = |x− α|αsign(x− a),
w13(x) = |x− α|α ln |x− a|,
w14(x) = |x− α|α ln |x− a|sign(x− a),

w15(x) = (1− x)α(1 + x)β |x− a|γ ,

w16(x) = (1− x)α(1 + x)β |x− a|γ ln |x− a|,
w17(x) = [(x− b)2 + a2]α,

w18(x) = (1 + x)αJν(a(x + 1)/2).

The modified moments have also application in the numerically stable construc-
tion of Gaussian quadrature formulas [7, 21].

8 Chebyshev polynomials in QUADPACK

QUADPACK, a subroutine package for automatic integration [22] contains be-
sides five general purpose integrators, four special purpose routines for the com-
putation of integrals with oscillatory integrands, integrands with algebraic or
logarithmic singularity and Cauchy principal value integrals. The rule evalua-
tion component in the special purpose integration is based on Clenshaw-Curtis
quadrature extension described in Section 7.

9 Conclusion

Chebyshev polynomials originate from Chebyshev’s research in theoretical kine-
matics. Their application in numerical analysis started with Lanczos in 1938.
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From the middle of the 20th century, they play an important part in the ap-
proximation and numerical differentiation and integration of smooth functions
and the solution of differential equations. From 1970, the domain of applicabil-
ity becomes much wider, going from the computation of integrals with singular
integrand to the solution of integral equations and the inversion of integral trans-
forms.
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Vitrià, J., 136
Vogel, C.R., 136
Von Karman, T., 48
von Mises, R., 189
von Naegelsbach, H., 14
von Neumann, J., ii, iii, 161, 177,

184

Waadeland, H., 19

Wait, D., 172
Walsh, J., 74, 75, 77, 82, 83, 88, 91
Walz, G., 1, 5, 22
Wang, H., 134, 139
Wanner, G., iv, v, xi, xii, 35, 36, 39,

42–44
Watson, G.A., ix, xi, xii, 161, 177
Watt, J., 194
Weiss, R., 66, 70
Weniger, E.J., 1, 19, 22
Wenland, W., 69, 71, 72
Whitham, G., 50
Whittaker, E.T., ix, 15, 161–177, 187,

188
Widder, D.V., 189
Wielandt, H., 66, 72
Wight, A., 167
Wilkinson, J.H., vii, 74, 80, 82, 83,

87, 89, 91
Willers, I.M., 42, 43
Williams, H.C., 22
Wilson, G.V., 94, 107
Wimp, J., 1, 22
Wing, G.M., 54, 72
Wolfe, M.A., 171
Woodward, P.R., 94, 107
Wrench, Jr. J.W., 17, 22
Wright, M.H., 80, 90, 114, 115, 136
Wright, S.J., 124, 137, 149, 158–160
Wynn, P., iii, 17–18, 22

Yi, J., 122, 137
Young, A., 66, 72
Yuan, Y., 158, 160

Zahar, V.M., 42, 43
Zangwill, W., 124, 139
Zdunek, R., 110, 136
Zhang, H.J., 128, 135, 137
Zhang, P., 134, 139



Subject Index

A-stable, v, 38, 39
Abel integral equation, 197
ACM, 50
Advanced Strategic Computing, 100
air pollution, 121, 130
Algol, vii, 18, 75, 80, 82, 83, 89, 173
algorithm

epsilon, iii
genetic, ix
QD, iii, 12, 163

ALS, see Alternating Least Squares
alternating least squares, 116, 123
AMD

Opteron, 101, 102
Argonne National Laboratory, iv, 23
ASC, see Advanced Strategic Com-

puting
Atlas

Autocode, 165, 167
computer, 74
console, 165

Barlow’s tables, 163, 187
Beowulf cluster, 98
Bernoulli numbers, 14
Bessel function, 200
bifurcation, vi, 48, 49
BLAS, vii, 83
blind source separation, viii
BN-stable, 39
boundary integral equations, 53
Brunsviga calculator, 73, 166

calculator
Brunsviga, 166
Facit, 166
Frieden, 189
Marchant, 189

California Institute of Technology,
see Caltech

Caltech, vi, 48–51
Cambridge

King’s College, 7

CDC, 84
Chebyshev

polynomial, 193–204
series, 199

Chebyshev polynomial, 83
chemometric analysis, 122
Cholesky factorization, 145
Clenshaw-Curtis quadrature, 202, 203
cluster analysis, 131
CMFortran, 97
CMOS, see Complementary Metal-

Oxide-Semiconductor
collocation points, 63
compact approximation, 65
Complementary Metal-Oxide-Semi-

conductor, 95
computer graphics, vi
condition number, 24, 32
conformal map, 190
Constellation, 98
continued fraction, 18
convolution, 191
Courant institute, 46
Cray 1, 76, 101, 106
Crelle’s tables, 163, 187
cubature, 23–34
curve fitting, 74, 77, 78, 83
CWI Amsterdam, v, 36, 42

Dahlquist barrier, 39, 43
Daniel-Moore conjecture, 39
data

hyperspectral, 134
mining, viii, 110, 136
modeling, 112
processing, 121

degenerate kernel, 55
determinant

Hankel, 17
Schwein identity, 18
Sylvester identity, 17, 18

differential equation, iv, vi, 9, 35–44,
47, 74, 77, 78, 83, 191

215



216 Subject index

stiff, v, 37
Diophantine equation, 14
domain decomposition, 163
Duhamel integral, 191
dynamical system, vi, 45

Earth Simulator, 93, 95, 96, 99, 100
ECL, see emitter-coupled logic
Edinburgh Mathematical Society, 162
eigenvalue problem, 6, 49, 58, 66,

76–78, 80, 111, 191
EISPACK, vii, 80, 82, 87
emitter-coupled logic, 95
error analysis, ii
ES, see Earth Simulator
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