

Message from the Program Committee Chair

Welcome to the Microsoft Academic Days on Game Development in Computer
Science Education, aboard the Disney Wonder Cruise Ship. This is the second
year for this meeting, and the first that has an academic track with refereed
papers.

This year 71 papers were submitted. Each paper received three reviews. Based
on the reviewers’ feedback, the Program Committee selected the best papers, 19
of which are being presented at the conference and included in these
Proceedings. A further 9 papers are highlighted as poster presentations.

I would like to take this opportunity to thank the members of the Program
Committee for their sterling work in reviewing and selecting these papers under a
tight deadline. The Program Committee consists of:

Tiffany Barnes, UNC Charlotte, USA
Jessica Bayliss, Rochester Institute of Technology, USA
Steve Feiner, Columbia University, USA
Amy Gooch, University of Victoria, Canada
Bruce Gooch, University of Victoria, Canada
Lisa Gjedde, Danish University of Education, Denmark
Ian Parberry, University of North Texas, USA (Program Committee Chair)
Andrew Phelps, Rochester Institute of Technology, USA
Yusuf Pisan, University of Technology, Sydney, Australia
T.L. Taylor, IT University of Copenhagen, Sweden
Michael van Lent, University of Southern California, USA
Ursula Wolz, The College of New Jersey, USA
R. Michael Young, North Carolina State University, USA
Mike Zyda, University of Southern California, USA

The Program Committee would also like to thank John Nordlinger of Microsoft
Reasearch and Kent Foster of Microsoft Corporation for their help in organizing
this meeting, and Microsoft Corporation for providing travel funds for authors and
participants.

Ian Parberry
Program Committee Chair

CONTENTS

1. Combining Games with Theatre to Create an Interdisciplinary Learning Experience for
Computer Science... 3
Joe Geigel, Marla Schweppe

2. Teaching Game Design through Cross-Disciplinary Content and Individualized Student
Deliverables ... 8
Ursula Wolz, Christopher Ault, Teresa Marrin Nakra

3. A Tale of Two Classes: On Interdisciplinary Collaboration in Games Education 13
Arnav Jhala, Michael Young, Timothy Buie

4. ARTS Lab and Game Technology... 18
Edward Angel, Thomas Caudell, Eric Whitmore

5. Interweaving Game Design into Core CS Curriculum .. 22
Bruce Gooch, Amy Gooch, Yolanda Rankin

6. Integrating Video Game Development Experience in an Academic Framework 28
Bernard Yee, David Sturman, Steven Feiner

7. Agent-augmented Game Development .. 33
Zhiqi Shen, Chunyan Miao, Yundong Cai

8. Teaching Revulsion-free Design Patterns through Game Development...................................... 38
Randy Connolly

9. Creativity in the Cane Fields: Motivating and Engaging IT Students Through Games 43
Colin Lemmon

10. A Soft Approach to Computer Science: Designing & Developing Computer Games for and
with Senior Citizens ... 48
Citiz Stef Desmet and Jelle Husson

11. Middle-to-High School Girls as Game Designers - What are the Implications? 54
Magy Seif EI-Nasr, Ibrahim Yucel, Joseph Zupko; et al.

12. The Effects of Games in CS1-3 ... 59
Jessica Bayliss

13. XYZZY: Finding New Magic in Text Adventure Games .. 64
Brian Ladd

14. Using XNA-GSE Game Segments to Engage Students in Advanced Computer Science
Education .. 70
G. Michael Youngblood

15. Using a Simple MMORPG to Teach Multi-user, Client-server Database Development............... 75
Greg Wadley, Jason Sobell

16. Educating Game Programmers... 80
Timothy Roden

17. Design Issues for Undergraduate Game-Oriented Degrees .. 85
Jim Whitehead, Michael Mateas

18. SAGE: A Simple Academic Game Engine ... 90
Ian Parberry, Jeremiah Nunn, Joseph Scheinberg, Erik Carson, Jason Cole

19. Designing Shape-shifting Collaborative Laboratory Spaces to Facilitate Game Design
Education .. 95
David Schwartz

Combining games with theatre to create an
interdisciplinary learning experience for Computer

Science students
Joe Geigel

Department of Computer Science
Golisano College of Computing and Information Sciences

Rochester Institute of Technology

jmg@cs.rit.edu

Marla Schweppe
School of Design

College of Imaging Arts and Science
Rochester Institute of Technology

mkspph@rit.edu

ABSTRACT
In this paper we describe our experiences in combining theatre
with games programming as a means of providing a collaborative
experience for Computer Science students. With the goal of
creating a theatrical production in a virtual space, we’ve designed
a set of companion courses, geared toward those looking to work
in the electronic entertainment industries, which emphasizes
teamwork, cooperation, and successful collaboration between
artists and technologists. This paper focuses on the Computer
Science course, where students work together towards adapting a
gaming engine for theatrical purposes.

Categories and Subject Descriptors
K.3.2 [Computing Mileux]: Computers and Education-Computer
and Information Science Education [Computer Science
Education]

General Terms
Design, Experimentation

Keywords
Interdisciplinary coursework, theatre, games education.

1. INTRODUCTION
Imagine a computer science course where students develop a
theatrical performance for a live audience. Like most theatre,
excitement is in the air. The 'crew' of programmers is anxious and
excited, wondering how the audience will respond to their
performance. The difference is that in this performance, the
action takes place in a gaming world; actors are all avatars
carefully created and designed by artists; the performance is
realized by the use of motion control devices, data gloves and a
virtual stage manager. The audience sits at computers, rather than
a physical theatre, where they watch and respond to the
performance.

Not the usual programming classroom, This classroom is alive.
Students are seeking solutions to problems, asking for
components to be completed so they can be tested or integrated
into the whole. Everyone plays a key role. Everyone has to come
through to make the event a success; these students are fully
engaged, depending on each other, and excited about the end
result. This is what Virtual Theatre is all about. A unique
educational experience for Computer Science students that

combines theatre with games programming with the goal of
teaching skills beyond the traditional CS course.

For the Computer Science student looking to enter the electronic
entertainment industry, the skills required for success expands
well beyond programming and algorithms. Although technical
expertise is important, the interdisciplinary nature of these
industries additionally demands practice in a number of non-
technical skills. Qualities such as teamwork, collaboration,
independent thinking, experience with a large project, flexibility,
and problem solving have been reported as being critical in the
success of those looking to work in technical positions in both the
computer animation[1] and the game development[2,3] fields. In
addition, successful projects in these fields rely on effective
communication and uncompromised cooperation between artists
and technologists.

Courses that foster such collaboration and address these non-
technical issues have been reported in Animation [4], Image
Synthesis [5], Virtual Reality [6] and game programming [2,7].
Common themes shared by these courses include: a Capstone
experience; Collaboration of artists and programmers working on
a single project; and a team based approach.

In our work, we embrace theses themes listed and, adding a
theatrical component, we create a learning experience with the
goal of further sharpening students’ collaborative and teamwork
skills. The courses, which are an integral component of a larger
project (Virtual Theatre), create an educational experience that
serve as a springboard for direct learning through interdisciplinary
collaboration and teamwork. An important objective of the
project is to provide an opportunity for students interested in
working in the electronic entertainment industries to experience,
first hand, the type of collaboration between artists and
technologists that is crucial to success in that industry.

The education component of the project is implemented as a set of
companion courses, some offered in the School of Design and
others offered by the Department of Computer Science. The
focus of this paper is the courses taught in Computer Science.
The remainder of the paper is structured as follows: In section 2,
we discuss our motivations for using theatre as an application
domain for the courses. This is followed by a brief overview of
the Virtual Theatre project and the details of the Virtual Theatre
CS course, in Sections 3 and 4 respectively. Results and
observations from the course offerings are discussed in Section 5
and we finish the paper with Conclusions and Future work in
Section 6.

3

2. THEATRE AS AN EDUCATIONAL
MOTIVATOR
Theatre, by its very nature, is a collaborative art. Theatre can be
defined as a place of action; field of operation [8]. The telling of a
theatrical story takes place in a common field of operation and
involves a number of actors, directors, designers, and technicians,
who create the storytelling space and the action that is viewed
within it. This collaborative environment provides a natural
foundation for a learning experience that emphasizes teamwork
and cooperation between artists and technologists.

In addition to the collaborative aspects of theatre, the discipline of
theatre teaches a number of other highly valuable skills that can
contribute to student success, regardless of their area of study. [9]
We list some of these skills in Table 1 below. Not surprisingly,
this list mirrors the skills previously mentioned as critical to those
looking to working in the electronic entertainment industries.

Table 1 - Skills learned from working in the theatre

• Oral Communication Skills
• Creative Problem Solving Abilities
• Motivation and Commitment
• The Ability to Work Independently
• Time-budgeting Skills
• Initiative
• Promptness and Respect for Deadlines
• Respect for Colleagues
• Adaptability and Flexibility
• The Ability to Work Under Pressure

Others in the field of Computer Science have certainly recognized
the value of theatre as an educational stimulus. Brenda Laurel
uses theatre as a metaphor for Human Computer Interaction [10].
Others have taken a more direct approach, combining computer
graphics education with traditional theatre [11,12]) which serve as
a motivation for our approach.

3. THE VIRTUAL THEATRE PROJECT
The Virtual Theatre project is an interdisciplinary project between
the department of Computer Science and the School of Design at
the Rochester Institute of Technology. The goal of the project is
to explore distributed theatre and enable the presentation of a
theatrical performance in virtual space, where actors, crew, and
audience to share and participate, possibly from different physical
locations, in a single theatrical performance over a distributed
network.[13].

The Virtual Theatre project serves as both a research project and
educational experiment. There are three major facets to project:

1. Artistic – Exploration of means to create engaging
distributed performance and to create the aesthetic
elements of such a production.

2. Technical – Defining, specifying, implementing, and
documenting, the technical components to enable such a
performance

3. Educational -- Allow for first hand student involvement
the research aspects of the project, both technical and

artistic and to create a collaboratory experience for
students in both camps.

Computer Science students are responsible for the technical
aspects of the project. The goal of the technical team is to build a
distributed VR system to support this theatrical interaction.
Rather than starting from scratch, the system is built on top of a
gaming engine which provides layered access to low level
capabilities (graphics, sound, networking) required by such a
system. Similar to the spirit of Machinima [14], (filmmaking
using gaming technology), our framework adapts the functionality
provided by a gaming engine and wraps it in the language and
processes of the theatre, as illustrated in Figure 1. Control of, and
interaction with, the system during a production is done at this
more intuitive layer.

Figure 1 - Architecture of Virtual Theatre system

The framework assumes a shared object oriented database model
where items in the virtual space are represented by software
objects, which are distributed amongst all those accessing the
shared space. 3D visual representations of these objects are
created off-line by the design team using a modeling package and
imported into the system prior to the production. The design
team is also responsible for creating stage elements, defining
lighting, and generating scripted animations for the avatars on the
virtual stage.

During an actual performance, individual workstations, each
resident with his or her own instance of the framework and assets,
are networked together and configured to share a single virtual
space as shown in Figure 2.

Figure 2 - Network configuration during a performance

4

4. VIRTUAL THEATRE COURSES
Logistically, the ultimate outcome of the courses is to create the
technology and assets to realize a particular theatrical
performance in a virtual space. Art students are tasked to design
and create the aesthetic elements of the performance (models,
textures, animation sequences) whereas the CS students are
responsible for the design and implementation of the technical
infrastructure to allow real time interaction and manipulation of
these models. Unlike the courses presented in [4,5,6], we did not
strive for a common classroom experience for both artists and
technologists. Instead, students were instructed in their own
discipline; however, their work was guided and shaped by
constraints and requirements defined by the other half. As such,
the project was implemented via a set of companion courses,
some specifically for design students, and another for CS students,
rather than a single course consisting of both sets of students.
Efforts were made to have the companion courses offered at the
same time, when possible.

The production to be realized in a given year’s offering of Virtual
Theatre is decided upon prior to the start of the school year. This
production is chosen based upon technology and devices
available. All course activities including the definition of the
elements that student would be creating is driven by production
needs both on the art and the tech side.

The remainder of this section will provide details of the course
taken by Computer Science students.

4.1 Pre-requisites
The Virtual Theatre course is listed as an advanced course in the
area of Computer Graphics. Within this area, the CS department
also offers Graphics I, which focuses on fundamentals of
graphics; Graphics II, which focuses on rendering and global
illumination; Computer Animation, which takes a low level look
at the algorithms and techniques of animation; and Procedural
Shading. All graphics courses are co-listed for both Graduate
and Undergraduate students. Students studying graphics are also
encouraged to take AI for Interactive Environments, which
focuses on the use of artificial intelligence methods in 3D
environments, as well as the game programming courses offered
by our Information technology department.

Graphics I is the only listed prerequisite for the course. Although
it is helpful for students to have taken some of the more advanced
graphics courses, this is not required as there is much flexibility in
the work that any individual student will be tasked to do. In fact,
since there are several required tasks involving areas that are non-
graphics related (e.g. networking, audio), we do allow students
with no graphics experience to enroll in the course with
permission of the instructor. Such students should show an
expertise in one of these non-graphics areas and an interest in
graphics, games, or 3D environments.

4.2 Learning Outcomes
In designing the course for Computer Science students, we had
the following goals in mind

• Provide students with a rich and relevant technical
experience.

• Give students a taste of a real-world working
environment. Thus, a major emphasis was placed on
having students collectively work on a large-scale

project from which any individual student will have the
responsibility for a smaller piece.

• Define the project such that collaboration with artists is
a requirement for success of the project as a whole.

Given these goals, the following student learning outcomes were
defined for the course:

• Students will be able to describe the components of a
distributed virtual reality system and the latest advances
in designing such components.

• Students will be able to apply existing graphics/VR
toolkits, APIs, and software packages in the
construction of a large scale project.

• Students will be able to specify, design, implement, and
document an integral component of a larger software
project related to computer graphics and VR.

• Students will be able to successfully participate in a
interdisciplinary team based project with responsibilities
assigned within and between individual teams

Unlike other courses that involve capstone projects in gaming
involving (e.g. [3][7]), an outcome of this course involves the
application of a gaming engine as opposed to the creation of one.
This is due, in part, to the short time span of the course (10 weeks)
and the fact that the skills that we hope to develop in the students
are addressed by collaborative nature of the course. Since the
focus of the work for a particular individual is quite specific, the
learning curve of working with the chosen gaming engine to
address each task is manageable given the timeframe of the
course.

4.3 Team Assignments
The primary goal of the Computer Science course was to build the
Virtual Theatre layer as mentioned in Figure 1. Towards this end,
students are divided into a number of teams; each team
responsible for a particular technical component of this layer. A
list of teams and team responsibilities is given in Table 2.

Table 2 - Responsibilities for student teams

Team Responsibility

Asset Import Creation of tools and classes for importing
models from design team.

Audience
Participation

Creation of software object representing
audience members and providing
capabilities for audience participation.

Audio / Music Creation of a subsystem for distributed
audio and music.

Character Motion Creation of classes to enable playback of
predefined animation sequences created by
design team.

Motion Capture Create classes for interface with motion
capture devices.

Networking Creation and management of networking
infrastructure.

Staging / Lighting Creation of software classes representing
staging and lighting command and cues.

5

The instructor plays the role of technical director, keeping teams
on track with regard to serving the ultimate needs of the entire
production and the production schedule. Task requirements for
work to be performed by each of the teams are predefined based
upon the needs of the production. Given these requirements, each
team must design a solution for the task at hand and develop an
implementation plan. Students are pointed to relevant papers and
articles from the VR, graphics, and animation literature to assist
them in their design decisions.

Teams are carefully hand assembled by the instructor, based upon
the interests and the expertise of the students taking the course in
a given quarter. Graduate students are expected to take
leadership roles in the teams. The goal is to have as many teams
as grad students. With each course offering, enrollment has easily
supported natural team assignments. On the occasion when grad
leaders could not be assigned, the instructor stepped in as the
director for the team.

4.4 Course Delivery
The course is given in a computer laboratory consisting of 20
Windows based PCs equipped with advanced graphics hardware.
Software to be used by the class is preloaded on these machines.
The software is also available for students to install on their own
personal laptops, though the use of laptops is not a requirement
for the course. In addition, students have access to our Virtual
Reality laboratory, which houses specialized hardware dedicated
to interface with the VR devices used during the performance.
Currently, our list of VR devices include a single node Flock of
Birds Motion Capture device, several datagloves, a head mounted
display, and a full body motion capture system.

Classes are scheduled for 4 hours weekly, divided into 2 two-hour
periods. Lectures are given only in first 2-3 weeks of course, with
the purpose of familiarizing students with the processes of theatre,
providing details on the given production being targeted, and
instructing on the use the gaming engine and toolkit being
utilized. The remainder of class periods is used as working
sessions. Although it is expected that a good deal of the work will
be done outside of class time, the working sessions assure
guaranteed time when teams will have time together to meet.

It is important that each team makes steady progress as the quarter
advances. With the goal of keeping the teams on track, each
team is required to give a short demo periodically during the
quarter ("checkpoints") illustrating the progress made. Each team
leader, in conjunction with the instructor, will determine the
expectations for the checkpoint demos.

The course culminates with a performance demonstration that
takes placed during finals week. In preparation for this
demonstration, team leaders integrate the deliverables from all of
the teams are into a single unified framework. Assets created by
the design team are imported and a demo performance is
presented.

4.5 Student Assessment
Student assessment for the course is performed on two levels.
The first involves direct instructor evaluation of student work.
This is performed on a per team basis where each team is
evaluated based on the design, implementation, and
documentation of their assigned component given the
requirements. Teams are also graded on the incremental demos

shown during the checkpoint sessions. Secondly, students provide
peer evaluations as input to the instructor. In these peer
evaluations, students are asked to judge each team, as a unit and
each member within their given team. In addition, grad students
are evaluated on their leadership qualities in directing the work of
the team.

5. RESULTS
We have been offering the Virtual Theatre course annually, in the
Spring since 2004. For each course offering, a one-act
improvisational theatrical piece was created as a target
performance. A list is given in Table 3. The story of and
interaction required by each piece was influence by the set of VR
devices at our disposal at the time of the course.

Table 3 - Virtual Theatre Productions

When Offered Production Interface devices

Spring 2004 What’s the
Buzz?

Single node FOB motion
capture device,
5DT dataglove
keyboard / mouse

Spring 2005 Getting By Full body motion capture
keyboard / mouse

Spring 2006 Critters Full body motion capture
5DT Dataglove
P5 Dataglove
keyboard / mouse

As a direct outcome of the course over the years, we have built
two versions of the Virtual Theatre System (Table 4), each using a
different gaming engine as a foundation. In the Spring of 2004,
we built upon MUPPETS, a distributed, collaborative virtual
environment (CVE) originally designed for enhancing student
education in the areas of programming and problem solving [15].
We continued with MUPPETS in the Spring of 2005, building
upon the work done in 2004. In an attempt to give students
experience in working with a commercial engine, we switched to
RenderWare Graphics[16] in 2005, using the RakNet library[17]
for networking.

Table 4 - Virtual Theatre Systems

 Engine Language When used

V1.0 MUPPETS Java 2004/2005

V2.0 RenderWare (graphics)
RakNet (networking)

C++ 2006

Enthusiasm among the students was overwhelming, greatly
exceeding our expectations. In a sense, and quite unexpectedly,
the theatrical metaphor extended to the overall feeling of the
project. Consistently we’ve observed that by the end of the
quarter, technical team boundaries spontaneously evaporated with
all students working together equally towards the goal of
completing the system. The project became more than a course,
with the drive to finish mimicking that of stage hands on opening
night.

Most of the collaboration between artists and the students in the
class focused on importing and adapting the assets created by the
design team for use in the gaming engine. It was of utmost

6

importance that the artistic aesthetics of the final models be
preserved given the constraints of the gaming system. Students
had to work together to create innovative solutions to such issues,
some of which involved modification of the models, whereas
others were technical, involving the creation of software and tools
for automating the conversion.
Interactive sessions, during which these problems were addressed,
offered the richest collaborative experience. During these
sessions, technologists learned the thinking process of the artists
and learned how to specify and implement tools to meet the needs
of these users. The artists, on the other hand, learned to adapt
their work to the needs of a real time, interactive VR environment.

In addition to peer evaluations, students were also asked to
evaluate the course. Table 5 lists some of the more popular
responses, in order of frequency of replies, when students were
asked “What have you learned in Virtual Theatre?” Note that
although technical content is high on the list, many of the other
goals of the course are well represented.

Table 5 -- Student response on what they learned

• Technical Content
• Integration on a Large Scale project
• The importance of deadlines and backups
• How to work with artists
• How to work independently and within teams
• Problem solving and the importance of communication
• That class can be fun

Finally, in several cases, the work started in the Virtual Theatre
class has been used as the basis for a Graduate project in
Computer Science. Aspects of the system have been extended as
graduate work involving both motion capture and behavioral
models.

6. CONCLUSIONS
We feel that collaborative nature of the course, in both the
interaction between technical teams and between technologists
and artists, resulted in an enhanced learning experience for all
involved. Student work, excitement, and especially interactivity,
consistently exceeded expectations. Defining student and team
tasks as a portion of a larger project resulted in a communal
feeling towards the project as a whole with all contributing and
taking responsibility for the final product. Finally, placing he
project in a theatrical paradigm, a natural structure for
collaboration, further enhanced the interactive experience for both
students and instructors.
We plan on offering the course again in the Spring of 2007. In
addition, we are considering applying the same model and course
structure to domains other than theatre, where interaction in a
virtual 3D space would be appropriate.

7. ACKNOWLEDGMENTS
We’d like to acknowledge the contribution of our collaborators,
Walter Wolf (stage direction) and Tina Chapman (actress). We
especially appreciate the time put in by all the students who took
the course, which far exceeded that, which was required. Special
thanks go out to Jorge Diaz-Herrera, Stanley McKenzie, Jeff Pelz,
Andy Phelps, Joan Stone, Paul Tymann, and Walter Wolf for their

continued support of this work. This work was funded by an RIT
Provost Learning Innovations Grant and a Faculty Development
Grant from the B. Thomas Golisano College of Computing and
Information Sciences at RIT.

REFERENCES
[1] Harris, E., 2003. How to get a Job in Computer Animation, Imprint
Press, Raleigh, NC.

[2] Mencher,M. 2003. Get in the Game! Careers in the Game Industry,
New Riders, Indianapolis, IN.

[3] Parberry, I., Roden, T., and Kazemzadeh, M. B. 2005. “Experience
with an industry-driven capstone course on game programming”. In
Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education (St. Louis, Missouri, USA, February 23 - 27, 2005).
SIGCSE '05. ACM Press, New York, NY, 91-95.

[4] Ebert, D.S, Bailey, D, 2000, “A collaborative and interdisciplinary
computer animation course”, ACM SIGGRAPH Computer Graphics, 34
(3), August 2000, 22-26.

[5] Hunkers, D., Levine, D.B., 2003, “The science of images: a cross-
disciplinary introduction to the field of 3-D computer graphics”,
Educators program from the 30th annual conference on Computer
graphics and interactive techniques, San Diego, California, 1-4.

[6] Zimmerman, G.W, Eber, D.E., 2001, “When worlds collide!: an
interdisciplinary course in virtual-reality art”, Proceedings of the thirty-
second SIGCSE technical symposium on Computer Science Education,
Charlotte, North Carolina, 75-79.

[7] Jones, R. M. 2000. “Design and implementation of computer games: a
capstone course for undergraduate computer science education.” In
Proceedings of the Thirty-First SIGCSE Technical Symposium on
Computer Science Education (Austin, Texas, United States, March 07 -
12, 2000). S. Haller, Ed. SIGCSE '00. ACM Press, New York, NY, 260-
264.

[8] Zeller, D., 1999. Definitions and Directions of the Theatre. In Theatre
in Cyberspace, S.Schrum, Ed. Peter Lang Publishing, New York, NY, 21-
27.

[9] Catron, L.E., “What Theatre Majors Learn”,
http://lecatr.people.wm.edu/majorslearn.html.

[10] Laurel, B.,1991, Computers as Theatre, Addison-Wesley, Reading,
MA.

[11] Lee, W.J. 2003 “Computer Graphics and Theatre”. In Proceedings of
the Educators Program of the 30th annual conference on Computer
graphics and interactive techniques, San Diego, CA, August 2003, ACM
Press, New York, NY, 1-4.

[12] Springel, S. 1998. “The Virtual Theatre: immersive participatory
drama research at the centre for communications research, Cambridge
University”. In Proceedings of the sixth ACM international conference on
Multimedia Technologies for interactive movies, Bristol, UK, 43-49.

[13] Geigel, J, Schweppe, M. 2004. “Theatrical storytelling in a virtual
space”. In Proceedings of the 1st ACM workshop on Story representation,
mechanism and context, New York, New York, October 2004, B. Barry
AND K. Brooks, Eds. ACM Press, New York, NY, 39-46.

[14] Marino, P, 2004. 3D Game-Based Filmmaking: The Art of
Machinima. Paraglyph Press, Phoenix, AZ.

 [15] Phelps, A, Bierre, K. ,Parks, D. 2003. MUPPETS: multi-user
programming pedagogy for enhancing traditional study. In Proceeding of
the 4th conference on Information technology education, Lafayette, IN,
2003 , J. BREWER AND J. MENDONCA, Eds. ACM Press, New York,
NY, 100-105.

[16] Criterion Technologies, Ltd., RenderWare Graphics, Guildford,
Surrey, UK, 2000, http://www.renderware.com

[17] Rakkarsoft, RakNet – Multiplayer Game Network Engine,
http://www.rakkarsoft.com/

7

 Teaching Game Design through Cross-Disciplinary
Content and Individualized Student Deliverables
Ursula Wolz

Computer Science and
Interactive Multimedia

The College of New Jersey
Ewing, NJ 08628
+1 609 771 7266
wolz@tcnj.edu

Christopher Ault
Interactive Multimedia

 The College of New Jersey
Ewing, NJ 08628
+ 1 609 771 2236
ault@tcnj.edu

Teresa Marrin Nakra
Music

The College of New Jersey
Ewing, NJ 08628
+1 609 771 2759

nakra@tcnj.edu

ABSTRACT
Video game development is used to teach collaborative software
engineering principles. However, when the collaboration is
exclusively between computer scientists, a balkanized perspective
is unintentionally promoted. A multidisciplinary faculty
addressed how to exploit video game development as a vehicle for
a collaborative cross-disciplinary experience in technology
development for upper-level students from our contributing
majors. This paper addresses the issues of curriculum structure,
student assessment and cross-disciplinary team teaching. We
present a dual model of cross-disciplinary content and
individualized deliverables that allows each student to determine
how narrowly or broadly to focus his/her personal learning.

Categories and Subject Descriptors
D.2.10 Software Engineering: Design – methodologies
K.8.0 General Games

General Terms
Software Engineering, Games

Keywords
Game design, Game architecture, Project management,
Multidisciplinary computing, Computer science education

1. INTRODUCTION
There is a resurgence of interest in using games as a domain of
application for teaching computer science foundations. Video
game design, development and architecture is also gaining
credibility as a discipline in its own right within computer
science, drawing from such disciplines as computer graphics,
artificial intelligence and networks. Video game design can also
be used as a vehicle to teach software engineering principles both
in the construction of game engines and to create games
themselves [2, 3, 4]. However, an unrealistic and artificial
environment is created when the software engineering experience
in game implementation is limited to computer science students.
The construction of a fully robust video game is dependent upon
expertise from disciplines outside computer science, including

creative writing, music composition, sound technology, theater
production, digital 3-D art, cinematography, and character
animation. To a large extent game design and implementation is
a compelling model for a more global question of how to teach
skills in cross-disciplinary technology development. As
eloquently stated in “The World is Flat” [5] the skills necessary
for collaborative communication across disciplines will be critical
to the continued success of the American workforce. This is
coupled with the timely resurgence of interest in video games
themselves as tools for education [7]. There is a predicted need
for computer scientists with expertise in game development who
have practical experience in cross-disciplinary collaboration.
At our institution, a multidisciplinary faculty raised the question
of how to exploit video game development as a vehicle to provide
a collaborative cross-disciplinary experience in technology
development for upper-level students from a variety of majors in
a single, year-long cohesive course. This paper reports on our
experience with this approach, addressing the major issues of
curriculum structure (Section 3), individual student assessment
(Section 4), and cross-disciplinary team teaching (Second 5).
In particular we present a dual model of cross-disciplinary
content and individualized deliverables. This supports
assignments that allow each student to determine how narrowly or
broadly to focus their personal learning within the breadth of
disciplines. Furthermore, this approach provides a model for
student-centered learning that attempts to dismantle the “silo”
effect of undergraduate education that creates balkanization of
disciplines.
Our original goal was a suite of courses that would share the
objective of creating a single 3-D, multiplayer virtual world with
a robust storyline supported by high quality sound and music. We
envisioned that students would collaborate based on highly
developed expertise in their chosen fields. We anticipated that
established models of project management, wherein team
members report through hierarchical organizations of skills-based
accountability, would suffice to facilitate design and production.

2. INSIGHTS FROM OUR PILOT YEAR
Academic year 2005-2006 (AY05-06) was our pilot year, in
which approximately 20 students per semester were enrolled in
courses that supported this enterprise. A once-per-week four-hour
workshop allowed students to participate in the collaboration
through specific roles (summarized in Table 1). This was intended
to model the professional game development environment, if not
the 24/7 intensity of the industry. In 30 weeks we produced one

8

mailto:wolz@tcnj.edu
mailto:ault@tcnj.edu
mailto:nakra@tcnj.edu

Table 1: Student Roles in Game Development

Title Deliverables Responsibilities
Art Director Finalized and stylistically consistent art, story and sound Overseeing the work of the art and writing staff
Tech Manager Solutions for troubleshooting technical issues Overseeing the tech staff and liaison to art staff
Project Manager All the assets, completed on time and in the right format Managing the workflow of the project as a whole,
Prop and Scenery Modelers All non-character models and background models Working with 3-D modeling tools
Character Modeler Two main characters, three secondary characters Working with 3-D tools to model, and animate all

characters
Level Designer Maps of all games levels, identifying interactivity triggers Creating level maps and trigger points
Texture Designer Textures for props, characters, and all other surfaces Working with 3-D tools to create “skins”
Lighting Designer Lights placed appropriately throughout the levels Working with game engine tools to insert lighting
Story Analyst/ Writer Game implementation consistent with established story Creating dialog and directing voice actors
Gameplay Writer Actions associated with interactivity triggers Identifying all trigger points and the actions
Documenter Web site for informational and publicity purposes Standardizing documentation including tutorials
Support Software Manager Installation and maintenance of all support software Maintaining software including exchange server
Composer All music necessary for all levels Creating music that enhances the gameplay
Sound Technician All sound effects including dialog Ensuring integration of sound effects and dialog
AI Technician All logic and algorithms for game implementation Implementing logic for the game
Interface Designer 2-D user interface elements Creating an intuitive player interface
Media Coordinator All assets developed by artists are correctly installed Inserting all assets into game

complete high resolution and one rough cut level of a “first person
shooter” with full sound and high quality music. We used Valve’s
“Source” game engine. We also produced a story bible and
sample assets for a full 3-D multiplayer game (see
http://www.tcnj.edu/~Games.)

2.1 Limitations of a Product-Centered Model
Based on analysis of student work throughout the year we
concluded that our assumptions about course structure and
organization were off the mark for a pedagogic environment. Our
mission is to educate students. The goal of producing a fully
robust game was merely the vehicle through which to teach
concepts and skills. Our pilot showed that the kind of narrow task
assignment we envisioned, where students are segregated by skills
(e.g. by major from the contributing disciplines), severely
constrained students’ ability to grow, learn and simply
communicate in unanticipated ways.
Furthermore, we confirmed work by Constantine and Gillard [1,
6] that traditional hierarchical models of team organization with
linear models of time management are insufficient. They do not
support the cross-disciplinary communication necessary to create
software as complex as a video game. We initially identified
“programmers”, “artists”, “writers” and “sound composers”
whose work would be integrated through production leaders (who
emerged from the ranks.) In practice we saw, not unexpectedly,
that individual artists needed to collaborate with individual
programmers and writers. Clean boundaries between groups
clustered by expertise thwarted the development process,
reinforcing balkanization and discipline-based prejudice. Our
simple models of collaboration and group expectations based on
skill sets for deliverables were insufficient. They did not provide
students with the rich immersive experience required to meet our
initial pedagogical goals of collaborative, multidisciplinary
software development.
This also made assessment problematic. We had clear and
established criteria for judging artwork, writing and
programming. However, this also reinforced balkanization.

Traditional assessments of specific deliverables discouraged
students from collaborating because their role in producing a
specific outcome wasn’t always clear. It also discouraged students
from taking risks and trying their hands at developing skill sets
outside their area of expertise. Why produce a terrible 3-D model
that wouldn’t be used in the game anyway if you can make a clear
and valuable contribution with a novel algorithm? Furthermore,
how does an instructor measure the worth of a deliverable when
everyone is making a unique contribution?
Our original course framework envisioned a fall semester
experience in which students learned the theory and craft
necessary to spend the second semester in a large, single project
group collaboration. For the fall semester we anticipated at least
five “courses”, one in each of the contributing disciplines (Digital
Art, Communications, Computer Science, Interactive Multimedia,
Music and Writing.) Given the size of the student population from
which to draw (we are mid-sized primarily undergraduate college)
as well as a realistic expectation for managing a single class
project, we could not support faculty load or student enrollment at
reasonable levels with so many courses. Also, conceptually we
were balkanizing the disciplines, and needed to create a truly
multidisciplinary experience that would meet load constraints.
A significant anticipated problem was how to recruit the right
balance of students with diverse expertise and then exploit the
emerging technical and leadership skills of the group that came
together. An added complication is that we could not assume that
all students who registered for the fall class would continue in the
spring. The course offerings were constrained by upper-level in-
major requirements and thus we could not necessarily expect a
full-year commitment from all students.

2.2 The “Silo” Model Creates Balkanization
The segmented or “silo” model of contributing disciplines was
problematic with regard to faculty load, course scheduling, and
assignment of student seats. The topic foci were not equal in
required breadth and depth. Faculty availability to teach within
the suite was not consistent, nor was there a balanced need for

9

faculty expertise. To implement our idealized model we would
overburden some faculty (e.g. supporting 30 animators in one
class, while supporting a single music composer in another.)
Furthermore our assumptions about domain expertise did not
account for subfields within a discipline. For example, a networks
expert might require extensive professional development to teach
the requisite knowledge in artificial intelligence. Similarly, a
cinematographer would need training to teach 3-D animation.
We sought a coursework model in which the content and skills
presented could be taught with broad strokes appropriate to
students with a range of expertise, while requiring students to
delve into content and develop skills commensurate with their
background and interest. Put differently, student assessment
would be based on a metric that balanced generic accountability
(e.g. everyone writes journals in response to reading assignments)
with highly individualized targeted measures of skills
development. Furthermore, to de-balkanize the disciplines we
needed to reward students willing to leave the comfort-zones of
their major, and take risks by completing assignments from other
disciplines. Their experience out of their major should create an
enthusiastic respect for the work of others, and give them a
vocabulary through which to communication across disciplines.
Such communication is key to effective cross-disciplinary
collaboration, which in turn is key to reducing the silo effect.

3. CROSS-DISCIPLINARY CONTENT
In May 2005, seven faculty members, representing six
undergraduate majors (Art, Communications, Computer Science,
Media and Writing) and including CS faculty in artificial
intelligence, interface design and networks, participated in an
intensive workshop to design a year-long experience in
collaborative cross-disciplinary, 3-D, multiplayer video game
development. We articulated the need for content teaching in five
overarching areas: game genre, interactive storytelling, game
engine architecture, production management and the social and
ethical impact of games. We also identified three primary
technical areas: character animation, interactivity and artificially
intelligent agents. Furthermore we identified three secondary
technical areas: sound composition (including dialog and music),
theater production (including staging and lighting), and computer
networks (for massively multiplayer games.)
Table 2 illustrates our course structure, which is a mix of (1)
formal lecture of cross-disciplinary content, (2) studio for
technical skills development (3) demonstration/practice in support
software (e.g. Maya, Reason, XSI), and (4) workshop for product
development. We organized the two-semester experience to front
load content and skills development. Table 2 provides an
overview.
The class is scheduled as one four-hour block per week for two
fifteen-week semesters. Lecture topics typically occur during the
first 90 minutes. On lecture days the remaining time is used for
workshop, tutorial and studio. Whole group demo days (social
ethics days, demonstration, focus group/product testing) have a
structured agenda with assigned responsibilities.
Significant course content and skills development occurs outside
of class through (1) assigned readings, (2) small group meetings,
(3) small group and individual tutorials (with both faculty and
students as tutors), (4) individual and small group design sessions,
graphics development, and sound/music recording sessions. We

also use the Microsoft Sharepoint server as a conduit for materials
development and exchange. Students develop all game assets,
most technical tutorials, as well as documentation and timelines.
Faculty materials are primarily lecture notes and assignments.

Table 2: Year-long Syllabus and Faculty Roles

W
ee

k

Pr
es

en
ta

tio
n

To
pi

c

A
ss

ig
nm

en
t

Ty
pe

St
ud

en
t-

C
en

te
re

d

Fa
cu

lty

Pa
rti

ci
pa

tio
n

1 Game genre P IR

2 Interactive storytelling 1. Art P G

3 Game architecture 2. Tech P IR as G

4 Project management 3. Mix P IR as G

5 Animation 4. Art P IR as G

6 Interactivity 5. Mix
6. Tech

P G

7 Agents 7. Tech P G

8 Workshop: Story & game design F G & IR

9 Social & ethical impact I N IR

10 Sound, dialog, music 8. Art P IR as G

11 Theater production design 9. Mix P G

12 Networks for MUDDS 10. Tech
or Art

P G

13 Social & ethical impact II N G & IR

14 Workshop: deliverables review F IR

15 Focus group: deliverables demo N G & IR

 SEMESTER BREAK

16 Story presentation, roles discussion P IR

17 Timeline, responsibility articulation P IR

18 Workshop F IR

19 Social/ethical impact analysis P G & IR

20 Workshop F IR

21 Focus group: Low res demo N G & IR

22 Timeline, deliverables review P IR

23-25 Workshop F IR

26 Focus group: High res demo,
Social/ethics impact analysis

 N G & IR

27 Timeline, deliverables, product review P IR

28-29 Workshop F IR

30 Product unveiling N G & IR

Legend: F – Fully student-centered G: Guest lecturer
 P – Partially student-centered IR: Instructor of record
 N – Not student-centered

The formal lectures give an overview of essential topics based on
assigned readings from a mixture of textbook genres (one
computer science, one digital art/writing, one reflective.) The
lectures are designed to make the material accessible to students
with little background, so a programmer can appreciate the
complexity of animating a character, for example. The lectures
are also designed to give a novel perspective to majors in that

10

field. For example, a computer science major who has taken
artificial intelligence learns to appreciate the impact of agent
technology on gameplay.
We fully integrate the social and ethical impact of video games
into the curriculum through class discussions of storyline,
character development, visual images and stereotypes. We also
focus on these issues in two full sessions in the fall semester. The
students create a forum in which timely issues are discussed. One
session is a closed dry run. The second session is well publicized
and open to the public. We return to these issues in the spring
semester as we evaluate the implementation stages of the game.

4. INDIVIDUALIZED DELIVERABLES
Table 2 lists the degree to which learning in class is
individualized. A “fully” individualized session occurs on
studio/workshop days. A “partial” session occurs on lecture days
when approximately 1.5 hours are devoted to lecture and 2.5 to
studio/tutorial/workshop. The presentation days contain no
individualized instruction. Only 19% of instruction over the year
is lecture based, while 20% is student presentation and 61% is
studio/workshop. If all students were developing similar skills
and submitting similar deliverables, this would be a traditional art
studio. However the studio/workshop time may involve a variety
of tasks from the contributing disciplines. This requires a novel
approach to the support and assessment of student deliverables.
Student work in AY05-06 led us to both constrain and loosen
course requirements. Undergraduates tend to cram for tests, and
deliver less than optimal results for project deadlines, hoping for
extensions. This style is a severe detriment to projects with heavy
task interdependency. Time analysis surveys, administered both at
the middle and end of in AY05-06 showed that half of the
students had little ability to manage deliverables, and a third
insufficient time management skills for successful collaboration.
In reflective essays, students asked for help in time management
and more direct accountability of weekly deliverables. The
faculty concluded that students needed to be explicitly taught
benchmark and dependency analysis skills, and needed carefully
guided practice in fulfilling a weekly action item.
These results led us to redesign student assessment in both
semesters. We defined a new methodology of individualized
deliverables that provides a highly personal set of expectations.
We can assist students in constructing a set of expectations that
meet their personal learning goals (e.g. everyone doing something
different), while fostering task dependencies that enhance
collaboration in a safe way (e.g. one student’s grade is not
critically dependent another’s work.) In AY06-07 we are
combining generic expectations with an individualized contract of
student deliverables. Final grades are assigned as follows:

Fall Semester
20% Journal entries: acceptable, insufficient, or not completed
20% Final take home exam, 20 questions based on journal entries
20% Lecture follow up assignments choose five out of 10
50% Project deliverables: percentage effort on three of four
projects

Spring Semester
15% Journal entries: acceptable, insufficient, or not completed
20% Final take home exam, 20 questions based on journal entries
15% Benchmark recording and weekly action item report:

50% Project deliverables: percentage effort on three of four
projects

4.1 Generic Assignments for All Students
All students are required to complete reflective writing
assignment via journaling and a take home essay final exam on
(1) course content, (2) personal skills development, (3) social and
ethical impact (4) collaboration and communication.
All students are also required in both semesters to present an
individual deliverables contract. This is an evolving document
that includes a percentage breakdown of (1) selected assigned
exercises, (2) contribution to large projects, and (3) timeline and
dependency analysis.
In the first semester, correspondence on individualized
deliverables occurs through documents submitted to a course
management system “drop box”, through email correspondence
and face-to-face meetings with the instructors of record.
In the second semester, we use an accountability technique
developed at the end of the AY05-06. Each workshop session
begins with a review of action items from the previous week.
Each student checks in by reporting on the status of the item and
whether (1) a deliverable is ready for full group demonstration
and evaluation, or (2) is ready to be included in the next version
of the game. At the end of the workshop, each student checks out
by identifying his or her action items for the week to come.

4.2 Breadth vs. Depth of Skills Development
In the fall semester, which is more content based, students must
choose five of 10 lecture summary assignments from the
contributing content areas. Table 2 shows them broadly
categorized as “technical”, “artistic” or “mixed.” These exercises
create opportunities to de-balkanize perceptions of skill sets.
Students can select assignments that let them remain safely within
their general area of expertise, but they must complete at least one
exercise at the edge of their safety zone. For example, a computer
science major could play it safe by selecting assignments 2, 3, 6,
7 and 10 tech, staying well within the bounds of computer
science. A more adventurous student might select 1, 2, 3, 5 and
10 tech, adding a few exercises that are mixed or art. A student
willing to significantly broaden her background might select all of
exercises outside her safety zone, for example 1, 4, 8, 9, and 10
art.

4.3 Large Project Collaboration
Large project collaboration provides the focus of both content
mastery and skills development. Such work is crucial to de-
balkanizing the constituencies and providing an environment that
fosters cross-discipline communication. In the context of highly
individualized roles (see Table 1), we ask students to choose their
participatory role and identify deliverables in a highly personal
way. In order to prepare them for the second semester, when their
contribution will be critical to the whole, we ask students in the
first semester to split their personal deliverables between at least
three of four projects. They tell us what percentage of their
project grade will come from their contribution to each project.
Table 3 summarizes the commitments made in fall ’06. All
students are required to commit at least 10% to the “ethics”
forum. The “story bible” requires designing the game to be
implemented in the spring. The “enhance last game” develops

11

skills in our SDK, pipeline processes and support tools. The “toy
engine” project provides in-depth experience in augmenting a
game engine. As shown in Table 3, students approached the
deliverables from perspectives ranging from deep commitment
(e.g. story bible at the maximum of 80%) to even distribution (all
four projects at 25%). Students are identified as “tech” or “art”
based on their registration in one of two co-listed courses.

Table 3: Percentages of Individual Deliverables
Student Ethics Toy

Engine
Enhance

Last Game
New Story

Bible
A1 10 40 40
A2 10 70 20
A3 20 10 70
A4 30 10 60
A5 80 10 10
A6 10 60 30
A7 10 10 80
A8 10 20 70
A9 10 10 80

A10 20 40 40
T1 15 50 35
T2 10 45 45
T3 25 25 25 25
T4 25 40 35
T5 10 60 30
T6 10 60 20 10
T7 20 50 30
T8 10 50 40
T9 10 60 30

5. FACULTY ROLES
A single instructor cannot begin to manage a course sequence
such as this. Fortunately our institution has moved toward a
transformed curriculum in which team teaching and multi-
disciplinary collaboration are encouraged.
In the fall ’05 course, a single instructor of record supervised the
projects and gave only two of the formal lectures. Guest
instructors presented the other lectures with externally funded
stipends. In fall ’06, two faculty-shared faculty load of a single
section. The guest-to-instructor of record ratio decreased as
reflected in Table 2. Other models of instructor of record to guest
lecturer are certainly possible. However, broad representation of
contributing disciplines is needed to prevent balkanization.
In spring ’06, three faculty members shared responsibility for two
separate sections (thus doubling the total allotment of faculty
hours.) Our rationale for offering a single section in the fall and
two in the spring was the significant increase in instructor of
record participation as seen in Table 2. A problem remaining at
our institution is how, in the future, to adequately compensate
guest instructors without external funding, in both their roles as
deliverer of instruction and formal evaluator.
Table 2 also highlights the novel set of responsibilities of the
instructors. The primary instructors are not over-arching content
experts, but rather production managers responsible for
accountability during the workshop sessions that comprise 60% of
the total contact time. Responsibility for articulating individual
learning is a collaborative exercise between instructor and
student. Assessment shifts from traditional grading of standard
deliverables (including test answers) to analysis of time
management, skills development and highly personalized

demonstration of content mastery. The payoff for instructors is
that this style of grading is far more satisfying.

6. SUMMARY
Analysis of student final exams from AY05-06 as well as journals
from fall ’06 suggest that we are successfully integrating course
content across disciplines in a manner that de-balkanizes the
disciplines critical to video game development. Student
deliverables for the AY05-06 game demonstrate significant cross-
disciplinary contributions and consequent skill mastery.
Over 80% of the students in the fall ’06 class are successfully
answering the reflective questions on specialized topic lectures,
are relating assigned readings to the lectures, as well as to their
assigned project work. There is evidence in their writing that they
see the complexity and contributions of the various disciplines.
Of more significance are the reflective writings with regard to
collaboration and communication. Last year’s students
demonstrated deep understanding of the critical need for good
communication across disciplines, and the value of at least a
superficial understanding of disciplines outside their own major.
Game design and development will never be a field exclusively
within the domain of computer science. Nor will it become a
field entrenched in digital art or interactive storytelling. Our two-
year experience in collaborative multidisciplinary teaching
suggests that game design is indeed a field for the 21st century,
that requires truly global, diverse communication skills.

7. ACKNOWLEDGMENTS
Our thanks to our colleagues in the Game Design Project at The
College of New Jersey: Kim Pearson, Phil Sanders, Terry Byrne,
Miroslav Martinov, JiKai Li, and Anita Allyn. Thanks also to the
students who provided invaluable constructive criticism of our
methods. We are also grateful to Microsoft Research, and
especially John Nordlinger.

8. REFERENCES
[1] Constantine, L. L. Work organization: paradigms for project

management and organization, Communications of the ACM,
Volume 36 Issue 10, October 1993, pp 35-43

[2] Claypool K., and M. Claypool, Teaching software engineering
through game design, ACM SIGCSE Bulletin , Proceedings of the
10th annual SIGCSE conference on Innovation and technology in
computer science education, Volume 37 Issue 3 June 2005, 123-127

[3] Coppit, D. and J. Haddox-Schatz. Large Team Projects in Software
Engineering Courses. Proceedings of SIGCSE 2005, (St. Louis,
Missouri, February 2005), 137-141

[4] El-Nasr, M.S.and B. K. Smith, Games: Learning through game
modding Computers in Entertainment, Vol. 4 (1), Jan. 06, pp 1 -13

[5] Friedman, T. L. The World is Flat: a brief history of the twenty-first
century. Farrar, Straus and Giroux, New York, 2005.

[6] Gillard, S., Managing IT projects: communication pitfalls and
bridges, Feb. 05 Journal of Information Science, Vol 31 (1) 37-43

[7] Federation of American Scientists, Summit on Educational Games,
Harnessing the power of video games for learning,
http://www.fas.org/gamesummit/, October 2006.

[8] Wolz, U. and M. S. Pulimood, An Integrated Approach to Project
Management through Classic CS III and Video Game Development,
to appear in the SIGCSE 07, March 7 -10, 2007, Covington, KY

12

http://portal.acm.org/citation.cfm?id=163435&coll=Portal&dl=GUIDE&CFID=5787137&CFTOKEN=11833127
http://portal.acm.org/citation.cfm?id=163435&coll=Portal&dl=GUIDE&CFID=5787137&CFTOKEN=11833127
http://portal.acm.org/citation.cfm?id=1067482&coll=Portal&dl=GUIDE&CFID=5787137&CFTOKEN=11833127
http://portal.acm.org/citation.cfm?id=1067482&coll=Portal&dl=GUIDE&CFID=5787137&CFTOKEN=11833127
http://portal.acm.org/citation.cfm?id=1111301&coll=Portal&dl=GUIDE&CFID=5787137&CFTOKEN=11833127
http://portal.acm.org/citation.cfm?id=1111301&coll=Portal&dl=GUIDE&CFID=5787137&CFTOKEN=11833127
http://portal.acm.org/citation.cfm?id=1057180&coll=Portal&dl=GUIDE&CFID=5787137&CFTOKEN=11833127
http://portal.acm.org/citation.cfm?id=1057180&coll=Portal&dl=GUIDE&CFID=5787137&CFTOKEN=11833127
http://www.fas.org/gamesummit/

A Tale of Two Classes:
On Interdisciplinary Collaboration in Games Education

Arnav Jhala
Department of Computer Science

North Carolina State University
ahjhala@unity.ncsu.edu

R. Michael Young
Department of Computer Science

North Carolina State University

young@csc.ncsu.edu

Timothy Buie
College of Design

North Carolina State University

tim_buie@ncsu.edu

ABSTRACT
In this paper we present our experiences teaching a computer
game design and development class in the Computer Science
department at NC State University. This class is co-taught with a
studio class in the NCSU College of Design. The two classes are
taught in parallel, the computer science class focuses on
programming and the design class focuses on game art. Students
from both classes work on several common assignments as well
as a semester long project in teams of 5 to 7 students. This paper
documents our observations from four semesters spent teaching
this course. Two of the four were taught without the involvement
of design students and two with them. The unique feature of our
classes is that while the computer science and design courses are
taught independently, both classes’ students work on common
assignments and gain experience with interdisciplinary
communication in addition to the discipline-specific content
taught in each of the classes.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Games Education, Interdisciplinary Education.

Keywords
Computer Games Education, Interdisciplinary Education.

1. INTRODUCTION
There were good programmers; there were good artists. There
was a class in the computer science department for game
development; there was a class in the industrial design
department for development of game art…

Traditional Computer Science Departments prepare students for a
software development career. Most students with a computer
science degree have a strong background in programming but
little appreciation for the arts or the artistic process. Programmers
in the game industry have to work closely with designers, writers
and artists. To better prepare our students for this professional
environment, we designed two senior-level undergraduate courses
– one in computer science and one in industrial design – so that
students from both disciplines would be exposed to close
interaction with each other while focusing on the joint creation of
a game project. This paper focuses on the design and subjective
evaluation of the computer science course.

2. STRUCTURE OF THE COMPUTER
SCIENCE CLASS

The official description of CSC481-Computer Game Design and
Development[5] is the following reads:

“An introduction to the technologies and practices underlying
computer and console game development and the principles
involved in effective game design and production. Topics include
computer game graphics, sound and audio, level design,
principles of gameplay, interactive storytelling, character control
and artificial intelligence, user interface design. Programming
project required. “

CSC481 at NCSU is an introductory class in game development.
It is a senior level class whose sole prerequisite is the
undergraduate data structures class (typically taken during the
sophomore year). Students taking CSC481 are expected to have
taken at least an intermediate level programming class and to be
familiar with Object-Oriented Programming techniques. This
course complements other computer science courses like
Computer Graphics and Artificial Intelligence.

The class is taught in four phases. The first quarter of the class is
devoted to familiarizing students with the Unreal Tournament
2004[3] game engine. During the second and third quarters of the
course, students are introduced to various aspects of game
development including Game Design, Graphics, Artificial
Intelligence, Gameplay, and User Interface Design. In the fourth
quarter, students work in teams of 5 to 7 on development of a
game project. For the class assignments, students modify the
implementation of an existing game engine. This frees students
from the need to implement low level code for graphics, artificial
intelligence, networking etc. and focus exclusively on better
practices in design and finish of the game in a collaborative effort.

2.1 Choice of Game Engine
Our choice of the game engine for the introductory course on
game development was based on the following factors: ease of
learning, mod support, strength of development community and
availability of development tools. The Unreal Tournament engine
allows users to extend the game’s functionality by exposing a
scripting language called UnrealScript that provides a limited
number of access points to the underlying API. UnrealScript is a
well-designed object-oriented Java like language with additional
features to support game programming. It is easy to learn for
students who have a background in object-oriented programming.

13

There is a large informal development community and freely
available stable tools for development. Recently, reference books
for unreal programming have also been published[1]; video
tutorials describing different aspects of modifying the unreal
engine are also provided with the commercial off-the-shelf
version of Unreal Tournament and are also available for free
download via the internet[2].
UnrealScript is strongly object oriented. This gives students
hands-on experience working with a large organized object
oriented code base and encourages the development of skills that
are transferable to other areas of computer science.

2.2 Assignments
The majority of class assignments are programming projects
designed to draw from important aspects of game programming.
They are also designed to familiarize students with both the
commonly used and advanced features of the Unreal engine. Each
student works through individual assignments related to a range
of different areas of game development. This ensures that each
student is well equipped to choose and handle the role that they
get assigned to in their final project teams. This effort also
provides them with an understanding of the scope of the work to
be performed by each of their project partners fulfilling other
roles in the team.
There are seven types of assignments given during the course of
the semester; specific assignments are described in order in the
following sections.

2.2.1 Game Review
This assignment is given during the first week of class and
students are given a game to review. The game to be reviewed is a
student project from another institution or from one of the
previous years of this class. One of the games chosen for the
review assignment was “That Cloud Game” developed at the
games class in the University of Southern California[7]. This
assignment has a two-fold advantage. First, it sets forth the
instructor’s expectations from the students by showing another
student project with the same scope. Second, students are able to
critically review the game and start thinking about improving on

certain negative aspects of the reviewed game for their own
course project.

Figure 1: Level Design assignment with portals leading to
each team member's part of the level, Spring 2005

2.2.2 Weapon Mod (Introduction to UnrealScript)
The purpose of this assignment is to get the students started with
setting up the development environment for Unreal. Students
create a weapon that selectively damages AI characters in the
game and not human players. This assignment introduces them to
the unreal programming pattern (subclass and override) that
involves identifying how the game loop works and where to
locate functionality to override. It also introduces them to the
Unreal Object hierarchy and relationships.

2.2.3 Path Planning (Artificial Intelligence)
Path planning is one of the basic algorithms that is needed in most
games. Although, unreal provides it’s own path planning data
structures and functions students have to use custom path node
objects and maintain their own connectivity graph to compute all
pairs shortest paths. This assignment serves as an example of AI
programming. Students are expected to learn how to set up their
own data structures and are encouraged to implement optimal
algorithms.

2.2.4 Heads-up Display (HUD)
The design of the HUD assignment serves two purposes. It
introduces students to the design of Heads-up display and its
implementation on the unreal engine, and also acts as an example
of creating a new game type on the engine. For this assignment
students are tasked to implement the following features:

• Modify (improve) the design of the Heads-up Display
so that it is less intrusive than the default unreal version
and describe the design process and reasoning.

• Implement a new game type called the GrudgeMatch (a
type of deathmatch) where the player keeps track of the
opponent who has inflicted the most damage. The HUD
of the player identifies the current grudge and maintains
a tracking mechanism so that the player can locate and
take down the grudge.

The main goal of the HUD assignment is to make it functional
and ensure that it is non-intrusive and easy to understand rather
than making it look pretty.

2.2.5 Project Design Document and Pitch (Group
Assignment)
Students are assigned to groups of 5-7 by the instructor based on
their interests and background. The team is given two weeks to
flush out a game idea. This idea is submitted as a design
document. The design document includes assignment of roles to
each team member and details of three milestone deliverables.
The suggested make up of the team positions is: Lead, AI
Programmer, HUD programmer, Level Designer (either from
Design or from CS), Menu/Gameplay programmer, 3D Artist
(from Design class), 2D Artist (from Design class). Teams also
prepare a marketing pitch that they present in class to all students.
Grading is based on structure of the documents, detail, and quality
of presentation.

2.2.6 Level Design (Group Assignment)
The level design assignment has been offered as an individual
assignment on two of the occasions and as a group assignment in

14

two classes. The minimum requirements for the level design
assignment for each individual are:

Figure 2: Quidditch, Spring 2003

• The level must be based on a theme (like fire, industrial,
etc.)

• It should be a 4 to 6 player Deathmatch level.

• It should contain at least 3 sections/rooms that are laid
out along vertically at least two levels.

• There should be at least 2 hallways, 9 textures, 10 static
meshes, 3 weapon and health pickups each and 2 spawn
points.

Extra credit is given to students who go above and beyond the
basic requirement. Creative examples include the use of modified
gravity or fluid volumes, portals, and strategic positioning of
weapons and pickups for enhancing gameplay. For the group
assignment, students are expected to base their complete level on
a single theme with indicators for each individual’s portion of the
level. This assignment improves communication between team
members, as they have to work closely to get their level geometry
and theme to maintain consistency after merging all the parts. We
have observed that even in this assignment some teams have
found creative ways to combine different maps (Figure 1)

2.2.7 Project Milestones (Group Assignment)
Projects are group assignments that span over three quarters of the
class. Projects are submitted in four parts: An initial design
document and marketing pitch, two intermediate milestones, and
one final showcase presentation. Each milestone contains Low,
Target and High deliverables for each aspect of the game (AI,
Gameplay, HUD, Modeling, Level Design, etc.). Deliverables are
assigned to individual team members and deadlines for individual
deliverables are set based on dependencies between modules. The
team lead is assigned the responsibility of maintaining
communication channels between teammates and integrating code
and art assets from different sources. Two grades are given to
students for each milestone, a team grade and an individual grade.
The team grade reflects the level of integration, communication
and the collective effort in organization. The individual grade
reflects the quality of the specific tasks given to each individual.
It is often difficult for 5 to 7 students working in the same team to
find common time to meet frequently. In order to support face-to-
face communication one day each week in the second half of the
semester is dedicated to projects as a lab-meeting day.
The highlight of the course is the final showcase. All the games
from the class are presented in a public showcase at the end of the
semester. Students first give a presentation about their games and
then the audience is given a chance to play the games in a LAN
party. Having a showcase with a large audience motivates the
students to go the extra mile in creating a finished product. This is
something that not many academic classes offer.
For the projects, in addition to the submitted work we also
collected peer evaluations from students working on the same
team. Peer evaluations ensured that we could identify any
contributions of students that were outside of their assigned tasks.
We also gave credit to students who showed exceptional
commitment towards their project and contributed to resolving
any communication gaps among their teammates.

3. STRUCTURE OF THE DESIGN CLASS
Seniors in College of Design take the ID400 class to learn
character and asset modeling for games. Most of the students have
at least some 2D or 3D art creation background. Design students,
in association with Computer Science (CSC 481) students, and
assisted by local industry professionals, learn to design and
produce resources such as 3D digital models, animations,
environments, etc., to be used in real-time interactive settings. In
addition to expanding their creativity, students also gain basic
education in, and understanding of, the uses and potential of real-
time digital technology. Rather than somewhat passively playing
games, or similar digital entertainments, students actively design
and develop new content and resources to push art and technology
in new and exciting directions.

4. INTERACTION BETWEEN CS AND
DESIGN
The overall quality of games produced by our students is
significantly improved when the class is taught in conjunction
with the Industrial Design course. This is partly due to the
creativity that they bring to the teams’ process of game design
and partly due to the increased range of possibilities for game
design and game play when ID students create custom art assets
for the games. Maintaining effective communication between 5 to
7 students during an entire semester is a challenging problem,
however. This problem is made more difficult by the physical
separation between the locations of the classes (Computer Science
and Industrial Design are located on separate campuses two miles
from one another). In order to reduce the impact of physical
separation between departments, we set aside one class meeting
each week for team meetings, and we also provide shared file
space on the class server and access to collaboration and project
management tools (e.g., wikis and version control software).

Designers and software developers speak very different
languages. They are unaware, in most cases, of the constraints
imposed on their work by other’s respective domains. Students
have often found that implementing certain designs is either too
much work, not entirely possible in the engine, or is detrimental
to performance of the game. There are different constraints on
development of art assets when they are created for use in an

15

interactive environment than when they are created in a non-
interactive environment. What makes for effective art does not
necessarily make for an effective rendering on a game engine.
Artists and programmers have to work together in using standard
naming conventions and agreeing on different parameters; for
instance, in specification of character animations the frames of the
walk animation cycle must match the speed of the character when
placed in the game. Programmers and artists must work together
so that the final result looks good and works as expected.

We present some case studies of games that were created as part
of this course over the last few years. In some cases the course
was taught only to computer science students an in others the two
courses were taught together.

4.1.1 Case Study #1: Quidditch (Without Design
Students)
In the Spring of 2003 when the class was taught only in the
computer science department, one team proposed to implement
the game of Quidditch (Figure 2). The basic gameplay followed

the rules of the game mentioned in the books. The textures were
created from DVD screenshots of the movie. While the overall
game worked like Quidditch, there were no wizard-like characters
flying on the broom. Instead there were characters from Unreal
flying around with guns in their hands. None of the programmers
on the team were skilled enough in 3D modeling to create
characters with natural flying animations. Unreal rockets
represented bludgers and the snitch was a big unreal character.
Lack of 3D art assets was a drawback for this game as the
environment and characters from unreal took away the immersion
from the game. Having both fun gameplay and immersive
ambience in the game significantly improves the perception and
opinion of players of the game.

Figure 3: Strong Desire For Quickness, Spring 2006

4.1.2 Case Study #2: Strong Desire For Quickness
(With Design Students)
Strong Desire for Quickness is a racing game in which players
can choose to either play a timed race (Figure 3) on a track or
play in an open map in combat with other players. The game
supports single as well as multiplayer game play. For this game,
design students were involved throughout the design and
development of the game. Due to the input of design students,
programmers could implement a wide variety of weapons that
could be used in battle mode as well as during the race. Each
weapon was carefully designed and programmed. The maps were
very artistic with carefully thought out placement of weapons for
balanced game play.

4.1.3 Case Study #3: Bored With Paradise (With
Design Students)
Bored with Paradise (Figure 4) is set in a future world where the
advances in science have led the humans to build a paradise for
themselves where all the resources are feely available to everyone
and there is no need for money or economy. In such a time, there
is a group of Luddites who, fascinated by the idea of having an
economy, are trying to create disruptions in the paradise to create
demands for objects that they can sell and thus have an economy.
The students working on this game from both classes came

Figure 4: Bored With Paradise cinematic introduction collage, Spring 2005

16

together and created rich environments to support the gameplay.
The main advantage to this team was the familiarity and interest
of some computer science students on this team in film studies.

4.1.4 Case Study #4: The Dryad Game (Without
Design Students)
Dryad is a simulation game with innovative gameplay. The
objective of the game is to grow a forest with different types of
trees. The player progresses through a series of small levels and
learns how different types of trees interact with each other and the
environment. Each type of tree provides the player with some
powers (like control over a group of bumblebees). In addition to
planting trees on different types of soil and beautifying the forest
the player also has to protect the forest from natural calamities
(like seasons, forest fires, earthquakes), and wood cutters. This is
one of the more successful games that only computer science
students have created. While the environments are rich and forest
sounds are soothing, the students do acknowledge that they had to
work much harder in getting some of the tree models and
weapons into the game. They also had to throw away some ideas,
as they were not able to find 3D models for weapons, trees and
other props.

5. OBSERVATIONS AND CONCLUSIONS
Game development is an inherently multi-disciplinary endeavor.
It is very difficult for most students to excel in all the relevant
disciplines at the same time. A strong computer science
background is needed for software development. Not all software
developers with strong computer science background have the
creativity or appreciation for art. There are many computer
science students who are interested and have the right skills in
their discipline but do not want to specialize in game
development. Our approach to teaching game development is
motivated by the need for giving traditional Computer Science
students an introduction to the specific skills that are needed in
the game industry with respect to software development, and also
a chance to experience the inter-disciplinary interaction that is
common in the industry.
There are some features of this class that it uniquely contributes to
general computer science education. As noted in previous
sections, students gain exposure to aspects of game development
that are also present in most professional software development

contexts: content management, teamwork, development
schedules, and marketing. They have an opportunity to take up
leadership roles within their teams. Some students choose to
develop artistic skills and contribute with the creation of both
software and art assets. We have received informal feedback from
several students who have passed this course and moved on to
traditional software companies that they have found the lessons
learned in this class to be useful in their respective jobs. This
course serves as a good introductory course for students aspiring
to make careers in the games industry and also provides valuable
experience to students who are interested in programming careers
elsewhere. There is noticeable difference between a game with
excellent gameplay and optimal algorithms but no ambience and a
complete game with the same gameplay and algorithms with
pleasing environments and ambience. Similarly, a fully animated
character model is much more appealing if seen in an interactive
setting involved in gameplay. Both components are essential for
developing original and creative games. With this class, both
computer science and design students benefit from the symbiotic
relationship between the two disciplines.

Figure 5: The Dryad Game, Fall 2006

In summary, we found that co-teaching the game design class was
a positive experience. Involving design students improves the
overall quality of games produced as well as provides the students
the opportunity to come up with creative ideas without worrying
about availability of artistic content. Having teams of 5 to 7
students from different backgrounds introduced the overheads of
communication and coordination but it was a valuable experience
for students. They had to deal with a lot of project management
issues like team members dropping courses in the middle of the
semester and reassignment of tasks. Finally, this is the kind of
course where students are more worried about their project
deadlines not because of their grade but because they have to
show a working game in a big showcase at the end of the
semester. Having a fully working game of a reasonably large
scale is very satisfying to most students and is what attracts them
to this course.

6. ACKNOWLEDGMENTS
We would like to acknowledge the support given by the
Department of Computer Science and the College of Design. We
also acknowledge the hard work that students put in developing
the cool games in this class.

7. REFERENCES
[1] Busby, J. 2004. Mastering Unreal Technology: The Art of

Level Design, Sams Publishing.
[2] Busby, J. 3D Buzz Video Tutorials, http://www.3Dbuzz.com
[3] Epic Games Inc. 2004 Unreal Tournament 2004.
[4] North Carolina State University, Department of Computer

Science, CSC481: Computer Game Design and
Development,
http://liquidnarrative.csc.ncsu.edu/classes/csc481.

[5] North Carolina State University, College of Design, ID400,
http://courses.ncsu.edu/ID400.

[6] Rabin, S. 2005 Introduction to Game Development. Charles
River Media, Inc.

[7] University of Southern California, That Cloud Game,
http://www.thatcloudgame.com

17

ARTS Lab and Game Technology
Edward Angel

University of New Mexico
Departments of Computer Science,

Electrical and Computer Engineering,
and Media Arts
1-505-277-2186

angel@cs.unm.edu

Thomas P. Caudell
University of New Mexico

Departments of Electrical and
Computer Engineering, and Computer

Science
1-505-277-5637

tpc@ece.unm.edu

Eric Whitmore
University of New Mexico

ARTS Lab and Art Technology Center
1-505-277-2253

whitmore@unm.edu

ABSTRACT
The Art, Research, Technology, and Science Laboratory (ARTS
Lab) at the University of New Mexico was created as the key
research and educational entity in the State’s Media Industry
Strategic Plan. In this paper, we will describe our efforts in
creating a truly interdisciplinary course for seniors and graduate
students that serves the diverse needs and interests of students,
faculty, and local industry. We will also show some of the
directions that the projects have taken using the special facilities
provided by the ARTS Lab.

Categories and Subject Descriptors
I 3 [Computer Graphics] I 6 [Simulation and Modeling] K 3
[[Computer and Education] J 5 [Arts and Humanities]:

Keywords
Game technology, game design, computer science education.

1. INTRODUCTION
In 2004, the State of New Mexico embarked on an ambitious
Media Industries Strategic Project (MISP). This project was a
natural successor to the State’s successful film incentive program,
which has attracted national attention and a large number of film
projects to the state. However, these incentives, which are a
combination of rebates and direct investment, were recognized as
being a short-term strategy and that a sustainable industry should
be based on a more general media including game technologies
and content development.

The MISP plan led to the creation of the Art, Research,
Technology, and Science Laboratory (ARTS Lab) at the
University of New Mexico as the key research and teaching entity
focused on high technology media. A key component of ARTS
Lab is extensive cooperation with the local National Laboratories
(Sandia and Los Alamos) and with a growing local media
industry.

As in virtually all universities and colleges, the students have an
enormous interest in computer games, whether as users, potential

content developers, or technologies. Locally in New Mexico,
there is a particular interest in both “serious games,” that come
from the states long involvement with projects in simulation,
visualization, and virtual reality, and games that involve the
state’s diverse artistic and cultural resources

Like many institutions of higher education, we are struggling with
how the interest in games translates into our curricula and how to
deal with the interdisciplinary nature of games and game
technology.

In this paper we shall discuss a two semester class that we
instituted at the University of New Mexico that involved
interdisciplinary teams of students principally from the School of
Engineering and the College of Fine Arts but also included
members of the community and students from other colleges on
campus.

However, we start with a description of our the ARTS Lab and its
unique interdisciplinary nature which colors the way our program
is evolving and hopefully provides a model for other universities
and colleges, especially those with limited resources and diverse
student bodies.

2. The ARTS Lab
ARTS Lab was created in response to New Mexico Governor Bill
Richardson's Media Industries Strategic Plan (MISP). ARTS Lab
seeks to support innovation and growth in areas such as film, new
media, simulation, telehealth, game technology, image
processing, scientific visualization, national security applications,
and new markets for content. As a center for both technology and
the arts, New Mexico provides a dynamic environment for
programs that stimulate economic development. ARTS Lab finds
opportunities to cultivate these assets by utilizing an
interdisciplinary approach, encouraging ongoing participation
across the University of New Mexico campus as well as building
on ties with industry, community, and other educational
institutions [1].

The ARTS Lab was seeded with a $3M grant from the State of
New Mexico. This funding was used to create the ARTS Lab
“Garage,” so named because it is located in what was the garage
area of a car dealership. The building is shared with UNM’s
Center for High Performance Computing which opens many new
projects and interactions.

The ARTS Lab (Figure 1) space includes a reconfigurable black
box studio with a control booth, sound booth, computer controlled
lighting, a large green screen area, and a Vicon motion capture
system. The adjacent machine room houses both the computers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

18

managed by the Center for High Performance Computing, the
ARTS Lab render farm and 20TB of disk storage for our projects.
In addition to a variety of workstations and media oriented
computers, the Garage houses a unique six projector dome that
will be discussed in Section 4 (Figure 2).

The center also houses the Visualization Lab for the Center for
High Performance Computing which can support projects in areas
such as virtual reality.

The facility is run in a manner to encourage new projects
involving all parts of the campus, local industry and the national
laboratories in New Mexico.

Figure 2: ARTS Lab Experimental Dome

3. COURSE DESIGN
We faced a number of challenges in creating a game course, not
the least of which was the senior faculty instructors who were not
brought up with computer games as a part of their environment.
We wanted to create a course that could be part of senior and
graduate programs in multiple departments, a requirement that
implies both maturity on the part of the students and the
importance of at least three years in a degree programs.
Consequently, we chose a mode that would use interdisciplinary
teams working in a project environment. In addition, because the
mission of the ARTS Lab includes an economic development
component, we wanted to create a course in which not only would
there be participation by local companies working in the area but
also a course that would help students learn more about the real
industry from multiple perspectives.

3.1 First Semester
We decided to keep the first semester as a one credit seminar
course in which we would spend the most of the semester
bringing in a variety of speakers from industry, academia, and the
national laboratories. The last part of the semester was spent on
student presentations of proposals for game projects. The only
requirement for credit was submission of a proposal for a game
that would be a candidate for a team project the following
semester.

Speakers included the author of a book on digital storytelling, a
game company executive with extensive experience with massive
multiplayer games in Asia, two creators for game development
and animation studios in Canada and Asia, three developers of
specialized software and haptic devices for the game industry, a
writer with extensive experience writing interactive games, and
two developers working on large scale simulations using game
technology. The lectures were so popular that we often drew a
large audience of people not registered for the course.

One of the most valuable outcomes of the course was the deeper
understanding of the game development process the students
obtained. The older Hollywood refrain of “I’ve got a script” has
been replaced with “I’ve got an idea for a game.” Most of the
students entered the class with the hope that their ideas would
instantly be recognized by the industry which would then develop
their idea. When the students first discovered how the industry
works and where the entry points are they were somewhat
depressed and discouraged. But as the semester went on and
students discovered the many facets of the game industry and
opportunities that they had not known of, their attitudes became
far more positive.

3.2 Second Semester
The second semester was run as a project course, much as handle
our senior software engineering course or our capstone design
classes. The first part of the semester was spent going over
individual proposals which coalesced into team proposals. All of
the final project teams were interdisciplinary.
The rest of the semester consisted of technical presentation by the
instructors and others to support the projects, progress reports,
and finally the project presentations. Remarkably perhaps, all the
teams were able to get their project to the point where they had a
working game.

Figure 1: ARTS Lab Garage

19

We left the choice of a game engine to the teams. One or two
teams did projects in which they wrote their own software. A
couple of teams used the Game Studio [2] engine which is fairly
simple and easy to get started with. Other teams used the Torque
engine [3] which is more complex but still relatively inexpensive
to obtain. One team was able to use the Half-Life engine [4].

Surprisingly, at least to the instructors, only one of the projects
involved a traditional first person shooter game. We attribute a lot
of this to the major interest in “serious games” by the local
community and to the fact that the majority of the students were
seniors and graduate students with considerable maturity in their
chosen disciplines.

Some of the projects included

 Getting through UNM: In this game players have to
negotiate their way through the University system.
Obstacles and characters included campus parking police,
the university mascot, and indecisive students in the
Starbucks line.

 Guerilla Game: Players start of off as poor students and
must acquire sufficient resources to be come
revolutionaries.

 Quick Racing: A racing game (see Figure 2) using a haptic
device provided by the local company Novint as input.

 Dome Pong: A version of the classic pong game played in
the ARTS Lab dome.

 The Language Game: A learning game involving
identifying objects in multiple languages.

 Sonorous Phase: A music composition and understanding
game designed about a Mandela.

4. DOME GAMES
A unique feature of the ARTS Lab Garage is its 15’ diameter
multi-projector dome (or fulldome). We have been involved with
creating dome content for over 5 years in a partnership with the
LodeStar Astronomy Center (L*), a joint project of the University
of New Mexico and the New Mexico Museum of Natural History
and Science. L* was one of the first of a new generation of fully
digital planetariums---there are now about 250 worldwide---and

has been a leader in generating new applications of the
technology. Although almost all fulldome shows are done in a
playback mode using large disk arrays for each projector, both the
L* and ARTS Lab systems use Sky-Skan’s Digital Sky system
which uses commodity graphics cards and thus is capable of
realtime performance

Consequently, the ARTS Lab has been interested in exploring
interactive applications of fulldomes with games being the most
obvious one but there are endless other possibilities ranging from
simulations to scientific visualization. Sky-Skan provided us with
a method of connecting to their Digital Sky software through a
DirectX plug-in.
Because fulldomes are fully digital, unlike other large display
venues such as IMAX, and can hold up to 500 people, far more
than immersive environments such as the Cave, the potential for
interaction among large groups of participants is virtually
unlimited. As shown by Loren Carpenter’s use of simple two
color paddles for large group interaction at SIGGRAPH [5],
sophisticated input devices are not necessary (although we are
investigating the use of wireless devices and high bandwidth
networks for interaction among dome).

One team led by a graduate student Jin Xiong did a version of the
classic Pong game (Figure 4) for the dome. The paddles are
controlled by two players and can move continuously around the
rim of the dome. The ball is reflected from the paddles and is
subject to gravity. Visually the game is somewhat like using the
paddles to roll the ball over the surface of the hemisphere. The
game was developed on the ARTS Lab dome and was later
demonstrated at the larger LodeStar dome to a large audience.

5. DISCUSSION AND CONCLUSIONS
From the students perspective the courses were a great success.
Even with the great variety of backgrounds and previous
experience, every team was able to produce a project that (a) was
reasonably complete (b) was original and (c) made use of the

Figure 3: Interface to Haptic Interface Game

Figure 4: Dome Pong

20

different backgrounds of the group members. All the members of
the class felt that they had learned a considerable amount from the
class. Participation by a variety of outside speakers provided
invaluable insights to the class. At least three members of the
class who received their BS or MS degrees that semester were
hired by game companies.

As we prepare to do the class again in the spring semester of
2007, we will be making a few changes. First, we are combining
the two semesters into one standard 3 credit course. Although a
one credit seminar or colloquium on games is a worthwhile
endeavor, the practical issues of scheduling and fitting both
classes into student programs presents many practical difficulties.

This time around we plan to have all groups use the same game
engine. Choosing the “right” game engine is a major problem in
planning a course. Very sophisticated engines have a steep
learning curve and their use in an interdisciplinary first course
poses the danger of having the course reduce to a training course
for that particular engine. In addition the cost either to the student
or the University can be a problem. On the other hand, using a
public domain or low cost engine, as we provided the first time,
makes it easier to get started but its limitations can frustrate the
teams as they get into development of their projects.
Consequently, for the next class offering, we are planning to use
the Torque engine which is somewhere in the middle and for
which there is a large amount of supporting code and literature
including possible textbooks.

The primary conclusion we draw from our recent experiences
with this type of class is that teaching an interdisciplinary
computer game class is completely consistent with academic
programs in engineering and the arts.

6. ACKNOWLEDGMENTS
We wish to thank the students who were willing to take the risk of
taking a new class with instructors who started off with virtually
no experience with games. The media staff of the ARTS Lab, Hue
Walker and Enrico Trujillo, were both participants and providers
of help to the student projects. Finally, we wish to thank the many
guest speakers from industry who gave their time, their advice,
and often loans of equipment to the student teams.

7. REFERENCES
[1] http://artslab.unm.edu
[2] http://www.3dgamestudio.com
[3] http://www.garagegames.com
[4] http://www.gamespot.com
[5] http://www.cinematrix.com

21

Interweaving Game Design into Core CS Curriculum
Yolanda Rankin

Northwestern University
2133 Sheridan Road
Evanston, IL 60208

847-467-5635
yrankin@northwestern.edu

Bruce Gooch
Northwestern University

2133 Sheridan Road
Evanston, IL 60208

847-491-3500
bgooch@cs.northwestern.edu

Amy Gooch
University of Victoria

CS Department & ECS Bldg 504
PO Box 3055, STN CSC

Victoria, BC Canada V8W 3P6
Amy.a.gooch@gmail.com

Abstract
Computer Science departments across the country have
embraced computer gaming classes as part of the core
curriculum. However, instructors need to define guidelines
that accommodate students’ proficiency in game
development and consequently address the growing needs
of industry. We develop and evaluate a Game Authoring
Class in an attempt to begin to close the gap between
industry and academia. Learning objectives include
students applying game development concepts to
implementation of 2D and 3D games for multiple
platforms. Subsequently, we evaluate the course based on
two factors: formal assessment of students’ understanding
of game design principles and students’ perceived learning.
The results of our evaluation serve as the basis for
establishing effective pedagogical strategies for game
development curriculum.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
computer science education, computer graphics.

Keywords
Computer science curriculum, game development,
evaluation, educational assessment, pedagogy.

1. Introduction
Currently, enrollment in Computer Science programs
across the nation has dropped 60% and the trend shows a
continued decrease over the next few years [16][17].
While industry faces the impact of fewer computer science
majors, academia has employed several different
approaches to address this critical situation. In an attempt
to combat the declining interest in computer science,
computer science departments are leveraging the appeal of
video games to entice the next generation of computer
science majors. Thus, game development courses are
quickly becoming a part of the Computer Science
curriculum at universities and colleges across the country.
However, changes in the curriculum do not necessarily
equate to students developing the necessary software skills
and expertise appreciated by the game industry.
Oftentimes discrepancies exist between the learning goals
presented in a classroom setting and the skills and

experience that are specific to the needs of the gaming
industry [1][2][3][7]. It is not sufficient to simply write
code that creates a game if students have failed to grasp
design concepts that are crucial for game development.
In response to this dilemma, we design a Game Authoring
Class and teach the course at Northwestern University
during Spring Quarter 2006. We propose modeling game
development courses as closely to the software
development process followed in game industry. The
course emphasizes research in the field of computer games
and hands-on experience developing of games. Students
review current trends in computer game programming and
build their own 2D and 3D games on top of available game
engines[7][10][15]. Additionally, this class encompasses
building games for multiple devices, such as cell phones,
PDAs, Pocket PCs, desktops and laptops. Adopting
industry game design principles, we require students to
implement these design principles in three project
deliverables: 1) game design document and play-test
criteria, 2) 2D game for a mobile device, and 3) 3D game
module that runs on an existing game engine. Finally, we
review the Game Authoring class and establish best
practices for teaching any game development class that
prepares students for careers in the gaming industry.

2. Apprenticeship Game Design
Research shows that video games are an often under-
utilized learning environment that can be extended to
various domains, including mathematics, physics, history,
and language learning [6][8][9][14][15][16]. We delve into
yet another domain, that of computer science, maximizing
the attraction of games to revamp traditional computer
science curriculum and train the next generation of
software developers. The goal is to close the widening gap
between industry and academia by modeling industry
practices; before we can accomplish this goal, we must
incorporate pedagogical strategies into the design of game
development courses.

Cognitive scientists understand that learning occurs in the
context of meaningful tasks [4][5][8][11]. In actuality,
these tasks represent regular practices of a particular
community or group or people. Rather than introducing

22

theoretical concepts separate from real-world applications,
effective teachers guide students through situated activities
that demand the application of information or a specific
skill [4][5][11]. As the student participates in activities
under the guidance of the teacher, the student develops the
skill set required to complete the task. Cognitive scientists
refer to this as the apprenticeship model [5].

We extend the model of cognitive apprenticeship to the
design and instruction of the Game Authoring Course. We
carefully select assignments (e.g. writing a game design
document, conducting play-tests of game prototype, etc.)
that reflect authentic game design practices in the gaming
industry. As students acquire knowledge necessary to
complete the assignments, they develop proficiency using
the tools of the trade. Under the careful guidance of the
instructor, class discussions create a safe environment in
which learners feel that they contribute to a community of
learners while gaining expertise in a particular activity or
task. Game play demonstrations give students the
opportunity to assess their peers’ work and to refine their
ideas about what it means to be a game designer.

Interaction with students enrolled in the course provides
secondary means for support and self-reflection as students
develop proficient skills as game designers. Additionally,
the assignments instantiate tasks that game developers do
on a regular basis. Hence, the project deliverables
represent opportunities for situated learning as students
play the role of game developers throughout the Game
Authoring Course. We now turn our attention to the
learning objectives for each project and assess students’
mastery of game design principles.

3. Game Authoring Course
We taught the Game Authoring class during the Spring
Quarter 2006. Fourteen students, thirteen male and one
female, were enrolled in the class. Fifty percent of the
students were computer science majors. The class was
scheduled for 10 consecutive weeks with the class meeting
twice a week for lectures during the first seven weeks and
ending with three weeks of laboratory meetings. The
course required students to develop at a minimum level of
basic proficiency for standard software development tools
such as Microsoft Visual Studio, Microsoft DirectX, C++,
OpenGL, and Python. One graduate and three
undergraduate students were designated as teacher
assistants (TAs) for the course. The TAs created a class
wiki (http://cs.northwestern.edu/~gaming/), which
facilitated communication between students and the
instructor/TAs and served as a digital notebook of students’
progress on assignments. Students were responsible for
three projects: 1) creating a web-based game design
document and defining play-test criteria for evaluating
games, 2) developing a 2D game for a mobile device, and

3) developing a 3D game module that runs on top of the
Half-Life2 game engine.

Project 1: Game Design Document

The first assignment set the stage for students to think
deeply about the structure of games (i.e. players,
objectives, rules, procedures, conflict and possible
outcomes) and the dramatic elements (story, challenge,
sense of fun, etc.) that create memorable experiences for
gamers [7][12][16]. To assist students with writing a game
design document, students first wrote a review comparing
and contrasting two games of their choice. Students
evaluated the games according to the following criteria:

• What is the appropriate audience for this game?
• What is fun about the game and why?
• What is bad/not fun about the game and why?
• How does it compare to similar games in the genre?
• Why is it better or worse than similar games?
• What are the highlights/low points of the game play?

Class participants posted game reviews on the wiki. One
student added additional criteria, asking the following
questions: “Does the game’s artwork portray a realistic
world or does it use a more abstract artistic representation?
Is the artistic style reminiscent of another game’s artwork
or even art style in a different medium (such as a style of
painting or architecture)? Does the game’s artwork fit the
mood of the game’s story, environment, and game play?”

These questions indicate an understanding of how every
detail adds to the immersive environment of games; one
poorly conceived design detail could destroy this carefully
crafted virtual world. As a result, each student identified
play-test criteria used to evaluate the 2D mobile games
developed by their peers. Thus, the assignment functioned
as the initial point for students’ forming a foundation that
enables them to incorporate game design principles without
sacrificing the element of fun.

Project 2: Developing a 2D Mobile Game
The second assignment emphasized the iterative process of
game design and the importance of involving users in the
early stages of game development [7]. Initially, students
were required to use the Microsoft DirectX software
development kit to design the 2D mobile game. However,
the three undergraduates TAs and only one student enrolled
in the class were able to get the DirectX SDK downloaded,
installed and running. The remaining 11 students in the
course experienced difficulty installing and executing the
DirectX SDK and requested to use other software
development tools to complete the assignment. Adequate
support for use of software development tools is necessary
if we expect academia to prepare students for employment

23

in the game industry. Therefore, continuous
communication between industry and academia helps to
ensure that the computer science curriculum reflects the
needs of industry. The remaining students relied on
additional software development tools (PyGames, Flash
5.0, JavaScript, etc.) to implement working prototypes.
While this was an unexpected outcome, it actually gave
students experience developing 2D games for various
platforms, a transferable skill to industry.
Students followed the iterative design process, generating
storyboards, formalizing formal and dramatic elements,
implementing a working prototype and conducting play
testing [7][16]. Play-testing occurred on multiple levels,
including self-test testing, testing with friends, and testing
with strangers [7]. Self-testing ensured that the game
demonstrated limited functionality (e.g. ability for players
to navigate game controls) before release of the working
prototype. In contrast, peer testers used the RITE method
to provide immediate evaluation and recommended
changes that would enhance the game play experience [13].
Students made changes accordingly and demonstrated the
final version of the game during class time.

 Figure 1. Parachute 2D Mobile Game.

Project 3: 3D Game Module
The third project gave students the opportunity to gain
hands-on experience designing a 3D game module on top
of the Half-Life2 game engine. The three undergraduate
TA’s had developed a game module entitled “Project
Echo” in a previous undergraduate course. Project Echo is
a first-person shooter that features one game level, two
weapons (machine gun and leech launcher), sound effects
for weapons and limited AI for non-playing characters
(NPCs). Due to time constraints, students were tasked with
software modifications that would increase game
functionality and improve the game play experience.
Before any software changes were made, students play-
tested Project Echo and identified the strengths and
weakness of the game. Students were encouraged to work

in groups to foster teamwork typical of the game industry
which involves a team of developers, including graphics
artists, animation artists, user interface programmers, sound
engineers, etc. Students pitched the high-level concepts of
their game modifications, outlining a project schedule for
software development. All files and executables,
documentation, and proposals were posted to the class
wiki.
Game modifications covered a wide range of additions:
students created new models for weapons; rigged and
skinned a model of a monster in Maya; designed an
additional game level using Half-Life2’s Hammer tool;
added customized sound effects that were scripted to
promote emotional involvement during game play;
implemented a more sophisticated AI to allow NPCs to
harvest local resources; and revised the game interface to
give players current status information.

4. Best Practices

Each project afforded us the opportunity to identify what
worked and what failed as it related to our learning
objectives. In addition, 64% of the class completed
Northwestern University Course and Teacher Evaluation
Councils (CTECs), which gave us insight into students’
expectations and opinions of the class. Based on student
evaluations and lessons learned assessment, we identified
effective practices for game development curriculum.

4.1 Pipeline between industry and academia
If there were one thing that we could do differently, it
would be to engage companies in dialogue with our
students as part of the course. One participant suggested
that the course include guest speakers; this would have
enabled students to establish connections with industry.
Additionally, students expressed frustration with the
inability to get DirectX up and running for the 2D mobile
game project. One student reported, “We were supposed to
use certain software to program a game but apparently the
TA's never properly prepared the computers for this so we
resorted to a different program.” Unfortunately, this gave
the student the impression that 2D mobile project was not
well prepared. Oftentimes instructors as well as students
experience a learning curve before becoming proficient in
the use of industry tools. This feedback led us to consider
direct access to Microsoft DirectX personnel as we modify
the syllabus for future class objectives and assignments.
By establishing a direct pipeline between industry and
academia, we can attain real-time customer support,
shorten the learning curve and assist faculty and students
with developing proficiency of software development tools.
This becomes a crucial factor for hiring qualified

24

employees that can immediately contribute to company
revenue.

4.2 Incorporating Industry practices
Industry has criticized academia for failing to embrace the
latest technological practices and advancements supported
by industry. In an attempt to address this issue, we
designed a game development course that closely followed
industry practices and methodology for game development.
It is common practice for game designers to first create a
paper prototype of a game as a means for testing their ideas
[7][17]. To emulate this practice, students presented a
paper prototype of their 2D game to their classmates before
any software development. As a result, classmates helped
students refine game mechanics, suggesting ways to
increase the level of difficulty and identifying potential
problems that might impede enjoyment of the game.
The Game Authoring class required students to embrace
the iterative game design paradigm for both the 2D mobile
game project and the 3D game module. Students created
storyboards, identified the structure of the game, and
implemented a working prototype [7]. As students
communicate their ideas to their classmates, these same
classmates would comment on the ideas, helping the author
to conceptualize the formal and dramatic elements that
support a memorable game play experience. Play-testing
on multiple levels ensures early feedback and prevents
costly mistakes that produce poorly designed games.

4.3 Teamwork amongst students
T he 3D game module included a written assignment
regarding the “lessons learned” over the course of the last
project, forcing students to compare their initial design
proposal with the actual work completed. Students
frequently admitted that they did not accomplish all of the
goals. This failure was attributed to two factors. First,
students underestimated the amount of work required to
develop a game module. For example, before one can
make any software changes, one must first sift through
several lines of code to determine the logical flow. Once
the student traces the logical flow, the student must master
the software development tools (e.g. XSI for creating
models of weapons) to implement code changes. Secondly,
71% of the class chose to work solo on the 3D game
module project. Experienced game developers know that it
takes a team approximately 2 – 3 years to design a game
that may or may not reach the consumer market. This team
of people is comprised of graphic artists, voice
actors/actresses, sound engineers, music editors, user
interface programmers, level designers, etc. who meet
constantly to review the development schedule and work
together to produce one final product [7]. Thus, our

students failed to appreciate the benefits of teamwork. As
a result, the amount of time students spent working on the
game module did not correlate to high quality product
created by students. One student suggested that we
coordinate teams of students to design the game module.
By allowing the majority of students to work alone, we
missed a great opportunity to teach students that teamwork
is a requisite for the gaming industry and that teamwork
results in greater productivity. To better address this issue,
we suggest that the assignment should be subdivided into
individual assignments that form the whole product. Thus,
no two students will have the same assignment and yet
each assignment produces a component that is crucial to
the construction of the final product.

Figure 2. Game level in for 3D Game Mod.

5. Course Assessment
64% of students completed a single blind survey that
assessed students’ perception of the class. In summary,
students ranked the overall instruction 4.67 on a scale of 1
to 5 with 5 being the highest and 1 being the lowest.
Scrutiny revealed that 30% of the survey participants
thought the overall course was excellent while
approximately 44% indicated that the class was a good or
satisfactory course. We contribute the students’ high rank
of instruction to the instructor’s ability to communicate his
enthusiasm for game design and ability to establish rapport
with the students. This led us to question whether students
were learning anything in the class. More than 40% of
survey participants expressed that they had learned a
substantial amount about the game development process;
22.22% believed they had attained some knowledge. Only,
11.11% of the students indicated they had minimally
increased their knowledge because of taking the course.
The fact that less than half of the class felt that they had
learned a substantial amount raised a red flag, perhaps

25

some students were not learning due to the open-ended
structure of laboratory exercises. During the last three
weeks of class, students attended programming laboratory
to attain assistance with debugging code and develop
proficiency with specific software packages such as XSI
Modeling toolkit in the absence of course lectures.
Students commented that reviewing the code for the Half-
Life2 game engine was a lengthy process that proved to be
frustrating at times. For those students who lacked
patience and persistence to do work outside of the
designated course time and laboratory meetings, these same
students did not believe that they had accomplished the
learning objectives of the class. Furthermore, students
rated the intellectual stimulation provided by the class to be
an average of 4.89 on a scale of 1 to 5, suggesting that the
course challenged students to think about new concepts in a
creative manner. 78% of the class spent a minimum of four
additional hours outside of class and lab time. We posit
that the number of hours spent outside of class and
laboratory meetings played a critical role in assisting
students with understanding game design and ultimately
writing code that produced a working 3D game module.
The time spent on time also suggests the need for in-depth
tutorials that assist students to shortening the learning
curve.
Table 1. Student Rankings of the Game Course
Course Criteria Class Average: Rank on

Scale 1 (lowest) to 5
(highest)

Provide an overall rating of
the instruction.

4.67

Rate the effectiveness of the
instructor in stimulating your
interest in the subject.

5.22

Estimate how much you
learned in the course.

4.67

Rate the effectiveness of the
course in challenging you
intellectually.

4.89

Provide an overall rating of
the course.

5.11

In summary, students highly ranked the course to be 5.11
on a scale of 1 to 5 with five being the highest and 1 being
the lowest. This is extremely high in comparison to
traditional computer science courses taught at
Northwestern University, which average a rating of 3.

4. Conclusion and Acknowledgments
We offered the Game Authoring course as part of the
computer science curriculum at Northwestern University.

We purposefully identified effective practices that support
the implementation of industry practices in the classroom
setting. Furthermore, we establish these practices based
student evaluations of the mistakes we made and the things
that worked well. These observations serve as the starting
point for revising computer science curriculum as we
prepare the next generation of computer programmers. We
would like to thank Microsoft Research for providing the
necessary funding and equipment for making this research
possible. Additionally, we express our appreciation to the
National Science Foundation for their support of this
research.

References
[1] Adams, E. Bad Game Designer, No Twinkie! Gamasutra.

(March 13, 1998).
[2] Adams, E. How to Get Started in the Game Industry Part 1.

Gamasutra (December 11, 1998).
[3] Adams, E. How to Get Started in the Game Industry Part 2.

Gamasutra (December 18, 1998).
[4] Brown, J.S., Collins, A., and Duguid, P. Situated Cognition

and the Culture of Learning. Educational Researcher, (18)1,
1989, 32-41.

[5] Collins, A., Brown, J.S., and Newman, S.E. Cognitive
Apprenticeship: Teaching the Crafts of Reading, Writing
and Mathematics. In L.B. Resnick (Ed.), Knowing, learning,
and instruction: Essays in honor of Robert Glaser, Erlbaum,
Hillsdale, NJ 1990, 453-494.

[6] Elliot, J., Adams, L., and Bruckman, A. No Magic Bullet:
3D Video Games in Education. In Proceedings of the
International Conference of Learning Sciences (ICLS 2002)
Seattle, Washington, 2002.

[7] Fullerton, F., Swain, C., Hoffman, S. Game Design
Workshop: Designing, Prototyping, and Playtesting Games.
CMB Books, San Francisco, CA, 2004.

[8] Gee, J. Situated Language and Learning: A Critique of
Traditional Schooling. Routledge, 2004.

[9] Gee, J. What Video Games Have to Teach Us about Learning
and Literacy, Palgrave Macmillan, New York, NY, 2003.

[10] Koster, R. A Theory of Fun for Game Design. Paraglyph
Press, Scottsdale, AZ, 2005.

[11] Lave, J. and Wenger, E. Situated Learning: Legitimate
peripheral participation. Cambridge University Press,
Boston, MA, 1991.

[12] Malone, T. W. What Makes Things Fun to Learn?
Heuristics for Designing Instructional Computer Games.
ACM (1980).

[13] Medlock, M. C., Wixon D., Terrano, M., Romero R., Fulton
B. (2002). Using the RITE Method to improve products: a
definition and a case study. Usability Professionals
Association, Orlando FL July 2002

[14] Prensky, M. Digital Game-Based Learning. Donnelley and
Sons Company, Chicago, IL, 2001.

26

[15] Rankin, Y., Gold, R., and Gooch, B. 3D Role-playing
Games as Language Learning Tools. In Conference
Proceedings of EUROGRAPHICS Education Program 2006.
Vol. 25. Vienna, Austria, 2006.

[16] Rankin, Y., Gold, R., and Gooch, B. Evaluating Interactive
Gaming as a Language Learning Tool. In Conference
Proceedings SIGGRAPH Educators Program, Boston, MA,
2006.

[17] Salen, K. and Zimmerman, E. Rules of Play: Fundamentals
of Game Design. MIT Press, Boston, MA, 2003.

[18] Snyder, N. Universities See a Sharp Drop in Computer
Science Majors, Tennessean.com September 2006.

[19] Vesgo, J. Interest in CS as a Major Drops Among Incoming
Freshman, Computing Research News, May 2005 Vol.
17/No. 3. http://www.cra.org/CRN/articles/may05/vesgo

27

Integrating Video Game Development Experience in an
Academic Framework

Bernard Yee
Harmonix Music/MTV Networks

160 Cabrini Blvd, Apt 84
New York, NY 10033
+1 (212) 724-7564

bhy@bernieyee.com

David Sturman
Massive Inc. / Microsoft Corp.

627 Broadway, 7th Floor
New York, NY 10012
+1 (646) 778-3500

david.sturman@microsoft.com

Steven Feiner
Columbia University

Department of Computer Science
New York, NY 10027
+1 (212) 939-7083

feiner@cs.columbia.edu

ABSTRACT
Over the past three and a half years, courses covering game de-
sign, technology, and production have been offered in the De-
partment of Computer Science at Columbia University. These
courses were originally taught by two adjunct professors special-
izing in technology (David Sturman) and design (Bernard Yee)
and have been among the most highly subscribed courses in the
department taught by adjunct faculty. The pedagogical ap-
proaches taken have been modified nearly every time the courses
have been offered, due both to a desire to vary and improve
course content and style and to the constraints imposed by the
professional commitments of the teachers. In this paper, we de-
scribe the assumptions underlying the courses and the different
ways in which they have been taught, and discuss some of the
issues raised by our experience.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer science education, curriculum;
K.8.0 [Personal Computing]: General—Games

General Terms
Design, Human Factors

Keywords
Video games, game design, game technology, game production,
game curriculum development

1. INTRODUCTION
Given the tremendous cultural and commercial impact of video
games many Computer Science students have a great interest in
video games and aspire to join the industry. At the same time,
because of the rapid growth and increasing sophistication of the
game industry, there is a dearth of qualified game designers and
developers, especially cross-disciplinary developers who are
skilled at both game design and programming.

However, universities often lack the curriculum and expertise in
video game technology and design needed to train students. This

paper describes our effort over the past three and a half years to
address this need by creating a curriculum in game design and
development within the Columbia University Department of
Computer Science that bridges the gap between academia and the
game industry.

This effort started with Professor Steven Feiner inviting David
Sturman to teach a course in video game technology. To help
lighten the load of teaching a full course for which there were no
prepared materials, and no suitable texts, Sturman teamed up with
production executive Bernard Yee. Both veterans of the video
game industry, Sturman and Yee designed a course to provide
students with an introduction to video game design and develop-
ment, with the intent to expose students as much as possible to
life in the video game industry.
The course was based on three key tenets. First, students needed a
foundation in both technology and design, since good designers
must understand technology and good technologists must under-
stand design. Second, students should learn to work in groups, as
modern games are always collaborative. Third, game develop-
ment involves not only good design, good technology, and team-
work, but also commercial viability.
For two semesters (the first iteration), Sturman and Yee taught a
single class with alternating lectures in design and technology,
short homework exercises, and a single term-long team project
that involved specifying, designing, and prototyping an original
video game. During a third semester, they split the curriculum
into two classes, one specializing in technology and the other in
design, with teams combined from the two classes developing
term-long video game projects. While other professional obliga-
tions have prevented Sturman from teaching after that third se-
mester, Yee has continued to teach a series of courses on various
aspects of design.
In the remainder of this paper, we provide an overview of the
general structure of the courses and the approaches that we have
taken through the years in which they have been taught. We then
conclude with a discussion of some of the issues raised by our
experience that we feel need to be addressed.

2. APPROACHES
The faculty started with two key assumptions. First, they agreed
that game technology and game design were so fundamentally
interrelated as to be inseparable. Second, they agreed that be-
cause the ultimate goal of video games is to understand and ma-
nipulate consumer psychology, game software development had

For review only. Please do not distribute.

Submitted to 2nd Annual Microsoft Academic Days Confer-
ence on Game Development.

28

very different goals and processes than other forms of software
development.
We also felt it important that the students had an industry context
for video game design and technology. Video games are an in-
dustry, with political, financial, geographic, and practical issues
coloring almost every aspect of design and technology. An ap-
preciation of these issues makes one a much better contributor and
more valuable to the industry as a whole. So, woven into the
curriculum were lectures on the history of the industry, financial
structure of the industry, guest lectures from industry developers
and designers, and exercises mirroring important industry prac-
tices, such as design reviews.

2.1. Technology Track

For the technology side of the course, our intent was to expose the
students to the basic concepts and technologies used in video
game development. However, in our first iteration, we did not
have time to develop a true programming course with base code,
code exercises, and problem sets. Thus, the technology side con-
sisted of lectures on the basic areas of game design, including
engine architecture, modeling, animation, physics, AI, rendering,
audio, and special effects. While each of these topics could have
been the subject of a full semester course, we had only 14 weeks.
Therefore, we gave just a broad overview of each topic, so that
students would be familiar with the issues and know where to
delve more deeply if they were interested.

Finding an appropriate text was difficult. Existing texts were
either too tightly targeted to one aspect of video game technology,
or were step-by-step how-to recipes for creating a certain type of
game. Given the fast-moving and nascent quality of video game
technology, we resorted to original materials created by the in-
structors and online articles, particularly Simpson’s Game Engine
Anatomy 101 [12] and Salvator’s ExtremeTech 3D Pipeline Tuto-
rial [11].

For some topics, we brought in industry developers such as Paul
Bettner and Thatcher Ullrich to give guest lectures. This helped
to expose the class to the industry, as well as provide direct exper-
tise for the areas we were lacking. In the first two semesters, we
had guest lectures covering networking, AI, and developing for
platforms such as the Nintendo Game Boy. On the design side,
guest lectures focused on level design, emergent gameplay, and
interactive narrative.

2.2. Design Track

The structure of the game design track had to be created without
any real precedent. We referred to some industry efforts to create
a game development curriculum [5], but found them only partially
suitable to a single course offering. Several approaches were tried,
including the use of Salen and Zimmerman’s Rules of Play [9]
and other game design textbooks. We settled on an approach that
adopted the interactivity of a law school classroom using the So-
cratic Method, as opposed to a lecture model; students were re-
quired to participate in the debate over what constitutes the ele-
ments of a “game design.” We also took an approach that bor-
rowed from creative writing programs, in which students read and
critiqued fiction, and wrote.

The most reliable text resources were McCloud’s Understanding
Comics [8], which served as a primer to the aesthetic and psycho-

logical goals, and applicable creative tools in the mixed media
genre of comic books; Church’s “Formal Abstract Design Tools”
[1], a paper written by a noted game designer attempting to create
a common vocabulary with which to discuss game design goals
and processes; and the Mechanics/Dynamics/Aesthetics frame-
work created by LeBlanc [4], building on Church’s concept of
formal abstract design tools, to serve as a more practical guide to
the process of creating actual systems.

Students were also required to play a series of pen and paper
games, and critique and discuss them in class; to modify the rules
of simple pen and paper games to achieve different goals; and to
play early digital games and more modern digital games, to see
how design goals and execution were successful or unsuccessful.
The class has consistently used two non-digital games, a three to
four player game, The Settlers of Catan [14], and a two player
card game, Lost Cities [6]. Game tuning exercises were modeled
after the two-day game tuning workshop offered as part of the
Game Developers Conference [7].

2.3. Final Deliverable/Term Project
We set up a semester-long project of developing the concept and
prototype of a video game, example images from which are
shown in Figures 1–2, to give the students an experience akin to
working in the video game industry.
Classes were broken into project teams, consisting of four to six
members. Students were allowed to select their own groups based
on interest in the kind of game they wanted to develop. Anyone
left without a group was assigned to an existing or new group.
Each team was required to come up with a game concept, “pitch”
the project, write a series of documents culminating in a design
document, and choose the right technical proof of concept as a
final deliverable. We explicitly stated that final “shipping” code
was not necessary—even a technical implementation plan based
around a thorough pen and paper prototype was sufficient.1

The project was broken up into important milestones throughout
the semester. Groups were formed by the second week of class,
project proposals were due by the fourth or fifth week of class,
preliminary design documents were required in place of a mid-
term exam, and final documents and presentations were due dur-
ing the final week of class.

The professors and TAs graded and provided feedback to the
project proposals, each team gave feedback to another team’s
project proposal, and a full class session was devoted to a five-
minute long oral version of this feedback and a discussion of each
proposal with the whole class.

Following the mid-term submission of preliminary design docu-
ments, the professors and TAs met with each team, critiquing and
discussing their proposal. We approached these sessions with a
balance of mimicking a publisher looking at obtaining rights to
these games, and training the students to design and scope viable
game projects. We were at times very critical, with more than

1 In fact, one of the best projects over the course of the semesters

was a pen-and-paper proof of concept that never made it to final
code. By concentrating on refining game play with pen and pa-
per mockups, they were able to refine the game much more than
many of the groups that just wrote code.

29

one team having to change direction completely, and at times
very collaborative, suggesting improvements and methodologies.

We placed emphasis on process and diligence, discounting ulti-
mate success and failure. We reminded students that very few
ideas find life as a shipping game, and fewer still achieve any
commercial success and that they were more likely to learn from
“failures” than from “successes.” In lieu of a final examination,
groups submitted final design documents and gave 20-minute
presentations to the entire class. Each group had five minutes to
present their concept, ten minutes to present their prototype, and
five minutes for Q&A. The TAs and professors acted as modera-
tors (keeping each presentation within their time limits) and
judges (we had score sheets that we later used to determine
grades).
Projects were graded on the group’s ability to hit milestones,
group participation, quality of work (not on the “goodness” of the
game, but whether the documentation and prototype were
thoughtfully and well executed), and quality of presentation. (See
the section on issues below for a discussion of projects.)

3. COURSE ITERATIONS
3.1 Unified Technology and Design
Initially, Professors Sturman and Yee co-taught the first two ver-
sions of the course in the Spring and Fall 2003 semesters, cover-
ing both technology and design. They alternated lectures on tech-
nology, which focused on general concepts used in game code-
bases (e.g., rendering, AI, and networking), with lectures on the
process of game design.

3.2 Separate Technology and Design
The next iteration, in Spring 2004, split the course into two sepa-
rate courses, one on technology and one on design. The technol-
ogy course chose the Fly3D engine [2] as a codebase and the
companion book 3D Games: Real-Time Rendering and Software
Technology, Volume 1 by Watt and Policarpo as the text [16].
The class was based on lectures in each of the key technologies in
game development, with matching structured weekly program-
ming assignments to implement these technologies in the step-by-
step development of a 3D Pac-Man style game.

The design course was able to focus purely on the process of
game design. We continued the practice of semester-long team
projects by creating teams of eight students, half from the design
class and half from the technology class, and managed them the
same as we did in the unified class, with mid-term design reviews
and final presentations.

3.3 Design Only
Due to Professor Sturman’s involvement as CTO for a startup, he
was unavailable to continue teaching game technology.

3.4 Design and Production
The Spring 2005 course focused on design and actual production
processes. Most classes were modeled after real-world develop-
ment processes, with the TA serving as a producer and the in-
structors serving as executive producers. In this iteration, we fo-
cused on driving students through a core set of deliverables,
which required them to adhere to process and form as a way to
organize their group projects.

Figure 2. Student project.
Pen and paper prototype,
Spring 2006. Courtesy Dan
Gant, Connie Shi, Steven
Macanka, Shifan Mahroof, Juan
Souki and Catherine MacInnes

Figure 1. Student project, Spring
2004. Courtesy Amir Rao, John
Waugh, Justin Titi, Mitch Mor-
ris, Pranav Behari and Fritz
Meier

3.5 Design and More Design
In the most recent iteration (Spring 2006), Professor Yee covered
high-level design goals and production implications, co-teaching
it with Austin Grossman, a well-established writer and game de-
signer with many years of game design experience, who focused
on specific design issues, such as emergent behavior and the use
of physics in game design. Grossman’s academic background in
literature provided a backdrop to the concepts of plot and narra-
tive, while his practical experience as a game designer gave him
significant real world experience to share with the students. Much
of his expertise is probably beyond the scope of the current class,
and would be more useful to students in an advanced projects
class, but was still good for illustrating real world examples of the
methodologies taught in class. However, professional commit-
ments in both game design and fiction have pulled Professor
Grossman away from New York City.

3.6 Future Class
Professors Yee and Grossman’s approach of combining practical
“production and design” and a more academic “ludology and
design” was probably the most successful design track taught. In
an effort to maintain that dynamic, Professor Yee intends to co-
teach the class with Jessica Hammer, a PhD candidate at Teachers

30

College, who has a more academic background in game design
and has taught a similar class at Teachers College. Since she will
be pursuing her PhD for several years, this also brings some sta-
bility to the faculty composition. We hope to develop a more
refined curriculum after two semesters of teaching together. We
also hope to use Salen and Zimmerman’s The Game Design
Reader: A Rules of Play Anthology [9] and/or Grossman’s Post-
mortems from Game Developer [3], which utilizes real-world case
studies and game post-mortems

4. ISSUES
4.1 Instructor Availability
Since game development is a relatively new industry that has only
recently received academic attention, those who understand the
development process through real-world experience are generally
too bound by work on commercial projects to be able to serve as
adjunct faculty.

Since few universities are willing to support an academic track
devoted to game development there is no real viable full-time
academic position for most game industry developers.

Furthermore, game developers are judged professionally on their
contributions to shipping products, whereas in academic depart-
ments, a graduate degree is typically required for one to be hired
as an adjunct. Few game developers have the requisite graduate
degree needed for a faculty position.

Columbia’s adjunct faculty generally must contend with the re-
sponsibilities of full-time careers, making it difficult to maintain a
constant teaching presence. However, there is a strong incentive
to teach the class once per academic year to be able to recruit
previous students as TAs given the unique nature of our curricu-
lum.

For the instructors, the process was immensely gratifying. We
were subjected to endless variations of the management, process
and creative problems we see everyday in our professional capaci-
ties. We managed many projects in a compressed timeframe,
which, in some respects, served as continuing professional train-
ing. And watching students resolve to enter the game industry—
and succeed—provided deep satisfaction.

Time (formal and informal) devoted to guiding projects was sig-
nificant; discussion and support was not restricted to office hours
so we spent many extra evenings on campus.

4.2 Teaching Design to Engineering Students
Teaching these courses in an engineering school has been a very
powerful starting point, since game designers are concerned with
rule systems. But pushing engineering students to think of crea-
tive game design ideas has been a challenge. We anticipated that
engineering students would understand the concepts of tools,
emergent behavior, and systems-based game design better than,
say, their school of the arts counterparts; however, we have not
found this to be true.
The instructors made great efforts to recruit students from Co-
lumbia’s Teachers College (which includes gaming and media in
their curriculum), and the School of the Arts. By including these
“non-technical” students, we hoped to broaden the academic base
for the class and the field in general and expose, perhaps even

force, the engineering students to collaborate with non-technical
colleagues as they would in the video game industry. By and
large, this was a successful strategy, creating a broader class envi-
ronment and learning experience than would have been typical in
an engineering school, and much more in line with the realities of
video game development.

4.3 Guidance
It was challenging to balance guiding the students away from
problems and letting them make (and learn from) mistakes. We
worked very hard to stay in communication with the students and
encouraged them to promptly advise us of group issues. Projects
that underachieved because of group problems were penalized
much less if the students had communicated those problems to us
all along the way than projects whose groups kept silent and used
the problems as an excuse at the end. We found that this ap-
proach worked fairly well and groups who brought problems to
our attention in time for us to make corrections were able to do
more meaningful work than those that did not.

Another solution might be to force more project review meetings
and milestone deliverables. However all approaches have the
unfortunate effect of demanding a great deal of instructor time.
Without our support, however, the learning experience would
have suffered.

4.4 Materials
It was difficult to find a comprehensive set of materials and texts,
forcing us to cobble together sources from the internet and our
own resources. One of the most difficult decisions was the ap-
propriate technology. In the first two semesters, we allowed the
students to pick their own game engine technology. However, we
found that groups struggled with choices (e.g., Flash vs. Game
Maker vs. from scratch) and spent an inordinate amount of time
struggling with technology rather than concentrating on design
and development.
In the separate technology class, we standardized on the Fly3D
engine, mostly because it was created for instruction and had an
accompanying text. Having this standard also allowed the in-
structor and TAs to better support students with technology prob-
lems.
The Fly3D system was not without its problems, however, and
there are several more powerful off-the-shelf tools and engines
that we would consider for future classes, such as Torque [13] and
Virtools [15]. Both of these engines are used in professional
game development, and have the benefit of a professional devel-
oper community as well as actual support from their creators.
Virtools is better suited as a designer’s tool than a programming
framework (although costly), while the source-code distribution
of Torque would be Sturman’s next technology platform of
choice. Availability of a well-supported Nintendo Game Boy
Advance emulation and development environment would be ideal,
as that would have helped level project expectations (e.g., no
overly-ambitious, sprawling 3D projects).

4.5 Coordinating Tracks
Much as we tried to coordinate the dual tracks, both in the unified
and two-class model, we found it difficult to match technology
topics with design topics and, so, settled for parallel instruction.

31

This often resulted in too much work for three credits, as we tried
to fully exercise students in both disciplines.

“Technology-only” students had no clue about the design con-
cepts being taught in the other section, and design students gained
no understanding about technical constraints. Ideally students
would go through both tracks in subsequent semesters with the
non-technical students receiving a “technology-lite” syllabus.

4.6 Group Participation
To address the ever-present issue of unequal participation among
team members we had each student submit a confidential written
critique of themselves and of each of their teammates. The
“360s” as we called them, gave us four independent evaluations
of each student’s performance. Even if they didn’t all agree, we
almost always saw a trend that was consistent with our own
evaluations

It would have been nice to share problems and solutions more
formally. We used BBS systems to encourage discussion; but,
forcing more sharing and discussion is being considered.

4.7 Career Viability
Students have expressed significant interest in the industry be it
case studies involving actual projects or formal internship pro-
grams. Of the major publishers, only Electronic Arts and Micro-
soft have formal internship programs; a student interned at EA in
2005 and is now a junior designer at their Los Angeles studio.
Microsoft also generously sponsored attendance to the Game
Developers Conference in 2004 as well. Several of our students
have entered the game industry, working at Atari, EA, Large
Animal, Massive, Microsoft and Nick Jr.. More formal support
from the major publishers and platform owners would be wel-
come.

4.8 Guest Speakers
The game industry clearly has high visibility personalities; having
influential, well-known and accomplished speakers—Warren
Spector, Doug Church, Tim Stellmach, Bob Bates and Art Min,
from companies like EA, Valve, Vicarious Visions, Eidos and
Microsoft—come in was always well received, but hard to or-
chestrate without a budget. We were able to hold guest lectures on
an opportunistic basis whenever potential speakers visited the
New York area, and organized a panel sponsored by ACM in
Spring 2003.

4.9 Challenges and Benefits of Cross-School
Enrollment
Reaching out to non-engineering students was critical in creating
a real world development team dynamic in which programmers
and non-programmers had to work collaboratively. This was a big
win. In fact, our best design-oriented students have been non-
programming students with some informal technical/programming
background. We were able to recruit students from COMS W4160
(Computer Graphics), taught by Professor Ravi Ramamoorthi,
where the final project is a game written in OpenGL by two-
student teams. With regard to inter-school collaborations, in
Spring 2005, the final team project for COMS W4172 (3D User
Interface Design), taught by Professor Steve Feiner, was done in
conjunction with students in a Visual Studies course taught in the
Graduate School of Architecture, Planning and Preservation. A

similar interdisciplinary collaboration is being planned for Spring
2007, using a game-engine–based development infrastructure.
More formal buy-in from other schools and departments would be
a good next step.

4.10 Need for Lab Time
One of the important factors in designing games is playing
games—it was hard to push students to play games because of the
time commitment involved, especially as these games served a
pedagogical purpose rather than an entertainment goal. In fact, we
preferred to make students play games that put them out of their
comfort zone (e.g., games that were not the most popular or cur-
rent ones at the time).

5. ACKNOWLEDGEMENTS
We thank Microsoft Research for the generous donation of Xbox
consoles and games for use in these courses; Electronic Arts,
Vicarious Visions, Eidos, Powerhead Games, Acclaim Entertain-
ment, Valve, and other organizations for allowing (and, in some
cases, even sponsoring) their developers to give guest lectures;
and all the guest lecturers who donated their time and efforts to
our students, demonstrating incredible industry support, encour-
agement, and camaraderie to a potential new generation of video
game professionals.

6. REFERENCES
1. Church, D. “Formal Abstract Design Tools.” Game Developer

Magazine, 1999.
2. Fly3D. http://fabio.policarpo.nom.br/fly3d/index.htm.
3. Grossman, A. (ed.). Postmortems from Game Developer. CMP

Books, San Francisco, CA, 2003.
4. Hunicke, R., LeBlanc, M., and Zubek, R. “MDA: A Formal

Approach to Game Design and Game Research.” In Fu, D.,
Henke, S., and Orkin, J. (eds.), Challenges in Game Artificial In-
telligence: Papers from the 2004 AAAI Workshop, Technical
Report WS-04-04, AAAI Press, Menlo Park, CA, 2004.
http://www.cs.northwestern.edu/~hunicke/MDA.pdf

5. IGDA, Game Development, Design & Analysis Curriculum
Framework. International Game Developers Association, San
Francisco, CA, 2002.

6. Knizia, R. Lost Cities. Kosmos Games.
http://www.boardgamegeek.com/game/50

7. LeBlanc, M. Game Tuning Workshop, 2005 Game Developers
Conference
http://algorithmancy.8kindsoffun.com/GDC2005/index.html

8. McCloud, S. Understanding Comics. HarperPerennial, New
York, NY, 1993.

9. Salen, K. and Zimmerman, E. Rules of Play. MIT Press, Cam-
bridge, MA, 2003.

10. Salen, K. and Zimmerman, E. The Game Design Reader. MIT
Press, Cambridge, MA, 2005.

11. Salvator, D. ExtremeTech 3D Pipeline Tutorial, ExtremeTech,
http://www.extremetech.com/article/0,3396,s=1017&a=2674,00.
asp, 2001

12. Simpson, J. Game Engine Anatomy 101 ExtremeTech,
http://www.extremetech.com/article2/0,3973,594,00.asp, 2002.

13. Torque. http://www.garagegames.com/
14. Teuber, K. Settlers of Catan. Mayfair Games.

http://www.boardgamegeek.com/game/278
15. Virtools. http://www.virtools.com
16. Watt, A. and Policarpo, F. 3D Games: Real-Time Rendering and

Software Technology, Volume I, Addison Wesley, 2000

NOTE: Syllabuses, assignments, and other course materials can be
found through links at http://www.cs.columbia.edu/~dsturman

32

http://algorithmancy.8kindsoffun.com/GDC2005/index.html
http://www.extremetech.com/article/0,3396,s=1017&a=2674,00.asp
http://www.extremetech.com/article/0,3396,s=1017&a=2674,00.asp
http://www.extremetech.com/article2/0,3973,594,00.asp
http://www.garagegames.com/
http://www.virtools.com/
http://www.cs.columbia.edu/%7Edsturman

Agent Augmented Game Development
Zhiqi Shen

Information Communication Institute
Nanyang Technological University

Nanyang Avenue, Singapore 679798
65-98576794

zqshen@ntu.edu.sg

Chunyan Miao
School of Computer Engineering

Nanyang Technological University
Nanyang Avenue, Singapore 679798

65-67906197

ascymiao@ntu.edu.sg

Yundong Cai
School of Computer Engineering

Nanyang Technological University
Nanyang Avenue, Singapore 679798

65-67906197

caiy0004@ntu.edu.sg

ABSTRACT
Computer Science students are not only interested in playing
games but also highly motivated to learn how games are
developed. This paper proposes a novel agent augmented game
development framework in a 3D virtualized environment that
allows students to become the players, the situated learners and
the designers, who create games/stories in an immersive 3D
environment, simultaneously.

Unlike most of existing games in which agents are designed to
play some roles or to execute specific tasks, we augment the
whole game world as an interactive multi-agent system. The agent
intractability and autonomy enhance the user interactions and
enable the dynamic story creation in a situated learning/playing
environment. The proposed approach significantly increases the
interests of students in learning to design the game from playing.

An interactive game for science learning in secondary schools is
presented to illustrate our approach. The proposed game
framework as well as the 3D virtualized game environment has
been successfully used in a number of capstone projects in recent
two years. Students enjoyed learning and designing games
through playing.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Collaborative learning –
game-like learning, games, virtual world.

General Terms
Design.

Keywords
Game development, Agent augmentation, Multi-agent systems.

1. INTRODUCTION
Computer Science students are not only interested in playing
games but also highly motivated to learn how games are
developed. However, most of the computer science students think

game development is challenging. Traditionally, students need to
learn game development in the class first before they start to
practice game development. Therefore, there is a big gap between
the learning and real development of the games. In this paper, we
present a novel approach that bridges this gap through an agent
augmented 3-D virtualized environment for situated game design
learning and game development. Each entity in the game world,
whether it is a graphic object, an avatar or a user player, could be
augmented with an agent. The whole game world will become an
interactive multi-agent system. Such environment is supported by
our agent augmented game development framework which acts
not only as a game development teaching and learning tool but
also a real game development environment.

Software agents as autonomous entities have many important
characteristics, such as goal oriented, proactive, communicative,
and intelligent. Agent augmentation facilitates the interactions
between characters, players and dynamic stories. It also increases
the involvements of players and interests of players to play and
learn in a situated game environment. To enable students to learn
game design in a situated environment and to develop games that
support interactions and dynamic storytelling, an enabling agent
augmented game development framework is critical.

Research efforts on game development with agent technology
have been reported [1, 2, 3, 4]. However, in those game
development environments, agents either act as specific roles or
are designed to execute specific tasks. It is far from the
expectation for the dynamic game design/storytelling and the
interaction between game and player. In this paper, we present a
novel game development framework whereby the story sequences
could be decided by the players on the fly. We regard a game as a
multi-agent system so that agent interactions and autonomy can
be used to increase interactions and support dynamic
storytelling/game design. Goal Net [5], a modeling tool, is used
for story/game design and agent design. With this framework
students can learn not only the conventional game development
but also dynamic storytelling.

The paper is organized as follows. Following this section, the
related work is studied. In Section 3, the theoretical background
of the proposed game development framework is introduced. The
agent augmented game development framework is described in
Section 4. Section 5 presents a game for science learning in
secondary schools developed using this framework by our
students to illustrate our approach. Finally, the conclusion and the
future work are discussed in Section 6.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

33

2. RELATED WORK
Using agents in games has improved storytelling significantly.
VISTA (Virtual Interactive Story Telling Agents) [1] project
introduced an agent based architecture whereby players can
interact with agents with questions they want to ask and therefore
the players can understand the contents of the story better. SAGE
(Storytelling Agent Generation Environment) [2] project
constructed storytellers using agents to encourage players’
emotional engagement. Mark Riedl, at. el. [3] proposed a
narrative mediation to leverage the player involvement and the
overall narrative. Marc Cavazza, at. el. [4] used HTN
(Hierarchical Task Networks) for agents behavior planning.

In those projects, agents are used to increase interactions between
characters in a story and players. On the other hand, techniques
are used to plan the agents’ behaviors and to control the
interactions between agents and players so that the storyline is
still maintained.

Unlike most of existing games in which agents are designed to
play some roles or to execute specific tasks, we augment the
whole game world as an interactive multi-agent system. More
specifically, we use Goal Net, a goal oriented model to design
both characters and plots in storytelling. Each entity in the game
world, whether it is a graphic object, an avatar or a user player,
could be augmented with an agent who carries a goal net. The
whole game world will become an interactive multi-agent system.
More over, we use Fuzzy Cognitive Map (FCM) [6] to model the
emotions of characters or agents to simulate the human-like
roles/characters in real life. The objective is to create a 3D
virtualized immersive environment that allows students to become
simultaneously the players, the situated learners and the designers
who create games/stories in such an environment.

3. THEORITICAL BACKGROUND
3.1 Goal Net
Goal Net is a tool for modeling goals of an agent in a multi-agent
system. It has been successfully used in the multi-agent system
modeling for business forecasting, grid computing and E-learning.
Goal Net model is composed of Goals and Transitions. Goals,
represented by circles, are used to represent the goals that an
agent needs to pursue. Transitions, represented by arcs and
rectangles or vertical bars, connect from the input goal to the
output goal, specifying the relationship between the two goals.
Each transition is associated with a task list which defines the
possible tasks that the agent needs to perform in order to transit
from the input goal to the output goal. A goal net example is
shown in Figure 1. There are two kinds of goals in Goal Net,
atomic goals and composite goals. An atomic goal is a primitive
goal which cannot be further decomposed, while a composite goal
can be split into goals connected via transitions. Therefore, a
complex goal can be recursively decomposed into sub-goals and
sub-goal nets. The hierarchical structure simplifies the goal
modeling process with different levels of abstraction.

Figure 1. A Goal Net example.

In Goal Net, there are four types of temporal relations of goals
represented by transitions connected the input goals and output
goals: sequence, choice, concurrency and synchronization, as
shown in Figure 2.

• Sequence: A direct sequential causal relationship between
input goal i and output goal j.

• Choice: A selective connection from input goal i to possible
output goals j and k, and only one output goal can be
selected based on selection criteria.

• Concurrency: Input goal i at completing the tasks, all the
output goals j and k can be achieved simultaneously.

• Synchronization: A synchronization point from different
input goals i and j to a single output goal k, and transition to
the output goal can only be started when all its input goals
are achieved.

Figure 2. Temporal relationships among goals.

3.2 FCM
Fuzzy Cognitive Maps (FCMs) is a kind of causal relationship
modelling tool. It provides a simple and straightforward way to
model the relationships among different factors. FCMs include
two elements: concepts and causal relationships. As shown in
Figure 3, concepts are represented by circles, which represent the
related causes and effects in the model. The causal relationships
are represented by directed arcs, each of which has a sign and a
weight. The ‘+’ sign means positive causal relation, such that the

34

increase of the starting concept value may cause the increase of
the ending concept value. Conversely, the ‘-‘ sign means negative
causal relation, such that the increase of starting concept value
will cause the decrease of the ending concept value. The weights
differentiate the important levels from the starting concept to
certain ending concept. Each concept is represented with a state
value whose range is in [0, 1] or [-1, 1], while the causal relation
is represented as a weight, whose range is in [-1, 1]. Agent Server

Local Server

Game Server

Game
Engine

Clients
Students

Agent Container

Database

Database

G-MADE
Development
Environment

Knowledge
Base

Developers

Client
Applications

3D Object Server

Agent Server

Local Server

Game Server

Game
Engine

Clients
Students

Agent Container

Database

Database

G-MADE
Development
Environment

Knowledge
Base

Developers

Client
Applications

3D Object Server

 Figure 3. A FCM example.

3.3 Dynamic Storytelling
Goal Net is used in the framework to model the goals of an agent
– a character in the game and the dynamic plans of the story –
plots in the game for interactive storytelling. To model a character
as an agent, goals and the temporal relationships of each character
are modeled as a goal net. The four kinds of temporal
relationships of Goal Net make the characters/agents behave
according to the real situation during playing. To model plots of a
story, a plot is regarded as a goal. A plot can be split to sub plots.
The whole set of plots of a story can be designed as a goal net
(plot net). The plots are organized according to their temporal
relationships. The real storyline will be generated according to the
goal net (plot net) during playing through interactions between the
players and the characters.

3.4 Interactions
In the framework, FCMs are used as the reasoning tool for goal
selection as well as action selection. The interaction from the
player, context variables and the possible goals and actions are
encapsulated as concepts. The causal relationships among
different concepts are determined according to the expert
knowledge or predefined rules in the knowledge base. High
weights are assigned to those more assertive causal relationships.

Each character make decision for its behavior according to its
goal net and FCMs. For example, the time a character visitor
spent to talk with another character patient in a hospital is longer
than a threshold, the character visitor may become sick. Hence its
behavior may also change. The player may interact with the
character for resolutions. Then the storyline may be also changed
according to the dynamic plan of the goal net (plot net).

4. FRAMEWORK

4.1 System Architecture
The game system consists of four components as shown in Figure
4: client application, game server, agent server, 3D object server.

Figure 4. System architecture.

• Client application is user interface to players, where a player
plays the game on his/her computer.

• Game server is the engine to run the game programs. It is
also the collaborative space to synchronize different players
in the game.

• Agent server is the container of the agents - the characters in
the game. Each character has a 3D object in the game and an
agent on the agent server. The behavior of the character is
controlled by the agent.

• Object server is the container of the 3D objects. It contains
the 3D objects used for the virtual world of the game. Each
character has a 3D object on the object server.

When a game is started, the virtual world of the game will be
created at the game server. The 3D objects are loaded to the client
application to build the game environment. The characters will be
loaded to the client application as well. The agents corresponding
to the characters of the game including the avatar that represents
the player are created on the agent server. The commands for the
behaviors of the characters are controlled by the agents. Only the
avatars can be controlled by both the player and the
corresponding agents. Usually commands from the avatar agent
are notifications or emotional behaviors reflecting the situation
changes in the games. So the unreasonable conflict between the
commands from the agent and those from the player is minimized.
If another player joins the game, the whole set of the game
environment will be loaded to his/her client applications.

4.2 Development Framework
The development framework consists of 3D object development,
agent development, and game development. The game
development and 3D object development can be done using
commercial products in the market. In the paper, we only focus on
the agent development. The agent development, namely G-
MADE (Multi-Agent Development Environment for Game),
consists of the Goal Net Designer, FCM designer, Agent Creator
and Goal Net Loader and SDK (Software Development Kit) of
game engine on the game server. Goal Net Designer, Agent
Creator and Goal Net Loader are the key components of the
MADE (Multi-Agent Development Environment) used for multi-
agent system development [7]. G-MADE extends MADE by
integration with FCM Designer and SDK of a game engine used
in the framework. By this extension, agents can make decision on
the actions using FCM inference and manipulate the characters in

unattended cars

theft intention

chance of being caught

+

-

+

+

theft

security guards
patrol

35

the game through APIs (Application Programming Interfaces) of
the SDK.

4.3 Game Development
In this paper, we regard a game as a multi-agent system. So we
map the game development to the agent development using the
framework presented in this paper.

4.3.1 Agents Development
Typically, there are four steps developing an agent using G-
MADE. They are:

• Function development: Functions are the actions a character
may perform. In this step, all the functions will be developed
using the SDK of the game engine.

• Goal Net design: Goal Net is the “brain” of an agent. In
another words, an agent will pursue the goals according to
the temporal relationships among them designed in a goal
net. The functions developed at the last step will be used in
this step to construct transitions of the goal net so that the
agent can control the character represented by this agent.

• FCM design: Within a goal net, the agent needs to make
decision to select suitable goal to pursue at the next step or
select the next task to perform to pursue a goal according to
the current situation. FCM reasoning is used to make
decisions for the agent based on the selected context
variables.

• Agent creation: With G-MADE, an agent is Goal Net
enabled. Every agent created by the Agent Creator has the
same structure. It does nothing after it is created. It becomes
an active agent only after a goal net is loaded by the Goal
Net Loader. So different agents/characters can be identified
by different goal nets.

4.3.2 Characters
Each character in the game has at least one goal net associated
with. When the character starts to appear in the game, a goal net
will be loaded to the corresponding agent to control its behavior.
In a game as a multi-agent system, agents/characters need to
cooperate or coordinate with each other according to the story.
This can be done through goal nets of the plots.

4.3.3 Plots
Plots design is important for storytelling. With Goal Net, a story
can be decomposed to many smaller plots. Based on the temporal
relationships and dynamics of the story, a goal net (plot net) can
be constructed. Each atomic plot is a goal net containing all the
goals of characters that should appear in the plot. Each goal
represents a goal net of a character. So in this plot, all the goals of
characters will be delegated to the corresponding agents to
perform.

When a game is started, a special agent, namely director agent or
instructor agent will be created who will take the goal net of plots
to behave. The whole storytelling or the game will be controlled
or directed by this agent. However the real sequence of plots will
be generated dynamically according to the interactions with the
players.

5. GAME FOR SCIENCE LEARNING
A game, namely “Mystery Illness Investigation at Nanyang
Town”, was developed using the framework by the capstone
project students in the school of computer engineering. The
purpose of the game is to teach students in secondary schools
about illnesses in a 3-D immersive environment as if in the real
life.

Figure 5. The goal net of the story.

The stories in the game guide players to explore the virtual town
and investigate the mystery illness. By talking to different
characters at different places in the game, or conducting lab
experiments, the players need to find the symptoms of the
mystery illness, study the differences among diseases, and
conclude the thorough review over the mystery illness by the end
of the game. The goal net (plot net) of the story is shown in
Figure 5. As shown in the goal net (plot net) the players can go to
either the hospital or the clinic to check the symptoms of the
mystery illness and how widely the illness is spread. Depending
on the availability of the officer in the ministry of health, the
player can choose to ask for differences of different illnesses from
the officer, or go to library to check them from the books.
Moreover, the player can go to the town to verify the conclusion
about the mystery illness, or he can do some further laboratory
tests. The director agent selects a storyline as shown in Figure 6,
in which the player should visit the hospital for illness symptoms,
then go to meet officer to query about the differences of the
illnesses, lastly go to visit the town to confirm the conclusion.
Figure 7 shows a detailed design of plot “visit the hospital”. The
story involves three characters: a doctor, a nurse and the avatar
representing a player. As shown in Figure 8, the director agent
delegates the tasks of visiting different places to the player, and
the player is able to interact in the first-person view and third-
person view.

Figure 6. The selected storyline.

36

Figure 7. Goal net for visiting the hospital.

Figure 8. The screen shots of the game.

The whole game development infuses playing, learning, and
development into an integrated process. In the beginning, students
login as user avatars and start playing in a preliminary simple
world. Then the students start to enrich the world or create their
own new world with various virtual entities, i.e. graphic objects,
avatars. After that students start to design game strategies, story
scenes using Goal Net Designer for the virtual entities they
created. Finally the students create the dummy agents, load goal
nets into the agents and then augment the agents into the virtual
entities to make their game world an interactive multi-agent
system in a 3D immersive environment.

6. CONCLUSION AND FUTURE WORK
This paper proposes a novel game development framework based
on Goal Net and FCM. Goal Net is used to design both characters
and plots in storytelling so that character-based story design and
plots-based story design can be combined and therefore a hybrid
game system can be constructed. FCM is used to design the
emotions of characters or agents so that interactions between
agents and players and story dynamics are increased. The
demonstration of game for science learning illustrates the
proposed framework is practical and easy to use. With this
framework students can learn game development in a situated

learning environment and develop games with intelligence/agent
augmentation in a 3-D immersive environment.

The novelty of our approach is that such agent augmented 3D
virtualized game development environment allows students to
become simultaneously the players, the situated learners and the
designers who create games/stories in an immersive 3D
environment. It bridges the gap between the learning content of
game development and real game development. It also transfers
the challenging of learning and development into playing. More
over, such environment supports collaborative learning and game
design in a virtual team.

Our on-going work focuses on extending our framework with
Microsoft XNA game engine. Our future work will focus on the
situation awareness and intelligent question answer so that players
will experience different story plots with the same game during
playing.

7. REFERENCES
[1] Figa, E. and Tarau, P. The VISTA Project: An Agent

Architecture for Virtual Interactive Storytelling. CSCW 2002
Workshop on Storytelling and Collaborative Activities (New
Orleans, Louisiana, USA, November 16, 2002).

[2] Umaschi,M., and Cassell, J. Storytelling systems:
constructing the innerface of the interface. In Proceedings of
the 2nd International Conference on Cognitive Technology
(CT '97) (Aizu, Japan, August 25-28, 1997). IEEE Computer
Society Press, 1997, 98-108.

[3] Fröhlich, B. and Plate, J. The cubic mouse: a new device for
three-dimensional iput. In Proceedings of the second
international joint conference on Autonomous agents and
multiagent systems (AAMAS2003) (Melbourne, Australia,
July 14-18, 2003). ACM Press, New York, NY, 2003, 741-
748.

[4] Cavazza, M., Charles, F., and Mead, S. Agents' Interaction in
Virtual Storytelling. In De Antonio, Aylett, and Ballin (eds.),
Intelligent Virtual Agents, Springer Lecture Notes in
Artificial Intelligence, vol. 2190, (2001), 156-170.

[5] Shen, Z. Q., Miao, C. Y., and Gay, R. Goal Oriented
Modeling for Intelligent Software Agents. In Proceedings of
the 2004 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT’04) (Beijing, China,
September 20 - 24, 2004).

[6] Kosko, B. Fuzzy cognitive maps. International Journal of
Man Machine Studies, 24, (1986), 66-75.

[7] Shen, Z. Q., Miao, C. Y., and Gay, R. Goal-oriented
Methodology for Agent-oriented Software Engineering.
IEICE Transactions on Information and Systems, Special
Issue on Knowledge-based Software Engineering, Vol. E89-
D, No. 4, (Apr. 2006).

37

Teaching Revulsion-Free Design Patterns through Game
Development

Randy Connolly
Dept. Computer Science & Information Systems

Mount Royal College
Calgary, AB, T2N 0Z6

403 440 6061

rconnolly@mtroyal.ca

ABSTRACT
This paper describes how game development can be used to
successfully teach design patterns to undergraduate computer
science students. The abstract nature of design patterns can make
them difficult for students to fully comprehend and successfully
integrate into their applications. The familiarity of games along
with their flexibility provides an ideal context for making the
abstract patterns more concrete and understandable. Three
different game projects are described along with several of the
design patterns implemented within these games.

Categories and Subject Descriptors
D.1.5 [Software]: Programming Techniques – Object-Oriented
Programming. K.3 [Computers & Education]: Computer &
Information System Education – Computer Science Education.

General Terms
Design.

Keywords
Design Patterns, Game Development.

1. INTRODUCTION
“The mark of our time is its revulsion against imposed patterns.”
-- Marshall McLuhan [9].
McLuhan’s assertion about a revulsion against patterns may
indeed have been true when he wrote those words in the early
1960s, but they very much appear to be false when it comes to
contemporary thinking in software design. Since 1995, the
software design field has been great enhanced by a burgeoning
literature in the area of software design patterns. This literature
very much tends to be oriented towards the experienced software
development practitioner. Less experienced developers, such as
undergraduate computer science students, generally however find
design patterns to be too abstract and their development
experience too limited to find the same joy and attraction to
patterns. We might say then that students very often do in fact
have a sense of revulsion against the patterns that are imposed by
their instructors!
A design pattern is a description of a class-level solution to a
common generalized design problem. In the key text in the field,
the so-called Gang of Four book [4], 23 patterns are described at a
relatively abstract level and are related using examples which are
usually unfamiliar to typical student readers. Other authors have

endeavored to teach design patterns by using more approachable
language and examples (see, for instance, [10], [12], [8] and the
excellent [3]).
Yet despite these much more approachable texts, this author has
often struggled to find appropriate contexts and examples for
teaching design patterns. Students typically were able to parrot
the description of the covered patterns in examinations but
generally struggled to implement them and almost always
completely failed to see the point of these patterns. (It should be
noted that some researchers in contrast have had some success
introducing design patterns into entry-level CS courses [2,5,6]).
To this author’s students, design patterns almost always seemed
an unnecessary and painful complication. Students often solved a
problem their own way and then tried at the last moment to
hammer the square peg of the design pattern into the round hole
of their solution after it was already working. It is no wonder then
that the students often felt a revulsion against design patterns.
This experience, however, changed quite substantially once
design patterns were taught using game development projects.
This paper describes the author’s relatively successful experiences
teaching revulsion-free design patterns to third-year
undergraduate students by using game development projects. It
provides an overview of these games and then illustrates some of
the design patterns that were introduced as solution mechanisms
within these projects.

2. THE GAME PROJECTS
In our three-year applied degree program, students are exposed to
a variety of application development environments. Students take
three programming-focused courses (from structured to object-
oriented) using Java, two courses devoted to web application
development, and two courses teaching database design and
development. One perceived lacuna in the students’ education is
that they never create native Windows client applications. Three
years ago we created a capstone course in Windows development
that has used C# and Windows Forms within Microsoft’s .NET
Framework.
Two years ago this author began to use game projects in this
course. There was ample reason for doing so. Within the field of
education, there is “an abundance of literature to support the use
of games as tools that help learners.”[11] Within the context of
computer science, a variety of researchers have found game
assignments to be helpful for teaching and motivating
introductory programming students (see for instance, [1] and [5]).
As well, it has been noted that games can provide “an extremely
project-oriented, upper-division course to exercise and enhance

38

the programming and problem-solving skills of advanced
students” [7].
In the three iterations of this course, this author has taken two
basic approaches. In the first approach the students dove right into
Windows Forms (the students were already familiar with C# and
ASP.NET) and created a role-playing game. Students worked in
pairs to create a game in which a player (in the role of a
barbarian, knight, wizard, or ninja, each with its own unique
statistics) navigates a multi-screen map and fights monsters based
on a configurable combat system. For simplicity sake, students
used GDI+ rather than DirectX for drawing graphics. Various
additional custom controls had to be created to handle status
messages, the character’s state, and the character’s position in the
game world. As little game information (e.g., map, actors, world,
etc.) as possible was contained within the code; instead this
information had to be contained in XML files. Figure 1 illustrates
a sample student project.

Figure 1: Sample student project for first game
The students were provided with a variety of royalty-free
graphical resources (Figure 2 shows an example). These included
several hundred tile files to construct maps, static and animated
item images for placement on the map, as well as over a hundred
animation strip images for player and monster actors. Each
monster or player actor had four direction facings (north, east,
south, and west) and five states (paused, walking, attacking, being
hit, and dying) that had to be animated.

Figure 2: Sample animation strip (wolf attacking east)
In the course labs, students were introduced to the following:
GDI+ development, creating custom controls, parsing XML, and
working with timers. In one of the labs, students were guided
through the construction of a simple sprite (an independent
animated object) as a means of demonstrating how to use an
event-based timer as a first step in learning multi-threaded
programming.
In the second and third iterations of the course, the author took a
somewhat simpler approach. These students did not know C# and
were somewhat weaker since the course was now offered in the
fifth semester. As a consequence, easier game projects were
necessary.
One of these games was a Rogue-like dungeon crawl. A Rogue-
like game is one that involves navigating a character who has
certain attributes and inventory items around a maze-like map

fighting monsters and collecting treasure. The next year’s
iteration of the course used instead a combat game, in which the
player creates an army of units containing warriors that battle
against an opponent’s army. Figure 3 illustrates some sample
versions of these two game projects.

Figure 3: Two other game projects
In all three projects, the game project was broken down into four
or five milestones delivered at various points through the
semester. In the first milestone, the students created a console
version of a simplified subset of the game. Since there was very
little user-interface interaction required, the students could
concentrate on designing and implementing the basic domain
model and in the process familiarize themselves with C#.
The second milestone involved moving their solution to Windows
Forms. It is at this stage that students begin to see the value of
software design principles. Students recognize the worthiness of
the general object-oriented principle that one should separate that
which varies from that which stays the same, when they begin
porting their first milestone solution to the second. Almost
without exception, students have intertwined user interface logic
within their domain model. As they rewrite their original design
to fit the new user interface requirements, the students begin
(perhaps for the first time) to become really receptive to the idea
that a proper design will save them time and effort.
Wick [13] has noted that by “starting students with a design that
they find reasonable and understandable and then refactoring that
design to introduce design patterns, students get a better
appreciation for value-added by the design pattern.” The two
additional final milestones for these game projects followed this
approach. Additional requirements were introduced (such as
navigating around an XML-based map, adding animated sprites,
or modifying the game to work on a Mobile PC device). To help
implement and manage these changes, various design patterns
were introduced as possible solutions to the problems raised by
these new requirements. In general, students were much more
receptive to these patterns and appeared to have significantly
fewer problems implementing them then in my previous non-
game attempts (in other courses) at teaching design patterns. The
next section provides some details on how certain design patterns
were introduced and integrated into the game projects.

39

3. THE DESIGN PATTERNS USED
One of the real benefits of game projects is the ease at which
complexity can be introduced into that project. The typical
business application that can be implemented within a semester
has a very typical workflow: retrieve data, transform and present
data, validate changes to it, and then save it. The architecture and
design of such an application is also quite stereotypical, in that
one usually architects the project into three logical layers (such as
presentation, business, and data access layers).
Games potentially have a much more open-ended workflow and
as a consequence are less amenable to the typical business
application architecture. A game can force students to construct
their own architecture (for the world and its maps, for the actors,
for the sprites, for the combat system, for the artificial
intelligence, etc.) and their own process (e.g., when should the
map files be read, when should the images be read for the actors,
should all the images be stored in memory, etc).
This open-endedness provides the perfect canvas for the instructor
to create the appropriate game project based on the design
patterns he or she wishes to “paint” into the students’ minds.
Depending upon which project was used, a variety of different
patterns have been covered in this course. These have included
the Singleton (for creating a single repository of all images),
Memento (for implementing an undo system), Mediator (for
coordination between different user controls), Factory (for
creating GDI+ images based on tile keys), State (for handling
each game actor’s state), Composite (for implementing a
hierarchical inventory), Observer (for handling the game events
caused by the actors, Strategy (for implementing a run-time
configurable combat system), and Command (for handling
different user-specifiable game actions). We do not have the
space to cover all these patterns; the remainder of the paper will
describe three of these in more detail.
Just before covering these three patterns, two important
pedagogical beliefs that informed the author’s approach need to
be mentioned. The first of these beliefs is that students learn the
best path by strolling down, for a while at least, mistaken paths.
This means that the students are guided into a solution to a
problem by first encountering the problem in their own
programming. Thus, a design pattern is covered only after the
students have already written some messy code as a solution to a
problem in an earlier milestone; this way, the students are more
likely to see the benefit of the design pattern in contrast to their
own solution. The other pedagogical belief is that students learn
best about the utility of proper design when requirements shift.
That is, a good design pays most of its dividends as a project’s
scope changes and widens. It is relatively easy to do this via game
projects. Students would be forewarned that some very particular
aspect of the assignment was going to be modified close to the
due date; the students thus needed to design with this adaptability
in mind. The students were often appreciative of how certain
design patterns made these changing requirements easer to
manage.

3.1 Singleton Pattern
The Singleton pattern is perhaps the most straightforward and
easy to implement of the Gang of Four patterns. This pattern is
used to ensure that only one instance of a particular class ever
exists and that this instance is globally available to other classes.
While the Singleton is fairly easy to implement, students are often
unclear as to when it should be used. One of the few principles
that students pick up from their first year introduction to
programming class is that global variables are usually to be
avoided. Perversely, students embrace the global-creating
Singleton pattern like a smoker returning to tobacco after an
unpleasant enforced absence. That is, students initially suffer
from “Singletonitis” [8], and make use of it in way too many
classes.
The important point about the Singleton pattern is that it is helpful
when multiple instances of a class would consume too much
memory or slow the system too noticeably. It is often difficult for
relatively inexperienced programmers to know in advance what
kind of class might cause such a problem. With a game project, on
the other hand, it is often much easier to make the students see the
effect of a class that consumes too much memory when
instantiated multiple times. Games make this possible since the
game will often become too slow and visibly sluggish.
The effect of a memory-intensive class is particularly evident
with those that use graphical resources. For instance, a 2D map
representing the world in which the character moves might be
implemented by a 1000x1000 element array, with each element in
the array containing a map tile that is 32x32 pixels in dimension
and about 20K in size. The memory consumed by such a map
would be prodigious if each map cell had a unique tile. Luckily,
all we generally need to create a visually interesting map are three
or four dozen unique tile image files, which will make the map
significantly more memory-friendly. Nonetheless, the map still
consumes a lot of memory and it is important to ensure that there
is only ever one instance of the map in memory and that each tile
image file used in the map only exists once as well.
Discussing this problem in class, students very quickly
comprehend why only one instance each of these two things
should ever exist, but are unsure of how to do it. The Singleton
pattern, once introduced, is typically quickly integrated into the
students’ solutions. Most students end up implementing the
pattern similar to that shown in Figure 4.

ImageReference «Singleton»
Map

Image

Figure 4: Sample Singleton patterns

- instance: Map
- imageRefs: Array[*.*]

- Map()
+ GetInstance() : Map

«Singleton»
ImageManager

- instance: ImageManager
- imageList: Dictionary<string,ImageReference>

- ImageManager()
+ GetInstance() : ImageManager
+ RetrieveImage(string) : ImageReference

1*
*

40

3.2 Strategy Pattern
The Strategy pattern is used to define a family of algorithms that
are encapsulated as separate classes and which can be used
interchangeably. This pattern makes it easier to dynamically
configure an application at run-time to use different swappable
algorithms for a given single task. The vast majority of students
have played video games in which the difficulty level is
configurable by the user. As a result, the value of a design in
which an algorithm can be varied independently of the program
that is using it, can make intrinsic sense to the students when
described in the context of a game.
In the game projects used in this course, one of the common
requirements has been the need to allow the user to specify which
combat system the game is to use. The first milestone uses a
reasonably simple combat system (player rolls a dice to inflict
damage, and then the computer rolls a dice to inflict damage
back). In subsequent milestones the students must implement
progressively more complex combat systems based on different
business rules; their programs must always, however, allow the
user to choose at run-time the combat system that will be used.
Following the usual approach, the best solution to this problem
was addressed after the students had created their second
milestone (i.e., after they had implemented two combat system
algorithms and needed to support two more). At this point the
students typically had a number of parallel conditional structures
that were located in two or more classes.
When the Strategy pattern was covered, most students
immediately saw in it a solution to their existing “ugly” and hard-
to-maintain configurable combat system from their second
milestone. After covering the Strategy pattern, most students
ended up with a solution similar to that shown in Figure 5.

Figure 5: Sample Strategy pattern

3.3 Observer Pattern
The Observer pattern is used to implement a one-to-many
dependency between objects, so that when one object’s state
changes in a particular way, all of its dependencies are notified.
This pattern is also sometimes referred to as the Publish-
Subscribe pattern in that one object (the subject) “publishes”

events that subscribers (the observable subjects) are interested in.
This pattern is often used when constructing graphical user
interfaces that follow the MVC (Model-View-Controller) model.
C# has built-in support for the Observer pattern via event
delegates.
In one of the game projects, the different game actors (both the
computer’s and the player’s) could perform different actions such
as fight a combat, die, leave a combat, pick up treasure, move to a
different location, and use a treasure item. There were typically
several different classes that were “interested” in these events,
such as the control that displayed the game map, the control that
displayed the different commands that could be performed at any
given time, and the control that displayed the status and statistics
of the actor. This last control was a purposely late addition to the
requirements of the project.
Once again the students and the instructor discussed in lectures
the different possible approaches to dealing with the complexities
of these requirements. After struggling through this problem in
their third milestone, the students were positively excited to learn
about the Observer pattern, and most students were able to
implement something similar to that shown in Figure 6.

«interface»
IObserver

+ CombatEvent() : void
+ DeathEvent() : void
+ LeaveCombatEvent() : void
+ PickupItemEvent() : void
+ HealEvent() : void
+ MoveLocationEvent() : void

«interface»
IObserverable

+ AddObserver() : void
+ RemoveObserver() : void
+ NotifyObserverOfCombat() : void
+ NotifyObserverOfDeath() : void
+ NotifyObserverOfLeave() : void
+ NotifyObserverOfPickup() : void
+ NotifyObserverOfHeal() : void
+ NotifyObserverOfMove() : void

«user control»
CommandDisplayControl

«user control»
StatusDisplayControl

«user control»
GameMapControl

Actor

«abstract»
CombatStrategy

+ FightRound() : void

SimpleCombatStrategy
+ FightRound() : void

D20CombatStrategy
+ FightRound() : void

D6CombatStrategy

+ FightRound() : void

Combat

+ Battle(CombatStrategy) : void

public Battle(CombatStrategy cs)
{
 ...
 cs.FightRound();
 ...
}

Client

// create the appropriate strategy
CombatStrategy cs = new D6CombatStrategy();
// do the combat
Combat c = new Combat();
c.Battle(cs);

Figure 6: Sample Observer pattern

3.4 Making the Students Believe in Interfaces
Design patterns require knowledge of more advanced object
principles such as abstract classes, interfaces, and polymorphism.
This author has always struggled in particular in convincing
students about the necessity and utility of interfaces. Students can
typically be convinced that abstract classes and polymorphism are
both good and necessary things. They typically remain, however,
quite agnostic towards interfaces. They recognize that interfaces
might exist but they certainly do not plan on changing their
(programming) behaviors and use them since they can not see
why one would use an interface instead of an abstract class.
Through the use of game projects, however, this author has
managed to turn the students (or at least some of them) into true
interface believers. The Observer pattern as shown in Figure 6
does use interfaces; one could however implement it in C#

41

without interfaces by using delegates. The introduction of
animation into their projects has been a particularly fortuitous
way to reiterate the utility of interfaces.
In the game, animation is introduced in the final milestones. An
animated game object must be able to start animating itself, stop
animating itself, play itself just once, and choose its animation
speed. The problem is that the students must introduce animation
into several different classes in their domain. Players and
monsters must animate, combat effects must animate, inventory
items must animate, and map items (such as trees or lava) must
animate. Adding animation to a common base class is not too
attractive a solution since these different things will have quite
different object hierarchies, and it is too late in the semester to
redesign the entire object model. Another reason why an abstract
class is not too attractive here is that the animation
implementation varies depending upon which type of thing is
being animated (e.g., some objects are animated via animation
strip images, while others are animated via GDI+).
Interfaces provide a ready made solution to the students’
animation problem. After discussing interfaces again in the
lectures, most students come up with a solution similar to that
shown in Figure 7.

Figure 7: Interfaces at work

4. CONCLUSION
In this author’s experience, game development is an ideal way to
teach design patterns. Games provide a rich context in which
students are able to recognize the utility and appropriateness of
the original Gang of Four design patterns along with the higher-
level design principles that the patterns encapsulate. Along with
the benefits of learning design patterns, games are as well an ideal
capstone-style project for upper-level students. As Jones as noted
[7], the “integration of concepts and techniques required to design
and build computer games covers many of the topics offered in an
undergraduate computer science curriculum, allowing students

5. REFERENCES
[1] Becker, K. “Teaching W

concrete application of much of the theory, concepts, and skills
they have been exposed to.”

ith Games: The Minesweeper and
The Journal of Computing in Small
ber 2001).

ducation, 37, 1 (February

[3]

e.
, 1995.

1

ymposium on Computer Science

[6]

Technical Symposium on

[7]

E
2, 1

[8]

an.

[11] es to Teach By.”

the 36th SIGCSE Technical Symposium on

Asteroids Experience.”
Colleges, 17, 2 (Decem

[2] Dewan, P. “Teaching Inter-Object Design Patterns to
Freshmen.” Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science E
2005).
Freeman, Er., Freeman, El. Head First Design Patterns
O’Reilly, 2004.

[4] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Softwar
Addison-Wesley

[5] Giguette, R. “Pre-Games: Games Designed to Introduce CS
and CS2 Programming Assignments.” Proceedings of the
34th SIGCSE Technical S
Education, 35 1 (January 2003).
Hansen, S. “The Game of Set – An Ideal Example for
Introducing Polymorphism and Design Patterns.”
Proceedings of the 35th SIGCSE
Computer Science Education, 36, 1 (March 2004).
Jones, R. M. “Design and Implementation of Computer
Games: A Capstone Course for Undergraduate Computer
Science Education.” Proceedings of the 31st SIGCS

MapThing

Actor

Monster Player

InventoryItem MapItem CombatSystem

«interface»
IAnimateable

+ Start() : void
+ Stop() : void

Technical Symposium on Computer Science Education, 3
(March 2000).
Kerievsky, J. Refactoring to Patterns. Addison-Wesley,
2005.

[9] McLuhan, M. Understanding Media: The Extensions of M
The MIT Press, 1994 [reprint from 1964].

[10] Metsker, S. J. Design Patterns in C#. Addison-Wesley, 2004.
 Mungai, D., Jones, D., and Wong, L. “Gam
Proceedings of the 18th Annual Conference on Distance
Teaching and Learning (Madison, Wisconson, 2002).

[12] Shalloway, A., Trott, J. Design Patterns Explained: A New
Perspective on Object-Oriented Design, 2nd Ed. Addison-
Wesley, 2004.

[13] Wick, M. R. “Teaching Design Patterns in CS1: a Closed
Laboratory Sequence based on the Game of Life.”
Proceedings of
Computer Science Education, 37, 1 (February 2005).

42

Creativity in the Cane Fields: Motivating and Engaging IT

Students Through Games

Colin Lemmon, Nicola J. Bidwell, Marion Hooper,
Chris Gaskett, Jason Holdsworth, Phillip Musumeci

James Cook University, Cairns Campus

McGregor Rd. Smithfield
Queensland, Australia

+61 7 40421233

colin.lemmon@jcu.edu.au

ABSTRACT

In this paper we discuss the influence of the unique local

environment and culture on students and teaching styles in the IT

degree at James Cook University Cairns Campus. In this degree

program games are used to motivate self-directed study and

increase student engagement in first and second year

programming subjects, and also to generate interest in learning

new technologies such as programming for mobile devices. We

discuss the use of a mixed reality location based game to improve

attitude to teamwork by integrating students in a games subject

and a general IT software engineering subject. Students learn the

value of community engagement through links to a local primary

school for design and evaluation of games, to ensure a balanced

approach to user requirements, game design and implementation.

Students have explored niche applications of games through the

development of a game for children with disabilities.

Categories and Subject Descriptors

K.8.0 [Personal Computing]: General - Games, K.3 [Computers

And Education]: Computer Uses in Education - Collaborative

learning, H5.2 [Information Interfaces And Presentation]:

User Interfaces - Prototyping, Theory and methods, User-centered

design

General Terms

Management, Design, Human Factors, Theory.

Keywords

Games, Community, Collaboration, User interaction.

1. INTRODUCTION
The Cairns campus of James Cook University in Far North

Queensland, Australia, is 200 miles from the main campus and

1000 miles from the closest major city. The economy is built on

traditional industries such as agriculture and mining, and more

recently industries such as tourism and creative industries. Cairns

hosts a diverse range of cultures—traditional sugar cane and dairy

farmers, those seeking an alternate lifestyle, indigenous

inhabitants, and an artistic community attracted by the reef and

the rainforest.

The regional characteristics produce a unique student profile. As

the only university to run courses locally the university has a

social responsibility to service the needs of all types of students.

This results in classes containing students with a broad range of

abilities, generally resulting in a bimodal distribution of academic

achievement in first year IT subjects. The student base presents

considerable challenges when compared to universities in large

cities with entry requirements to target students with high

academic achievement. Thus, subject delivery and teaching style

must be adapted to get the best out of each student, encouraging

them to higher levels of commitment and achievement so that the

academic integrity of the degree program is not compromised.

First year students include those with varied attitudes towards

self-directed study and commitment to academic achievement.

This commonly arises from lack of familiarity with the larger

world outside of the local community. At universities in larger

cities the draw of high salaries and the understanding of the levels

of expertise required for these positions is a significant

motivational factor for students. Possibly because of their limited

knowledge of the rewards of top level IT positions in larger

companies in capital cities and overseas, our beginning IT

students are often lured away from study by jobs that require only

limited expertise. In response we have developed techniques to

motivate our first year programming students until they develop

an understanding of the rewards for high achievement and the

relevance of the material being taught; and the commitment

required for self-directed study.

There are other social issues that effect motivation, commitment

and performance in isolated regions. The Cairns campus of James

Cook University is a little over 10 years old. There is little family

history of university education and many students (>50%) are the

first in their family to attend university. Their families have little

or no understanding of what is required to obtain a university

degree, especially the time commitment needed.

Games can provide motivation for self-directed study and increase

student engagement, especially in first year programming subjects.

In later subjects gaming is employed to generate additional

interest when teaching technical principles. In the group projects

the shared interest and experience of students in games is

employed to facilitate group cohesion and commitment to the

project. In addition game projects provide an avenue for

43

development of social responsibility through projects, for

example, developing games for children with disabilities.

It has been said that Generation Y, or the Millennials, have a

greater focus on self satisfaction than preceding generations.

Whether or not this is true, there is no denying that university

education is currently competing with entertainment for the

attention of students. Entertainment for Generation Y and later is

dominated by gaming on devices from phones to networks of

desktop PCs. Games as part of a teaching and learning strategy

provide an effective tool for focusing student attention on

learning.

2. BACKGROUND
James Cook University in Cairns offers IT degrees with a range of

strands including eBusiness, IT Professional, Networking and

Multimedia Games Development.

The development of the Multimedia Games Development strand

was driven a number of years ago by a recognition of the strength

and importance of creative industries in the local community and

economy, and in response to the demand from potential students

in year 12 that was identified by local high school promotional

talks and university open days. Providing a degree based on the

general interests and activities of high school students helps

promote the opportunity and interest in future tertiary education.

The core programming languages in the general computing

subjects include C/C++, Java, Python, Perl, and PHP. The games

strand also includes training in Maya and the Torque games

engine.

Game subjects allow introducing and developing complex human-

centered design approaches to an otherwise technically focused

degree. In three subjects running in second and third year,

students tackle and extend themes frequently addressed in

traditional human-computer-interaction (HCI). The difficulties

often encountered in motivating technically focused students to

place the user at the centre of their system design do not seem to

be a problem when students are able to relate this to the centrality

of the player experience to the success of gameplay. For example,

one subject explores games from multiple perspectives of rules,

play and culture and uses Salen and Zimmermann’s opus [1] as

the core text. The students rise to the challenge of tackling the

advanced ideas from semiotics to sociology. Human-centred

design principles relating to user/player experience and usability

can be introduced across multiple contexts and tackle multiple

issues. It is quite difficult to imagine how we could extract the

same extensive debate about emotions from a large group of

young people (mostly men) in other contexts! Play gives all

people a safe place for self-expression: which we believe is at the

heart of innovative, human-sensitive design.

The following sections describe the place of games in our course

structure chronologically, from first year undergraduate study to

graduate research.

3. GAMES AS A TOOL FOR

INTRODUCING PROJECT

DEVELOPMENT TECHNIQUES
In the first year multimedia subject which is taken by both IT and

non-IT students are required to develop a multimedia project that

includes interactive elements. Multimedia projects are developed

using the Adobe/Macromedia Director MX 2004 environment.

Students are encouraged to use the built-in Director features as

well as writing their own scripts using the Lingo scripting

language. The interactive elements required include real time text

entry, data storage and access, keyboard and mouse control. The

incorporation of these elements into a game-like artifact is a

natural extension of the students own experiences as game players

and also allows them to experience the favourable response of

others to an interactive multimedia experience that they have

created. For many of these students this is their first experience of

computer programming and the use of game-like examples during

practical and tutorial sessions provides an effective motivation for

them to struggle with the complex task of getting their own game

to work as planned. During the development process many are

also inspired by the responses of their beta testers to correct faults

in their game design and add elaborations to enhance the game’s

appeal to the end user. In this way students gain first hand

experience of the need for testing and refinement during the

project design and development process in a context where the

main driver is their own motivation to create something pleasing

to the end user. The resulting projects show a very high level of

development in the students’ programming and project

development skills in a very short period of time and it is evident

that the experiences gained in this process inform their later work

in other games and project development subjects.

4. GAMES AS A MOTIVATIONAL TOOL

IN FIRST YEAR NON-GAMING

PROGRAMMING SUBJECTS
In the first year first semester procedural programming subject

(based on C/C++) the assignment completion rate is improved by

prescribing the development of a game for the first programming

assignment. Over the past four years the assignments have been a

cricket game, a tennis game, a number guessing game and a golf

game. The first assignment is a critical piece of assessment as it

establishes the students’ confidence in their ability and their

subsequent attitude to programming. Good academic performance

in the first programming subject is essential as students who

perform poorly in this subject have significant problems

recovering from a lack of basic programming for the remainder of

their degree.

The use of a games based assignment has been introduced into the

subsequent second semester C/C++ object oriented programming

subject to ease the transition between procedural programming

and object oriented programming. Last year the first assignment

was an object oriented, text mode adventure game which

introduced students to object oriented programming in an

enjoyable and motivational way. This resulted in improved

commitment to assignment completion.

Games are also used in the second year Java programming

subject. Here games are used to teach and motivate students to

learn graphical and GUI programming. Games used in this subject

in the last few years have been GUI controlled single player

games, including a game of Pool, the Snake game, and the Game

of Life which used a mobile phone emulator.

44

Figure 1. Gameplay design of mixed reality location based

game using mobile devices

5. GAMES AS A TOOL TO IMPROVE

ATTITUDES TO COLLABORATION
Games are used extensively in Java and software engineering

subjects to generate interest in learning new technologies. They

also provide a good way to illustrate the relationship between

design and development processes and different communication

forms. Recently, an innovative mixed reality location based game

(LBG) has been used to integrate a project into the work of

students in two subjects. Games students design a location-based

multi player game and the IT students implement the game. The

activities are summarized in Table 1.

The first step in the process involves the games students

investigating the constraints of the world and the technology

using smartphones and GPS in situ and bodystorming game ideas.

They then iteratively refine a game concept by lo-fi prototyping

and evaluating it using the Wizard of Oz protocol before

presenting the game concept as a set of rules to the students in the

Games strand [2].

The IT students take the game design and develop a distributed

games engine to implement the game. This process of games

implementation teaches the IT students concurrency,

synchronization, socket programming, wireless networking, GPS

and midlets using Bluetooth to enable cell phones with GPS

capabilities.

The IT students are required to develop the games engine and

system framework including login, interface and game framework.

This framework is then used to implement the mixed reality LBG.

The current game is a version of battleship in Java using the

Bluetooth enabled location aware mobile phones. The code is

developed firstly using midlet emulation and execution then later

ported to physical devices where the games are played between

cell phones as illustrated in Figure 1.

The use of games technology to teach programming on mobile

devices maintains interest and motivation for group members who

do not choose programming as the first priority in their studies.

This allows them to benefit from being able to relate project work

to real world applications in an interesting way. Having input into

the project increases their tolerance to the frustration inherent in

learning how to program.

Table 1. LBG activities in cooperative game development

between IT students and Game students

2nd Year Games Subject 3rd Year IT Subject

Observing the basic gameplay

of paper-based battleship

Bodystorming and capturing

LBG game ideas using

Smartphones and GPS in situ

Speculative project

development,

and generation of inception

artifacts, of a basic

Non-LBG Battleship game for

a mobile phone

Visualisation and abstraction

of LBG concepts

Evaluating lo-fidelity LBG

prototypes using Wizard of

Oz

Refining and communicating

LBG design concept

Elaboration iteration based on

technical development of

Non-LBG Battleship game on

phones

Programming Java Midlet &

Servlet Connectivity

Major change to project

requirements by incorporating

LBG concepts into the Non-

LBG mobile game

Demonstration of Client-side

Java Bluetooth programming

Elaboration Iteration 3 & 4

Play and evaluate LBG software components

Using a real world multiplayer platform which can be run on real

phones further enhances student interest and participation in the

project. Object-oriented software design techniques allow students

to adapt to changing requirements, concentrating on the inception

and elaboration phases of agile UP. This engenders a specific kind

of procedural reasoning and systematic thinking about large-scale

software problems using UML diagrams, and software design

patterns. In previous offerings of the subject students developed a

non-location based game on mobile phones which engaged their

interest in applying patterns for system design and specification.

The LBG project addresses the changing requirements aspect of

the subject’s learning objectives and industry’s need for graduates

to be responsive to dynamic and temporally evolving contexts.

Thus, the subject links theoretical perspectives directly to the

45

project as a concrete framework for students to clearly and

concisely express software specification design ideas. This is

compatible with requirements of Industry and professional

organisations (e.g. Australian Computer Society) that graduates

be able to design effectively for an increasing breadth of

technologies. The project also enabled students to practice

working with cross-functional teams.

A noticeable benefit of designing learning activities compatible

with students own game experience is their frequently improved

attitude to teamwork. Experienced lecturers remark that students

who have extensive Massively Multiplayer Online Game

experience are better able to recognize the importance of all

individuals to a team and that good team outcomes result from

combining individual skills and strengths rather than indulging in

‘lone ranger’ behaviour.

6. GAMES & COMMUNITY
Links to a primary school provide second year students in the

games directed project subject with an ideal opportunity to design

for people apart from themselves. In this way teaching of games

technologies is firmly linked to the critical importance of player-

centred game design. Students learn and practice the skills needed

to develop prototypes using the Torque game engine in a series of

11 structured practical workshops which incorporate 3D modeling

tools. Focus on the player is developed early in the project and

maintained throughout the project so that the technical skills of

the Torque game engine are integrated with powerful design

techniques based on the Fullerton and Swain textbook [3].

Students brainstorm, create a physical (paper-based) prototype,

develop and evaluate concepts, prepare preliminary design

documents, and then prototype and test software with the 11 year

old children who are the target audience. Students visit the

primary school every 6 weeks, firstly to evaluate a large number

of physical prototypes (see Figure 2) and then to test a smaller

number of refined software prototypes. In the process students

encounter implementation issues fully embedded in the design

process and are motivated to create an innovative, internally

complete and balanced game. This approach discourages a view

of games design and development in which the player becomes

almost a subsidiary issue.

Changes in student behaviour and attitudes as they evolve their

group prototypes in games directed project subject strongly

suggest that our human-centred approach to teaching IT supports

both a sense of community and a more effective approach to

design. The degree to which students demonstrate a central

concern for gameplay, playability and the fun of their games for

junior play-testers is palpable. For example, an interesting aspect

of links to the primary school through the Directed project this

year was the significant environmental and socio-economic

impact on the community of Cyclone Larry, a category 5 cyclone.

The catchment area for the target primary school is closer to the

centre of destruction than the university and the students’ ideas

for games with elements compatible with the children’s

potentially unsettling experience was quite heart-warming.

Links to past students who work in school IT departments or as IT

teachers in local schools has provided the opportunity for these

classes to become involved in the evaluation of beta versions of

games developed by students in the games strand. This provides

the school students with an understanding of the game

Figure 2. Physical prototyping game concept ideas with school

children

development process (design as opposed to merely coding), a

practical example of what they may learn at university and also

allows them to talk personally with current students and ask

questions regarding the possibility of enrolling in an IT/Games

degree in an informal and non-threatening atmosphere. School-

based testing of beta versions of games provides valuable

knowledge about human behaviour and the characteristics of their

target audience for the games students. The feedback received in

the testing process also highlights the importance of the design

process and develops a deeper understanding of human computer

interface issues. Students also learn the importance of an iterative

design process.

It is important that students completing the degree are able to

apply their knowledge and skills to obtain employment and fulfill

the needs of the community. Apart from the obvious mass market

for games we encourage students to understand the wider

applications of their skills to niche game markets and non-game

markets.

The third year project subjects require that students develop a

software system for a real client over a year. The project subjects

have been highly successful and received a national citation from

the Carrick Institute for outstanding contributions to student

learning in higher education.

This year three games students completing the project subjects

worked as a team to develop a game for children with disabilities.

Working with the Switched on Learning Project1 gave the

students access to a niche market and required them to deal with

unusual requirements: The game players interact with the game

through two large switches rather than a mouse, keyboard, or

joystick. The switches control the actions of the player in a 3D

simulation of a shopping centre. Tasks include finding appropriate

shops to purchase items from a shopping list, interacting with

shop staff, and making a purchasing including receiving change.

Beyond the practical activities described above, a major point of

the game is to explore independence. The children that play the

game have restricted mobility and few opportunities to choose

1 http://www.switchedonlearning.org/

46

their own activities. Even in the early stages of development when

the game included only one activity and so many bugs that it

seemed hardly playable the children were overjoyed with it.

Although they had often seen their siblings play 3D games with

high quality sound, they had never had the opportunity to play

one.

Fulfilling a real client’s needs or wants is a significant step in the

transition from student to practitioner, and a highly rewarding

experience for our students.

7. GAMES AS AN INTRODUCTION TO

RESEARCH
As a consequence of student catchment the option of pursuing

post-graduate studies is not obvious to students. Now deemed to

deserve both serious academic research, as well as major industry

and business uptake, techniques used in computer entertainment

translate well into advances in research and enable us to leverage

student interest in the processes of research. For example, several

students’ observations of multi-player behaviour in one

assignment fed into a paper on the efficacy of different

visualisation forms for wayfinding large-scale simulated worlds

[4]. Second and third year student development activities for

mixed reality LBG also formed the basis of another paper [2] in

which students were eager to be involved. This year an Honours

student’s project was based on games. An interesting aspect of

games as a research area is that students will so willingly adopt

good research practices in order to pursue a pet theory they have

developed in their own gameplay. It appears that because proving

or disproving their theory has so much relevance to their

gameplay and, for some students, game design, they will engage

in protracted and detailed observation sessions and workshops to

explore and articulate their experiences and develop sound

theories [5].

8. CREATIVE INDUSTRIES
Growth in the creative and technology industries of remote

Australia requires cultivating an entrepreneurial spirit amongst

students in local universities to inspire them to develop their own

enterprises. We endeavour to encourage views of technology

futures that are sensitive to our locality; while also exposing

students to technologies that are encountered in large or

metropolitan universities but not, contemporarily, in our region.

In the games strand students are encouraged to draw upon our

unique natural environment and locational context to inspire their

game designs. For example, in one second year subject they have

to consider design constraints created by the mountains and

rainforest surrounding our campus for their mixed reality LBG.

This provides a direct and engaging way for students to attend to

the environmental demands and constraints associated with

pervasive computing. In a third year subject one assignment

requires them to create visual and audio representations that

capture specific qualities of nature and use these to convey

particular emotions and themes. Through immersion in their

environment students learn to realize the special opportunities for

creativity afforded by our visually spectacular scenery and the

advantage this may afford local creative industries.

The ethos of creative volunteer work associated with game culture

seems to instill students with a particular sense of entrepreneurial

spirit. As well as contributing to the community through

multimedia presentations and games created for volunteer groups

several students currently or previously involved in games

subjects have created their own local businesses, for example,

www.redbackgames.com.

9. CONCLUSION
In addition to motivating and engaging students to learn to

program, game design helps stimulate students to develop human

centered design skills. Through community engagement with

school children, students develop games using an iterative

development process resulting in an appreciation of the balance

between the needs of the user and the requirements for coding.

Students are also encouraged to learn technical skills through

development of location based games on mobile devices and to

apply gaming skills to niche applications as well as the

mainstream games market.

10. ACKNOWLEDGMENTS
We wish to acknowledge the cooperation of staff and students of

Woree State School and the Switched on Learning project, and

JCU Bachelor of IT students.

11. REFERENCES
[1] Salen, K., and Zimmermann, E. Rules of Play. Game Design

Fundamentals, MIT Press, MA, 2004.

[2] Bidwell, N. J., and Holdsworth, J. Battleship by Foot:

Learning by Designing a Mixed Reality Game. Joint

International Conference on CyberGames & Interactive

Entertainment (CGIE06), Perth 2006.

[3] Fullerton, T., and Swain, C. Game Design Workshop:

Designing Prototyping & Playtesting Games, CMP Books,

2004.

[4] Bidwell, N. J., Poyner, D., Irving, J., Putna, L., and Wold, A.

“Make it through with another point of view”: Landmarks to

Wayfind in Gameworlds. Australasian Conference on

Interactive Entertainment (IE05), Sydney 2005.

[5] Browning, D., Stanley, S., Friar, M., and Bidwell, N. J.

Emplacing Experiencee. Joint International Conference on

CyberGames & Interactive Entertainment (CGIE06), Perth

2006.

47

A Soft Approach to Computer Science: Designing &
Developing Computer Games for and with Senior Citizens

 Vero Vanden Abeele, Jelle Husson, Luc Vandeurzen, Stef Desmet
e-Medialab

Group T – Leuven Engineering School
Vesaliusstraat 13, B-3000 Belgium

+ 32 (0)16 30 10 30

vero@groept.be, jelle.husson@groept.be, luc.vandeurzen@groept.be, stef.desmet@groept.be

ABSTRACT
This paper introduces a soft approach to programming and
especially game development, based on the inclusion of the end-
user (or player) in the development process and on the rigorous
use of a scaled-down version of the Unified Process: software
development is more than only coding.

Students were assigned to develop a computer game for and with
senior citizens. The project started off by observing senior citizens
in their ‘natural habitat’, researching what ‘passions’ occur in
their daily lives. These observations then became the input for
brainstorm sessions. Seniors and students generated game-ideas
and, consequently, co-designed the selected ideas into game
concepts. Based on a voting by the senior council, one game
concept was chosen to be developed: ‘Petanque’, a multi-player
jeux de boule game.

During the actual development of this game, seniors continued to
provide inspiration. But besides this user-centred approach to
game development, other ‘soft’ skills were addressed as well such
as software engineering, team dynamics and project management.
During five weeks, the students worked full-time, in team, on the
game creation, taking on different roles. We encouraged using
existing game engines and development platforms to ensure that
within this limited amount of time a playable demo could emerge.
This demo was finally presented to, played by and tested by a
senior audience.

This user centred, team-oriented project resulted in an inspiring
computer game, directly grafted on the passions and desires of the
senior. Students gained insight in and empathy for their player
audience and became aware of the diverse management and ‘soft’
skills that are necessary in the creation of successful software
applications.

Categories and Subject Descriptors
H.5.2 User Interfaces - User-Centred Design
K.6.3 Software Management, Software development, Software
process

General Terms
Design, Human Factors, Management

Keywords
Seniors, Elderly, Game Development, Game Design, Co-design,
Participatory Design, Human-Centred, User-Centred Design,
Software Engineering, Unified Process.

INTRODUCTION
1.1 The master in e-Media

The master in e-Media engineering is a graduate program for
students that have a bachelor in computer science or similar. The
program specializes in the development of rich media application
and has a special focus on higher level programming skills,
software engineering, computer graphics, digital media and
human-computer interaction. Recently we saw a rising interest
with our students in game development. Therefore the program
started to incorporate games as a specific topic, e.g. a course on
user-centred design was shifted to player-centred design. But
more fundamentally, we oriented the subject of our
‘multidisciplinary project’ to game development1. This project is a
five-week, full-time course in an attempt to mimic a more real
world job situation. Students work together in team, taking on
different roles and managing the development process. In this
multidisciplinary project, we follow a Unified Process to software
development, together with a user-centred approach. This hands-
on experience helps our students in their future career.

1.2 The I-Methodology
Students in computer science and thus game development courses
prefer to tap into their (self-perceived) unlimited creativity and
come up with their own ideas [8,6], referred to as the I-
methodology [5]. This self-centred design process often results in
‘boys’ designing for ‘boys’ [2] or to put it in other words hard-
core gamers designing for hard-core gamers. With this project on
game development, however, we did not only want to address the
need for development and management skills. As the computer
(game) sector is looking to gain maturity and a larger target group
[1,10] with this course we also wanted to address the need for a
more inclusive, more mature approach to user-interaction.

Combining the I-methodology with the fact that computer science
programs (and consequently the game development industry) are
mainly populated by (young) males, the difficulties are obvious
when trying to develop games aimed at a wider audience. As a

1 The years before there was a stronger focus on distributed web

applications and augmented reality applications.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

48

Figure 1: A picture of a senior at her home. Notice the
orange post it notes on the television and the computer, as
well as the heart-shaped notes in the logbook on the table.

Figure 2: A brainstorm session with students and a senior.

result, a widespread critique is that the game industry has
difficulties in addressing non-traditional player groups [7].
Because of this consideration we choose to develop games for a
senior audience. This audience made it necessary for our students
to do research away from their desks and clearly necessitated a
user-centred design process.

Furthermore it has been demonstrated that linking computer
science to societal merits and giving programming a more humane
face can increase the attractiveness to female students. [4]. Thus,
by choosing this senior audience we also had the noble goal of
closing the digital divide, and increasing cooperation between
older and younger generations. And we foster the hope to create a
stronger appeal to female programmers.

PLAYER-CENTRED GAME DEVELOP-
MENT FOR AND WITH SENIORS

We deemed a player-centred approach necessary to innovate
gameplay for a senior audience. Therefore, we conceived a project
in which students developed games for and with senior citizens.
The project activities encompassed five different phases,
distributed over a course on player-centred game design and a
multidisciplinary project on game development. We started out
with an ethnographic inquiry of senior citizens2. Consequently, in
the second phase seniors and researchers brainstormed for ideas
and converted selected ideas into game concepts. During the third
phase, the game concepts were presented to a broader audience of
seniors and one game concept was selected. This game concept
was developed, in the fourth phase. During this phase we used a
Unified Process (UP) approach [1] to develop a playable demo in
only five weeks. In the fifth and final phase the game was played
and evaluated by the seniors. We now discuss the different phases
and clarify the steps with some illustrations.

Phase 1. Ethnographic observations
We started out by conducting ethnographic observations.

During the time span of one week, seniors were observed,
interviewed and ‘probed’ by our students at their homes. Seniors
were asked to record all ‘enjoyable activities’ or passions. It was
stressed that a passion is something that makes the time fly, but
really can be anything. Seniors were asked to write down all
passions on post-it notes and stick these notes in a passion
logbook and take photographs of any artifacts, surroundings or
people related to these passions. If possible ‘show & tells’ of the
passions were asked for. The students directly analyzed different
factors that were important for a better understanding of these
passions: What is the nature of the passion? What exactly makes it
enjoyable? How is that passion situated in time and space? Are
other people involved? Is there technology that facilitates the
passion? Finally students asked the senior to create a top five of
the most important passions to him or her.

2 Ten senior citizens (seven male and three female) participated in

the research project. The age varied from sixty-eight to eighty
years. All seniors were in good health, living independently.

In total, this not only gave a list of 50 passions3 in elderly
life, but also ensured that students gained insight in and empathy
for the lives of senior citizens.

Phase 2. Participatory design
Approximately one month after the ethnographic observations we
started with the participatory design sessions. For this phase, we
constructed design teams consisting of one student and one senior
citizen. A social scientist and an interaction designer were present
to moderate and facilitate the design processes.

Seniors and students first brainstormed for possible ideas
inspired by a small contextual story. In total 399 ideas3 were
generated. Not surprisingly, many of the passions that were listed
in the top five during the ethnographic inquiries also ended up as
ideas on the wall during this brainstorm. After the idea generation
phase, the teams evaluated them on their attractiveness. In the
end, each team chose one idea to elaborate upon. This idea was
then co-designed into a game concept.

Design teams were also encouraged to create paper
prototypes and visualize their vision. For each of the 10 teams, the
end result of this participatory design process was a rough ‘game
design (concept) document’ and if possible a paper prototype.

3 For a detailed overview of the passions, ideas and game concepts

we like to refer to the website at http://sbox.groept.be

49

Figure 3: Students and seniors are co-designing a game-
concept and constructing a paper prototypes.

Figure 5: A first draft of the structure and style of
‘Petanque’.

Figure 4: Petanque, a multi-player, jeux de boules games
was chosen to be developed.

Phase 3. Presentation and selection of the
Game Concepts
From the ethnographic observations, we knew that seniors spend a
lot of time on activities such as playing cards, solving puzzles,
watching television, etc. But when listing a top five of passions,
these activities fell short and did not show up. Neither did these
activities make it into the brainstormed ideas and game concepts.
Instead, game concepts were (although unpolished) surprisingly
rich. Most games had a strong multi-player component and mixed
several game genres, such as adventure, quizzes and role-playing
games. Most games offered the possibility to enrich knowledge,
such as cultural or travel quizzes, and many game concepts could
also attract a non-senior audience. This raw material was turned
into eight attractive game concepts4 by the interaction designer.
(two game concepts were too much alike and converted into one,
one game concept was still too vague after phase 2) .

During a bimonthly meeting of the senior city council, the
game concepts were presented on posters and seniors were asked
to bring out there vote. Unfortunately, there was no clear
indication or consensus about one winning concept. Therefore,
upon practical considerations, the Petanque game was chosen to
be developed further.

4 For an overview of the game concepts, posters, the methodology

and results we like to refer to http://sbox.groept.be.

Phase 4. Development of ‘Petanque’
The actual development of the Petanque game started during

a five-week full-time course in which a team of 6 students
contributed to the development. In a multi-disciplinary, team-
oriented way students developed the actual game. A strong focus
was on software engineering, using a iterative approach (UP) to
carry the project to a successful end. We want to stress that
although the three previous phased lead to a inspiring game
concept, requirements were still uncertain or even unknown. Also
students had no substantial experience with the tools or the
application domain.

Of course we did not aim for a big-budget game within the
reality of an educational setting; however the multi-disciplinary
project had enough complexity to define clear roles for each
student. We distinguished between a project leader, a software
architect, a lead programmer, a character artist, an environment
artist and a 2D interface artist. Student’s responsibilities however
were not limited to these predefined roles; each student was
expected to work on different aspects if necessary. Following the
UP-approach, the project went through the phases of Inception,
Elaboration, and Construction.

1.2.1 Inception
During Inception, team roles were assigned, along with some

process management agreements. Students made decisions on the
development tools and the environment used to create the game.
Because of the short development time students were encouraged
to use tools and environments that would support ultra rapid
development. As an environment, the team chose to investigate
the Virtools Framework [11]. For content creation the team chose
to use a combination of e-frontier Poser, Autodesk 3ds Max,
Adobe Photoshop and standard sound editors.

After the decisions on tools and frameworks were made, the
original Petanque idea was revised. Although the game concept
was already defined during the second phase, students were
encouraged to do some more exploration with seniors and make
adaptations to the game concept if needed. Getting a deeper
understanding of Petanque was certainly necessary, since not all
international students were aware of the characteristics of this
typical activity for Belgian people. After some real-life games and
discussions with seniors, all students got a better understanding of

50

Figure 6: The throwing mechanism.

the rules and the joy of playing the game. The team created a new
game concept document in which they listed the key elements of
their game as well as a first draft of the structure and style of the
game.

Students gave the following (abbreviated) description of the
concepts: Petanque is a simulation – sports game, with 2 players,
and intuitive, consistent controls. We focus not on the compe-
titive, but on “feel good” and social interaction between players.
There is a Practice Mode and Play Mode. There are always
visual and auditory explanations of functionalities. There is a
possibility to compose a team of unique characters with
individual skills. There should be a consistent style in 2D
interface and 3D content. We should create immersive 3D
characters the player could relate to. Finally, we need matching
music and sound effects.

1.2.2 Elaboration
Next in line was the Elaboration phase. Students worked out

their ideas in a more detailed concept document. In this and the
previous phase the focus was not only on programming skills (all
students had a background in computer science) but also on the
diversity of skills that are necessary in game design &
development. Students had to keep in mind that they were
developing for senior gamers, which implicated certain choices
for the development of the user interface such as large fonts,
auditory explanations, etc.

Although the students were not unfamiliar with the tools they
had chosen, they certainly were no experts. Previous projects were
quite small in numbers and complexity and so the team’s
experience with the tools was rather poor. Since a good plan was
needed for knowing how to tackle this project, the team scheduled
a short period of technical scouting with the tools, keeping the
ultimate goal and their individual sub-goals in mind. Especially
the Virtools Framework was something they needed to learn more
about in order to create a piece of software with the necessary
complexity.

As soon as the students had a precise idea of what to do and
how it could be done with the chosen tools, the architecture was
designed and a basic framework was implemented, allowing them
to have a working demonstrator at all times.

Near the end of the elaboration phase, the students had an
intermediate review of their project, together with a professional
game designer (Swen Vincke, CEO Larian Studios).

An important lesson they learned there was to keep an eye on
the overall style of the game because different people were
working in parallel on different parts of the project. Swen Vincke
stressed that content creation often takes up more resources than
the actual development and that there was a strong need for style
guides when outsourcing this work. When analyzing the student’s
game, the lack of style guides was showing in inconsistencies
within the visual style and certain gameplay components.

The team was also told to focus first on the most critical
components of the game mechanisms. For this game this involved
the throwing mechanism of the balls. First the team needed to
implement a satisfying way of throwing the balls before
elaborating other parts of the gameplay.

1.2.3 Construction
Filling in the initial framework with content and game rules

happened in iterations, which continued in the Construction
Phase, alongside testing.

The construction phase
turned out to consume
most of the time that was
available for the project
(and more than was
originally planned).
Along the road, many
nice ideas and cool
additions popped up. To
keep the project manage-

able, decisions were made about which features should be consid-
ered top priority and which features would be nice to have.

One particular example of
a nice-to-have idea was
the implementation of a
sub game where the
players could drink Pastis
(an alcoholic beverage,
associated with playing
the game in real life).

Drinking Pastis would influence the throwing skills of the players.
This feature did not make it into the final version of the game;
neither did any of the other nice-to-have features. Because the
team had no substantial technical experience, most implemen-
tation parts were underestimated and in the end the realization got
delayed.

 Testing and debug-
ging took more time than
first thought and often
repairing one bug resulted
in other problems arising
elsewhere. An accumu-
lation of these small
delays resulted in the
project going over its

schedule. Fortunately, the students did implement a safety net by
setting their personal deadline largely in advance of their ultimate
presentation deadline. Furthermore, it has to be said that some
motivated students put in more than the 200 hours (or five-weeks
full-time) that were originally scheduled.

51

Figure 7: Playing the final game!

Part of the management process required students to keep
track of the time they spend on the project. We found that for
some students a better estimation of the actual workload was
about 280 hours or an equivalent of seven weeks of full-time
working. In the end, because of the safety net, the prioritization of
components, and the good-will of some of the students, the team
managed to present a fully working prototype.

Phase 5. Evaluating the game
In a final stage, the Petanque game was demonstrated to and
played by one senior, who gave a overall positive evaluation. In
the overall context of the project, the team stressed that they
would have definitely liked to have tested and evaluated the game
more profoundly and with a larger senior audience but in the
scope of this course “multidisciplinary project” there simply was
no time left over.

Students also evaluated their process and gave the following
remarks. From the beginning they felt that the clearly defined
roles and tasks for everyone were an advantage that allowed for
parallel working schemes. Reviewing the work of every team
member and formally documenting every step in the development
process felt initially somewhat as ‘overhead’. But after the first
iteration, templates existed for all documents and they learned that
reviewing improved the overall quality of everybody’s work. The
iterative software development approach forced them to first
develop a core system demonstrating all critical features that made
up the ‘heart’ of the game. Each additional iteration resulted in a
new executable system that improved the previous one in quality
and number of features. They realized very quickly that this
process was a safe approach to bring a project with so many
uncertainties to a good end. They also experienced that defining
the activities per iteration is a dynamic and non-trivial activity in
itself since the option list seemed to become longer and longer:
new requirements, always more and more ‘nice-to-haves’, bug
fixes, ... Near the end of the project, they worked with a task list
sorted on criteria as ‘task priority’ and ‘task workload’ to make
the best decisions in defining the next iteration activities. Clearly,
it didn’t make sense to work on low priority tasks with a high
workload when almost no time was left over.

From the beginning of the project, the students kept track of all
time spent on every project activity. After processing these time
sheets, they clearly saw that ‘coding’ was only a small part of the
project.

CONCLUSIONS
The choice of computer games for seniors was a valuable

exercise to learn students about the intricacies of programming on
a large-scale in a multidisciplinary environment and about the
importance of a user-centred process. The ethnographic obser-
vations and co-design sessions provided a valuable input for game
ideas and led to creative and non-stereotypical game concepts.
Students gained insight in and empathy for their player audience.

 The Unified Process approach to game development helped
students to organize and prioritize their time and work, which is
critical to the complex process of game development. The
Virtools framework along with other rapid prototyping tools
helped students to deliver a working prototype within a limited
amount of time. Also it helped students to focus on higher level
programming skills. Students became aware of the diverse and
versatile aspects that are part in the creation of computer games.

But the most important skill they learned was to work
together, to manage and to communicate so that in the end all the
pieces would fit the puzzle.

The results of this approach resulted not only in an inspiring
computer game, directly grafted on the passions and desires of the
senior. Students also gained insight the ‘soft’ skills that are
necessary in the creation of computer games. And most important,
they had fun!

ACKNOWLEDGEMENTS
A special thanks goes to all students of e-Media, 2005-2006

contributing to this project. Furthermore we are very grateful to
the senior city council of Louvain and especially, Jerome
Verhoelst, the president, who made this project possible. Finally
we like to thank Swen Vincke for his useful remarks to this
project.

REFERENCES
[1] Ermi, L. & Mäyrä, F.(2004) Player-Centred Game Design:

Experiences in Using Scenario Study to Inform Mobile
Game Design, Game Design Research Symposium and
Workshop, Copenhagen

52

[2] Gansmo, H., Nordli, H. & Sorensen K. (2003). The Gender
Game. A study of Norwegian Game Designers. SIGIS.

[3] Larman, C. Applying UML and Patterns – An Introduction to
Object-Oriented Analysis and Design and Iterative
Development. Pearson Education, 2005.

[4] Margolis, J. and Fisher, A. (2002). Unlocking the
Clubhouse: Women in Computing. Cambridge: MIT Press.

[5] Oudshoorn, N.E.J. & T.J.Pinch. (eds) (2003) How Users
Matter. The Co-construction of Users and Technology.
Massachusetts: MIT Press

[6] Oxland, K. (2004). Gameplay and Design. Addison Wesley.
p. 24-43.

[7] Ray, S.G. (2004). Gender Inclusive Game Design:
Expanding the Market. Charles River Media. USA.

[8] Rouse, R. (2005). Game Design: Theory and Practice, 2nd
edition, Wordware, Texas

[9] Sannella, M. J. Constraint Satisfaction and Debugging for
Interactive User Interfaces. Ph.D. Thesis, University of
Washington, Seattle, WA, 1994.

[10] Sykes J. & Patterson A. (2004) Considering the User in
Video Game Design, Workshop on Player-centred Design.
ACMCHI 2006

[11] Virtools. http://www.virtools.com

53

Middle-to-High School Girls as Game Designers – What
are the Implications?

Magy Seif El-Nasr Ibrahim Yucel Joseph Zupko Andrea Tapia Brian Smith
College of Information Sciences & Technology

Penn State University
University Park, PA

{magy,iyucel,jzupko,atapia,bsmith}@ist.psu.edu
ABSTRACT

The percentage of young women choosing educational paths
leading to science and technology-based employment has been
dropping for several years. In our view, the core cause for this
phenomenon is not a lack of ability, but rather a combination of
low self efficacy, misconception of the IT field, and lack of
interest and social support from families and peers. The specific
aim of this paper is to discuss a case study – a class named
Gaming for Girls. This class was offered to middle and high
school girls three times from Fall 05 to Summer 06. In these
classes, female students assumed the role of designers and
developers engaged in developing their own games using
commercial game engines. Based on this experience, we assert
that through the activity of designing games using game engines,
girls can understand the process of game development, acquire
computer science skills, and increase their confidence level with
regards to computing.

Categories and Subject Descriptors
K.4 [Computers and Education], J.5 [Arts and Humanities]

General Terms
Performance, Design, Experimentation.

Keywords
Education, game modding, learning, gender

1. INTRODUCTION
The gender imbalance problem in the information technology (IT)
and game industries has been a topic of interest for many years. In
′02 women accounted for 24.6% of the IT profession compared to
25.4% in ′96 [2] (not counting administrative jobs). A parallel can
be found in the game industry where, in 2005, women accounted
for only 11.5% of the game development workforce [3].
We regard this problem as a "pipeline" issue. Women earn
significantly fewer undergraduate degrees in computer science
and engineering than men. This may be traced back to middle and
high school education, where women students continue to track
out of math and science classes that provide the foundations for

IT careers [4-6]. American cultural expectations and influences
often convey the message that women are unsuitable for the IT
world (e.g., [7]). In years prior to college, research studies have
revealed effects of such social norms and expectations; for
example, research showed that some girls exhibit low self-
efficacy regarding computing and small amounts of informal and
voluntary computer exploration (e.g., [8, 9]). It has been
suggested that this is related to young women’s negative
perceptions of the IT field, e.g., it is male-oriented or anti-social
[5].
As a result, there is a need for interventions that are aimed at
increasing middle and high school girls’ exposure to design and
programming, thus demystifying the technology profession and
promoting computer literacy. In this paper, we discuss a case
study of such an intervention—Gaming for Girls—a game design
course aim at engaging middle and high school students in design
and programming activities through building games using existing
game engines. Our premise is that this activity will (1) increase
students’ comfort level with technology, (2) demystify game and
software development careers and underlying development
processes, (3) increase students’ self-efficacy with computing,
and (4) promote the acquisition of programming and design skills.
In this paper, we will describe three different offerings of the
Gaming for Girls course during Fall 05, Spring 06, and Summer
06. We present these offerings as case studies, detailing the
curricula, engines used, problems encountered, and lessons
learned. We collected surveys, interviews, and observational data
during each offering. However, due to the small sample size (25
students in each offering) and the constant refinement of the
curricula and game engines, it is difficult to provide generalized
results, thus we will keep the analysis at an individual level. We
will discuss learning outcomes based on our observations and
interactions with students as well as their perception of what they
learned based on survey data. In future work, beginning with the
current offering (Fall 06), we will conduct and experiment with
several assessment methods to measure learning outcomes.

2. Games and Learning
Many researchers have argued that games provide suitable
environments for learning [10]. Several techniques have emerged
from such studies: 1) learning through game playing, and 2)
learning through game design, which has three flavours: creating
games a) from scratch, b) using tools created by researchers, or c)
using commercial game engine, i.e. game modding.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Academic Days ’07, Feb, 2007, USA.
Copyright 2007 ACM 1-58113-000-0/00/0007…$5.00.

Modding is defined as the process of changing an existing game,
thus it generally requires the use of a game with built-in
development tools, e.g., Unreal Tournament and Warcraft III.
Game modding demands an understanding of the underlying
engine and game mechanics in order to use and modify the game,

54

which is mostly learned through the use of the engine itself or by
research on forums. Game modding has the advantage of offering
content and mechanics, thus providing an architecture for creating
complex and aesthetically pleasing games which are otherwise
difficult to build given students’ skill and time constraints.
Learning through design can occur in many domains with
different types of development activities. Since the development
of the Logo language in the 1960s, educational researchers have
investigated ways that programming computers can facilitate
learning about mathematics, computation, and more general
problem solving skills [11-13]. Many researchers have devised
approaches to engage students in learning through designing and
developing their own games. For instance, Harel’s work in
elementary schools demonstrated children working for prolonged
periods on the creation of educational games using the Logo
programming language [14]. Kafai [15] noted similar engagement
as students developed their own games, and she also tracked their
abilities to incrementally create, evaluate, and revise their designs
over time. Hooper’s longitudinal study of software development
in schools showed students expressing notions of cultural identity
in their programs—ideas that were not likely to be expressed had
students just played existing games [16].
These studies used Logo as the primary programming language,
but a number of programming environments have been created to
help novices learn by designing and implementing working
computer programs [17-21]. The courses described in this paper
are also examples of using games to teach computer science skills
where students use commercial game engines instead of research-
based languages or tools. Time, cost, and expertise are significant
barriers to experimenting with video game design in educational
settings, but customizing existing games may reduce the difficulty
and make it possible for learners to create credible and
aesthetically pleasing prototypes. The time commitment to return
is important for middle and high school students since they
generally lack the time to devote months to a game project but
still desire ‘commercial’ aesthetics quality. In addition, using
commercial game engines provides a robust infrastructure that
students can use and a realistic environment that students can
learn from (thus teaching them realities of game systems).

3. Gaming for Girls Courses
3.1 Engines used
A different game engine was used for each course offering. The
choice of a game engine is critical, as it fundamentally promotes
(or hinders) the course’s learning objectives. As we previously
argued, different engines promote different learning objectives
[22]. Therefore, when choosing an engine, an educator needs to
consider class schedule, size, style, student skills and age, in
addition to the course’s learning objectives. We chose three
engines: Warcraft III, Game Maker, RPG Maker XP.
Warcraft III was used in the Fall 05 course. Warcraft III includes
a visual programming tool, the Trigger Editor, which allows
students to program using dialogue boxes and point-and-click
rather than writing code. However, it also allows students who are
interested in writing code to do so through the same interface. Its
programming environment includes notions of event-driven
programming, Boolean logic, and parallel execution. Its art and
design tools facilitate 2D map design, terrain design, and the
creation of character behaviors. Additionally, it includes in-

engine documentation in the form of tool tips and help text. These
features may help students focus on semantics rather than syntax.
These features also had drawbacks, however. Semi-complex
structures, such as deeply-nested conditionals, are tedious to
specify in the visual programming tool. Additionally, the in-
engine descriptions assume intermediate to advanced
programming knowledge and make assumptions that may not be
obvious, such as the fact that an expiration timer on floating text
is dependant on the floating point “permanence” being off.
In the Spring 06 course, we used Game Maker, an engine that
allows students to build 2D games. Game Maker is designed with
the flexibility to build any type of game, and thus is not
associated with a specific interaction model. Unlike Warcraft III,
which embeds a real-time strategy interaction model, Game
Maker can be used to produce a side-scroller as easily as a top-
down role-playing game. While this greatly increases students’
freedom and creativity, it can also be imposing as students needed
to develop their own interaction model in addition to building a
game. Using an existing game engine for game modding
(Warcraft III) seemed to increase students’ comfort with the tool
when compared to creating a game from scratch as is necessary in
Game Maker.
Game Maker offers a visual programming tool similar to Warcraft
III with some differences. In Game Maker, programs are part of
game objects but are also event driven. For example, a ball object
can be programmed to reverse direction when a collision event
occurs between the ball and a wall object. While the visual
programming tool is simple to understand and use, it too becomes
tedious to use with semi-complex structures.
Game Maker requires students to understand event-driven
programming and a weak concept of object-oriented
programming. Variables proved to be more important in Game
Maker than in Warcraft III and parallel processing less important,
although both concepts are present in both engines. Students must
also understand geometry in 2D, sprites (pixel editing), and
collision-detection, as Game Maker relies heavily on “object-
collides-with-object” events.
In Summer 06, we used RPG Maker XP. Like, Warcraft III and
Game Maker, it provides a visual programming tool on top of a
scripting language (Ruby in this case). Code is event-driven,
although the number and types of events is significantly smaller
than in the other two engines. Although RPG Maker XP is not
embedded in a game, it is defined by a 2D “Japanese-style” RPG
interaction model, and thus is constrained by that model. This
proved beneficial since students reacted favorably to the model,
and thus it was easy for them to construct their games using this
model as a base.
The visual programming tool of RPG Maker XP is conceptually
different than its underlying scripting language. In fact, the tool is
actually a “mini-language” that is implemented within Ruby. As a
result, it was very difficult for students to move from the visual
programming environment into Ruby when necessary, particularly
when compared with Warcraft III or Game Maker.
Students working with RPG Maker XP deal with 2D map editing,
layers (transparency), and event-driven programming. Switches,
which are basically Boolean variables, are used extensively.
Students will most likely need to deal with editing stats such as
health and mana points to use the engine’s combat system.

55

Table 1 summarizes the concepts that students are required to
know in order to work with the engines.

Table 1. Programming concepts required for each engine
Game
Engine

Programming Concepts Promoted

WarCraft
III

Variables, Boolean logic, event-based
programming, parallel execution, 2D map design,
terrain design, and character behavior scripting

Game
Maker

Variables, Boolean Logic, weak notion of Objects
(as entities), sprites, collision detection, 2D
geometry and coordinate systems

RPG Maker
XP

Variables, Boolean logic, event-driven
programming, concept of layers, 2D animation,
2D map design, and basic math for battle stats

3.2 Curriculum
The first offering used lectures to present knowledge and lab-time
for developing games to deepen and solidify understanding. Later
offerings nearly eliminated lectures all together, presenting
knowledge through building mini-projects or other activities with
the game engines. The last few days of all classes focused on
providing students with an environment to finish and polish their
game projects. Instructors concentrated on providing feedback,
help, and facilitating discussion and critique.
The first course was offered over a 5-week period during Fall 05
using Warcraft III. The class met on Saturdays, once a week, for
around 4 hours. Each week focused on a specific topic and
students were given homework on that topic. The first week’s
topic covered map design. Students were asked to design and
implement an environment for their games, motivated by a
provided short story. The second week focused on characters and
object design. Students were given a lecture on creating
interesting characters in a narrative sense and asked to flesh their
characters out on paper before implementing them in their game.
Week three focused on character behavior and plot. This was their
first exposure to programming, where they needed to make
characters move, talk, and carry objects. The last two classes were
spent providing students with more programming knowledge as
needed and helping them debug. During the final class, students
presented their games to parents and other educators.
The second course was offered over six weeks during Spring 06
using Game Maker. The class met on Saturdays, once a week, for
4 hours. The first class introduced Game Maker by asking
students to build a simple game of Breakout, from start to finish.
Students used existing art content, but many also created their
own sprites for the project. During the second class, students
focused specifically on designing environments and the collision
of objects in environments. Week three introduced students to
programming, and it was at this point that students decided
whether they wanted to build a completely new game for the rest
of the class, or to build on the Breakout game they had created
during the first class. The last three weeks of the course were
spent drawing and animating characters, polishing and critiquing,
and providing students with programming concepts and
debugging help as needed to complete their games.
The third course was offered as a 1-week camp during Summer
06 using RPG Maker XP. It should be noted that this particular
offering engaged only middle school girls, while other offerings

included both middle and high school girls. Similar to the second
class, students built an entire game from scratch during the first
day, this time a tale of King Arthur. Students were asked to bring
a fable or myth to the class and spent the next four days telling
that story in the game engine. The topics covered included map
design and how to make interesting characters, as well as
variables, flow control, and parallel execution.
4. Evaluation
We ran a study during each offering to evaluate the impact of the
course on increasing self efficacy, engaging girls in design
activities, promoting programming and design skills, and
enhancing their perception of the IT field. In these studies, both
quantitative and qualitative methods were used. Three types of
data were collected: (1) surveys conducted at different time
periods during the course sessions, (2) observations of student
performance and questions during class periods, and (3) analysis
of projects and assignments completed by the students.
Survey methods are often subjective, rely on perception, and to a
large extent rely on the participant’s judgement. However, they
can be effective in measuring certain qualities, such as motivation
and self-efficacy. The changes in the curriculum and engine
prevent us from generalizing our findings.
The analysis presented in this section will be use the survey data
taken from the summer 06 course. These surveys were comprised
of both closed and open ended questions. In the case of the closed
ended questions made of discreet categories, we present the data
in numerical form, providing descriptive statistics. In the case of
the open-ended questions, we provide the data in textual form, as
illustrative quotes. These quotes are used both as stand alone
qualitative data as well as supporting evidence for the numerical
descriptive data, adding richness and meaning.

4.1 Capture and Motivate
On the first day of class, we asked students to talk about their
motivations and hopes for the course. Most students expressed
some excitement for creating a game. One student said, “After
this morning's class, I'm excited to start working on more RPGs
and perhaps even buy the program and make my own RPGs
later.” Other students expressed a desire to creatively bring their
stories and characters to life. For example one student said she
was most interested in, “…making my characters talk, building a
world, and making an interesting story.” When asked why they
decided to take the course, they stated they liked computers
(68%) and games (68%), and thought the class would be fun
(61%). When asked how they felt about computers, 83% said they
“loved them.”
Parents were asked to complete a survey one week after the end
of each course. When asked what long term effects the class had
on their daughters, slightly more than half of the parents said they
had noticed some change. A parent stated, “She learned the math
she has been studying in school can have a real application. She
learned programming can be fun.”
It seems that game design motivated and captured the interest and
attention of the students in our classes. The positive opinions from
students must be tempered by the limitations of this study. This
population was self-selected: students already had an interest in
computers and gaming before they enrolled in the class or they
would not have been interested. While the data says nothing about
the effects this class might have on a truly general population, it

56

obviously had some positive effect on this narrow, self-selected
sample. This question demands further research.

4.2 Self Efficacy and Perception of IT
On the first day of class, the students were asked several
questions to determine their confidence level with computers and
their perceived self-efficacy. 24% felt they knew a lot about
computers, 48% felt they knew [somewhat] a lot about computers.
Fewer claimed they knew a lot about computer games. Fewer still
felt they were confident with programming. Several expressed
concern managing the programming aspects of the course.
Another group of students expressed concerns being able to finish
the project in the allotted time. One student said, “I don’t know if
I’ll be able to finish a whole video game in 4 more days.”
On the same day, we asked the students what they hoped to learn.
The most common answer was to build video games. However,
about a third of the students responded with the desire to learn
more programming or computer skills. One student said she
would like to learn, “… how to make an awesome video game. I
want to learn everything about technology or at least more than I
did.” Another student stated that she simply wanted to learn,
“how to be able to fix minor problems on my family’s computer.”
On the last day of class we asked the students similar questions
about competency and self efficacy. 64% of students responded
that they felt more confident about their abilities than they had on
the first day, with 36% more stating they felt somewhat more
confident. 96% felt they had learned a lot from the class. 48% felt
they understood more about computer programming than on the
first day with an additional 40% stating they felt somewhat more
confident in their programming abilities. 52% felt they clearly
understood how a computer game is built with an additional 48%
giving more cautious assent. 60% felt very confident they could
build a computer game in the future with an additional 24%
feeling somewhat confident. Perhaps most importantly, 76% said
they would like to take a more advanced programming class.
Before the course began, parents were surveyed on the impact of
the Gaming for Girls class on their daughters. The majority of the
parents hoped that their daughter would learn how to make a
computer game (32%) or how to program a computer (28%).
When the parents were asked what they imagined their daughter
would be doing in the class, they unanimously answered learning
how to create computer games using programming tools.
Parents were surveyed a second time one week after the end of
each course. 88% of parents felt that the camp may have
influenced their daughter’s perception of working with computers,
and confidence level with computers. When asked what long-term
effects the class had on their daughters, slightly more than half of
the parents said they had noticed some change. A mother stated
that her daughter, “…has always been fairly comfortable with
computers but she talks more about getting a Dell or converting
one of our Macs with a PC emulator. The camp was clearly a
confidence booster—something immeasurably important to girls
of this age group.” The parents also felt their daughters had
gained technical skills. A mother of a student said, “she learned
the basics of how games are made. She learned about various
applications of computer technology and how computers are used
in various areas.”
Some parents have also expressed the impact of the course on
their daughters’ technology related activities and career choices.
For example, a parent stated, “she was extremely enthusiastic

about pursuing technology as a possible career choice. This is
something that I will need to follow-up on to ensure that she is
given the opportunity to explore. Additional classes would be of
great interest.” A mother of one of the students said about her
daughter, “She wears her tee-shirt with confidence and talks often
about her camp experience. She also talks more about enrolling in
the College of [Information Sciences and Technology] and would
like to explore possible scholarships, grants, and/or funding for
that program.” Another mother stated that her daughter, “… has
purchased the software and is making new games already.”

5. Discussion
Each offering resulted in many lessons that helped us reshape
future offerings. These lessons were collected through student
comments, discussions with individual students, observations, as
well as the surveys and interview data collected.
The first two courses were offered during the school year (Fall
and Spring). Our collected survey data indicated that girls were
very busy and involved in many activities that competed with our
course, including clubs, social activities, and of course, school.
Spring was particularly busy, during which we had the lowest
retention rate of the three classes. In general, many girls
responded that they needed more time or would have liked to
devote more time to their projects outside of class. Additionally,
due to time commitment during the first two classes, it seemed
that it was harder for students to assimilate the design and
programming techniques. While all students demonstrated some
understanding of the basics, such as Boolean logic, flow control,
variables, and events as demonstrated by their project work, we
felt that some left the class with holes in their knowledge or didn’t
fully understand some of the basics. On the other hand, some
students demonstrated advanced knowledge beyond what was
taught, such as using the scripting language in Game Maker to
manipulate low-level parameters of game objects.
In the third class, all students understood most or all of the basic
concepts we targeted, e.g., variables, Boolean logic, map design,
mathematical manipulation to balance fight mechanics. Indeed,
we entered this class severely underestimating their abilities and
needed to add a great deal of material. For example, we presented
a tutorial on creating sprites, including how to add highlights and
shadow to sprites. Our initial plan did not include any discussion
about creating sprites at all, which we added. Further, several
students explored the Ruby programming language underlying the
visual programming environment of RPG Maker XP, adding new
features such as a visible timer. From analysis of projects and
interactions with the students, we didn’t note any student who
intentionally avoided an idea or gave up on an idea because she
found it too hard or lacked confidence that she would figure it out.
Every game created had interesting game-play, map design, usage
of music and sound effects, and a well told story. Student self-
efficacy was very high.
The selection of the engine was also a very important choice. For
example, students were constantly fighting Warcraft III’s default
interaction model as they tried to create their games. Game Maker
posed the exact opposite problem. Students were presented with a
blank slate, with no built-in interaction model to anchor their
ideas and very little art content. RPG Maker XP seemed to strike
the best balance, providing a great amount of content and a solid
interaction model that was flexible enough to let students control
their narratives.

57

In the summer course, we had time for polishing and critiquing,
but we found that the girls had very little interest in revisiting
their games. It seemed that the girls had little interest in reflecting
on their games once they were completed.
Students were interested in drawing or otherwise creating their
own characters throughout all of our classes (character modeling
was a topic that came up unanimously as something the students
would be interested in learning in the future). Sprite animation
was covered in detail during the Summer class. However, once we
showed them the steps involved, they generally lost interest, and
very few students actually created their own characters. Instead,
students tried to find the best fit among the provide content; for
example, they would edit the sprites provided in terms of
changing color hue, such changes involved much less time and
effort than creating characters and sprites from scratch. A
challenge for us in the future is to bring novel forms of visual
control over characters into our classes that give our students the
desired freedom without introducing a deterring time investment.

6. Future Work
The work presented here discussed three Gaming for Girls course
offerings where we used a different engine for each offering. The
courses provided a great environment for learning computer
science skills. We have seen students apply basic programming
concepts, such as variables, loops, and conditionals, and more
advanced concepts, such as parallel and event programming as
discussed in [23]. We can say with confidence that the majority of
projects across all classes demonstrated the knowledge we
targeted in the courses. However, to what degree students actually
learned these concepts is unknown. This problem requires further
research work. Future courses will include different assessment
methods to gauge learned knowledge.

7. Conclusion
Over the three offerings of the Gaming for Girls course, data
collected suggests that engaging girls in game design and
development using commercial game engines can be used as a
vehicle for (1) increasing students’ self efficacy, (2) acquiring
design, programming, and artistic skills, while (3) engaging them
in the activity. However, more work is needed to generalize this
assertion. We are continuing to run this class, and thus will
continue to gather survey and observation data, which will help us
generalize this assertion. In addition, we are currently exploring
several assessment techniques to measure learning outcomes in
future courses.

8. REFERENCES
[1] ITAA, "Adding Values: Growing Careers, ITAA's 2004

Workforce Study," Arlington, VA 2005.
[2] ITAA, "ITAA Blue Ribbon Panel on IT Diversity," 2003.
[3] IGDA, "Game Developers Demographic Report," 2005.
[4] T. Camp, "The Incredible Shrinking Pipeline,"

Communications of the ACM, vol. 40, 1997.
[5] J. Margolis and A. Fisher, "Greek Mythology and Attracting

Undergraduate Women to Computer Science," presented at
Joint National Conference of the Women in Engineering
Program Advocates Network and the National Association of
Minority Engineering Program Administrators, 1997.

[6] J. Margolis and A. Fisher, Unlocking the Clubhouse: Women
in Computing. MA: MIT Press, 2002.

[7] E. M. Trauth, "Odd Girl Out: An Individual Differences
Perspective on Women in the IT Profession," Information
Technology and People, vol. 15, pp. 98-118, 2002.

[8] C. Beise, "IT Project Management and Virtual Teams,"
presented at Proceedings of the 2004 SIGMIS Conference on
Computer Personal Research, Tucson, AZ, 2004.

[9] S. Nielsen, L. Von Hellens, and S. Wong, "The Game of
Social Constructs: We're Going to WinIT," presented at
Proceedings of the 2000 International Conference on
Information Systems (ICIS), 2000.

[10] J. Gee, What Video Games Have to Teach Us About
Learning and Literacy. NY: Palgrace Macmillan, 2004.

[11] S. Papert, Mindstorms: Children, Computers, and Powerful
Ideas. New York: Basic Books, 1980.

[12] M. Resnick and S. Ocko, Lego/Logo: Learning through and
about Design. Norwood, NJ: Ablex Publishing, 1993.

[13] R. D. Pea, D. M. Kurland, and J. Hawkins, "Logo and the
Development of Thinking Skills," in Mirrors of Mind:
Patterns of Experience in Educational Computing, R. D. Pea
and K. Sheingold, Eds. Norwood, NJ: Ablex Pub., 1987.

[14] I. Harel, Children Designers. Norwood, NJ.: Albex, 1991.
[15] Y. Kafai, Minds in Play: Computer Game Design as a

Context for Children's Learning. Mahwah, NJ: Erlbaum,
1994.

[16] P. K. Hooper, "They have their own Thoughts: Children's
Learning of Computational Ideas from a Cultural
Constructionist Perspective." Cambridge, MA: MIT, 1998.

[17] M. Conway, S. Audia, T. Burnette, D. Cosgrove, and K.
Christiansen, "Alice: Lessons learned from building a 3D
system for novices," presented at Proceedings of SIGCHI
Conference on Human Factors in Computing Systems, 2000.

[18] A. Repenning and J. Ambach, "The Agentsheets Behavior
Exchange: Supporting Social Behavior Processing,"
presented at CHI 97, New York, 1997.

[19] M. Resnick, Turtles, Termites, and Traffic Jams:
Explorations in Massively Parallel Microworlds. Cambridge,
MA: MIT Press, 1994.

[20] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay,
"Back to the Future: The Story of Squeak, a Practical
Smalltalk Written in Itself," presented at Proceedings of the
12th ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications, 1997.

[21] D. Smith, A. Cypher, and J. Spohrer, "Kidsim: Programming
Agents without a Programming Language," Communications
of the ACM, pp. 54-67, 1994.

[22] M. Seif El-Nasr and B. Smith, "Learning through Game
Modding," presented at Games, Learning, and Society,
Wisconsin, 2005.

[23] I. Yucel, J. Zupko, and M. Seif El-Nasr, "Education, IT,
Girls, and Game Modding," International Journal of
Interactive Technology and Smart Education, vol. 3, 2006.

58

The Effects of Games in CS1-3
Jessica D. Bayliss

Rochester Institute of Technology
Rochester, NY 14623

585-475-2507

jdb[at]cs[dot]rit[dot]edu

ABSTRACT

Last year, the RAPT (Reality and Programming Together)
program ran CS1-3 course sections using games as a motivator in
teaching traditional outcomes. Indicators such as grades on
common finals, retention of students, and performance in CS4
were used to compare regular students with RAPT students. No
significant retention differences were found in CS1 and CS2, but
student success rates changed in CS3 (100%) and CS4 (95%) for
RAPT students when compared with regular CS3 (84%) and CS4
(73%) students. We discuss the RAPT courses and course
materials along with course differences between regular and
RAPT sections that could have led to different success rates for
students.

Categories and Subject Descriptors
K.3.2 [Computer and Education]: Computer and Information
Science Education – computer science education, curriculum.

General Terms
Algorithms, Design, Languages

Keywords
Games, CS1, Video Games

1. INTRODUCTION

Gaming is a popular pastime for students from all walks of life
and is often a common link between students from very different
backgrounds. It is now one of many extracurricular reasons that
students look at when choosing a particular university [1]. Games
may be motivators for learning in a variety of situations [2][3][4].
They have recently been popular in coursework, although studies
with formal control groups remain rare. The general consensus
seems to be that games can motivate students and provide positive
experiences [7][8].
The reasons for bringing games into a course are varied. Some
courses actually have students play games constructed to help
them learn materials as diverse as history and programming
[5][7][10]. Some courses study the design and programming of
games themselves [9][12]. There is even a study on using the
massively multiplayer game Everquest II in order to learn and
practice a foreign language [6].
The RAPT program concentrates on using games as an
application area on top of traditional Computer Science
curriculum. The RAPT program courses maintain the same
outcome goals as non-RAPT CS1-3 courses, and retention rates
and final exam results are compared as a measure of

effectiveness. The CS1-3 courses teach core topics in the
Computer Science discipline such as programming skills,
algorithm design, data structures, and software engineering
principles. These courses are taught on a quarter system and are
the equivalents of CS1-2 courses from a semester system.
The RAPT program introduces traditional topics and curricula
through using games as an application area. Computer games are
complicated pieces of cross-disciplinary software that draw from
fields such as art, english, physics, and biology. As such, games
can provide a rich set of examples and materials for coursework.
Games also allow creative student expression. RAPT students
designed and programmed their own games in CS3 and some
student projects contained original art and music.
Forty percent (approximately 80 students) of the Computer
Science entering class applied to be in the RAPT program.
Current results from RAPT CS1-3 indicate that grades from
common final exams are slightly higher, but not significantly
different from exam scores coming from students in regular (non-
RAPT) course sections. Furthermore, students find the RAPT
materials to be subjectively more satisfying than non-RAPT
materials. More interestingly, the retention rates for RAPT
sections are not significantly different from regular sections for
CS1-2, where students are often discovering what computer
science is about. The results are different for CS3 where RAPT
students had no individuals with D’s, F’s, or W’s and regular
sections had 16% in these categories.
In order to try and determine if this difference was due to
instructor bias, these students were tracked through the next
course (CS4), which they had with a different instructor. CS4 had
no emphasis on games and is a course where students learn the
C++ language as well as pointers and more advanced software
design. The RAPT students were unsuccessful 5% (n=20) of the
time whereas the regular CS4 students (n=34) were unsuccessful
27%. They were unsuccessful since they obtained a D, F, or W in
the course.
These results appear to indicate that while students want to
engage in using games to promote learning (indicated by the 40%
application rate), this may not translate directly into increased
retention in the first two courses. This does not mean that games
do not provide a powerful motivator however, as retention and
grades from CS3 seem to indicate that students may have learned
more and that this helped them in the CS4 course. We discuss this
and other reasons for the potential success of the RAPT students
below.

59

2. The RAPT Program

The RAPT program was started during the summer of 2005 in
order to teach traditional CS1-3 concepts using computer games
as an application area. The program successfully ran through the
2005-2006 school year and is entering its second year. We
continue to collect statistics on the students in this program.

2.1 RAPT CS1

RAPT CS1 was first taught over the summer in 2005 and was
taught again in 2006 due to the success of the first program.
Results from 2005 indicated that it helped students “get ahead” in
college and meet each other before the start of the school year
[11].
The course itself was taught as a synchronous, online course
consisting of 2 hours of lecture per week and 2 hours of lab. As a
program rather than a course, it carried no credit and there was no
fee to be a part of the program. In order to keep the course linked
with real industry practices, game developers presented their work
in on-line chat sessions over the summer.
The only material benefit of this program for students is that they
could gain the knowledge to place out of a traditional CS1 course
upon entering in the fall quarter. Placement into CS2 frees up one
course slot for students. Students are self-selected: they must
apply to the program. During both 2005 and 2006, approximately
40% of the entering CS freshman class (around 80 students)
applied to be a part of the ten week RAPT summer program.
In 2005, 48 students were accepted and in 2006 this number was
decreased to 28 due to a decrease in available slots for the fall
RAPT CS2 course. Six extra students from the 2006 class were
allowed to “sit in” on the RAPT sessions without an expected seat
for the CS2 follow on course. These individuals were people who
did not have any previous programming experiences and in some
cases were people who were not necessarily convinced that they
wanted to major in Computer Science.
Of the total number including the sit in students, 5 were women
(~15%). This is somewhat higher than the percentage of women
entering Computer Science at our university where the numbers
have been as low as 5%. Of note, three of these women were
among those “sitting in” on the course, because they had no
programming background. All three are still enrolled in Computer
Science as their major. This appears to indicate that females are
not “scared off” by the games nature of the RAPT program.
The summer program followed the outcomes of the university’s
regular CS1 course:

1. Students will be able to identify the basic elements of
program syntax, semantics, and computer language
concepts.

2. Students will understand the fundamentals of object-
oriented design, including classes, objects, and
reference vs. primitive data types.

3. Students will describe the phases of the software
development life cycle.

4. Students will be able to distinguish between various
control structures (e.g., repetition and selection).

5. Students will compile, run, and test Java programs, and
apply error recovery strategies for the verification of
programs.

6. Students will understand and be able to discuss the
ethical responsibilities of a computing professional.

Java was used as the main programming language in this course.
An exam at the end of the program tested knowledge of the
expected outcomes, and this was further highlighted with students
taking and passing the placement exam. The placement exam does
not test outcomes 3 and 6. Outcome 3 was met by quiz results
from the course as well as lab performance on labs where students
had to answer questions on the software development life cycle.
Outcome 6 was met during week 10 when students actively
discussed the EA Spouse letter [13] in terms of the ACM Code of
Ethics.
All of the 9 weekly programming labs involved either playing or
coding on a game [15]. Games were discussed in lecture as
sophisticated examples of software design and implementation.
Examples from games were used to discuss testing programs,
expressions, modulus, objects, algorithms, loops, and arrays
among other topics. Please see our paper on the CS1 course
materials for more information [11].

2.2 RAPT CS2

RAPT CS2 is the first course students in the RAPT program take
upon entrance to the University in the fall. This course focuses on
expanding the concepts from CS1 with more advanced
programming concepts including threads, exceptions, and event
driven programming. This is the first point in the program where
it becomes possible to compare regular CS2 with the RAPT
version of the course. RAPT CS2 is taught in the studio format as
are most of the regular CS2 sections.
The common outcomes for students in all sections of CS2 are:

1. To translate requirements for small software problems
into object-oriented designs and working programs.

2. To apply the collection classes from a collection
framework library to software designs. Included are
collections such as linked lists and arrays, along with
supporting classes such as iterators and interfaces used
for comparing collection elements.

3. To able to design simple multithreaded programs and
follow their execution.

4. To be able to design simple networking programs and
follow their execution.

5. To be able to design and implement software for File
I/O.

6. To be able to design and implement software
applications that use graphical user interfaces, are
designed around an event-driven paradigm, and employ
common visual components such as windows, buttons,
text fields, and menus.

7. To be able to understand how exceptions work, explain
their uses and employ them in their own designs.

60

8. To be able to discuss ethical issues that arise in taking
on potentially dangerous or infeasible software
development assignments.

Additionally, RAPT CS2 had an extra outcome: to learn C#. The
main reason for switching languages at the beginning of CS2 is to
encourage students to learn about different languages, while at the
same time allowing them to leverage their existing knowledge of
Java-like syntax. The course discusses some of the differences
between C# and Java including delegates and checked exceptions.
The course involved a quarter long project that used the
Gamebots mod for Unreal Tournament [18] in order to have
students practice the concepts they learned in class. The project
had them create game (ro)bots that played against each other
based on developing a client side program that connected with the
Unreal Tournament game running the server side Gamebots mod.
The project involved parsing commands sent by the Unreal
Tournament server to each client bot, constructing the networking
code for communication, creating a class hierarchy for bots with a
common interface, and programming the AI for an individual bot.
Students were motivated to search the web for a variety of
algorithms to use to make their bots smart. The most complicated
bot used a fuzzy state machine in order to make decisions when
competing against other players.
There was a two-hour lab every week, with parts of the lab not
finished during the time serving as homework that was due the
next week. Please see the course web site for more detail [16].
The labs involved either playing games or writing them. Some lab
examples were:

- Students wrote stories while using complicated
exception handling in order to demonstrate their
understanding of exceptions. These stories involved
multiple endings in a “Choose Your Own Adventure”
style.

- Students wrote programs to procedurally generate
sounds such as could be heard on a nature tape using
threads and simple sounds. The most complicated
student work was an homage to Homer Simpson, which
used 18 threads and was written by a student musician.

- Students learned about data driven programming
through altering a tetris game to read in files containing
blocks rather than having to define all blocks inside the
program. They then wrote a generic block rotation
algorithm.

- Students changed the graphical user interface for the
Gamebots project in order to include important
information about student bots locations and items.

2.3 RAPT CS3

RAPT CS3 continued where RAPT CS2 left off and concentrated
on data structures and algorithms. The defining feature of CS3
was the ability of students to work in groups of size 4-5 in order
to design and create a game of their choice. There were multiple
landmarks for the quarter long project and students were required
to both use and construct a variety of data structures and
algorithms for their game. RAPT CS3 was taught in the same
studio environment as RAPT CS2.

The outcomes of RAPT CS3 matched regular CS3 with the
addition of learning C# and learning how to work in a group:

1. Students will be able to explain the properties of stacks,
queues, lists, trees, and graphs, implement them, apply
them to common software problems when appropriate,
and analyze their performance.

2. Students will be able to analyze the efficiency of
algorithms, including those used for sorting and
searching.

3. Students will be able to translate requirements for small
software problems into algorithmic solutions and
working programs.

4. Students will be able to describe hashing techniques and
apply them to appropriate data organization problems.

5. Students will be able to discuss ethical issues that arise
in taking on potentially dangerous or infeasible software
development assignments.

All outcomes were met through using games as an application
area with the exception of outcome 5. This outcome was met
through student discussion of the Star Wars program and
subsequent test questions on the ethical issues involved.
There was a two-hour lab every week, with parts of the lab not
finished during the time serving as homework that was due the
next week. Please see the course web site for more detail [17].
The labs primarily involved algorithms and data structures in
games. Some lab examples were:

- Constructing and using a binary space partition (BSP)
tree in order to draw a graphical room correctly from
back to front

- Constructing the midpoint line and circle drawing
algorithms

- Constructing a solution to the Towers of Hanoi problem
both recursively and iteratively to show how the same
problem can be solved using different techniques

- Constructing a graph of bot node points in Unreal
Tournament and writing/using breadth first, Dijsktra’s
algorithm, and A* to search for a bot path to a particular
location (2 labs).

3. Results

RAPT sections of CS1, CS2, and CS3 outcomes were measured
against regular CS1-3 courses through similar final exams and
retention numbers. Additionally, RAPT students were tracked
through CS4 in order to look at longer term retention and student
grades after RAPT is finished. Table 1 shows the basic retention
percentages on a course-by-course basis.
Of the 28 students accepted into CS2 in 2006, two never attended
class, one withdrew after finding out he obtained a 5 on the AP
AB exam, and three withdrew from the course for various
reasons. Of the 22 completing the distance program, 2 failed the
placement exam.
This close to 10% failure rate for those taking RAPT CS1 in 2006
is very similar to the 8% failure rate seen in the RAPT course
from the placement exam in 2005. Of those taking the placement

61

exam in 2006, none of them would have automatically placed into
CS2 or CS for AP students due to Computer Science AP exam
scores. All were slated to take CS1 in the fall before taking the
placement exam. The traditional failure rate for CS1 students
from the regular sections is 10% in this first class and so no extra
retention of students was shown with this course.

Table 1:Lack of success due to D’s, F’s, and W’s. The
percentages and numbers across RAPT sections are compared

with regular CS1-3 sections.

 Normal Sections* RAPT*
CS1 10% (n=443) 8%(n=37, Pass/Fail^)

CS2 19% (n=360) 22% (n = 32)

CS3 16% (n=319) 0% (n = 21)

CS4 27% (n=34)& 5% (n=20)
* Lack of success indicates that a student had a D, F, or
W and does not indicate any loss due to students
choosing not to take the course on the normal course
track.
^ Students in the summer RAPT program had Pass/Fail
due to the placement exam in the fall being the measure
of success in the course.
&The measure was obtained from one section of CS4
rather than all.

As a potential side effect of the distance nature of the course,
students were shown to be less intimidated by their peers than
regular CS1 students (see Table 2). It is possible that the distance
nature of the CS1 RAPT course makes students less likely to be
intimidated. Students who may not know any programming are
still able to compete with others in playing games.
Of the 34 individuals from the 2005 RAPT CS1 summer program
who placed out of CS1, 2 around the border of passing the
placement exam decided to take a regular CS1 course to solidify
CS1 knowledge (they were both successful in passing CS1-3), 1
placed into CS for AP students (the course above CS2), and 1
decided to take a regular CS2 course since he didn’t care for the
games emphasis of RAPT CS2. It is important to note that not all
students like games and a course emphasizing games should be
one of a few potential courses that a student can take to satisfy
their CS1-3 requirements.
Three students withdrew in the middle of the quarter with two of
them switching to the Information Technology major. Four
individuals also failed the RAPT CS2 course and all of them
suffered from overall university GPA’s below 2.0. This represents
a 23% loss in students, which is fairly similar to the 19% of
students receiving D’s, F’s, and W’s among the regular CS2
sections from the fall of 2005. RAPT CS2 retention was not
significantly different from regular CS2.
Since the CS2 final measures basic understanding of common
programming concepts, the regular CS2 final could be translated
into C# for RAPT. Thus, the regular and RAPT finals that were
given were very close to each other. The average on this final was
85%, which compared favorably with final exam averages from

the same teacher in a previous regular CS2 section where the
average was 81%. The similarities between the averages imply
that the RAPT students are not being hurt by the emphasis on
games in the course.
Slightly more students received A’s in the course (44%) in RAPT
when compared with the average student in a regular CS2 section
(37%). The instructor’s average percentage of A’s from previous
CS2 sections was 30%. Students from the CS2 course compare
favorably with students in regular sections.

Table 2: Student perception of intimidation due to their peers.
While the numbers are significantly smaller due to the size of

the RAPT course, intimidation percentages look different
from a normal CS1 course.

 Always Frequently Sometimes
CS1 (n=369) 7% 15% 23%
RAPT 2005
Survey Week 4
(n=33, 2005)

0% 3% 30%

RAPT 2005
Survey Week 10
(n=21, 2005)

0% 5% 19%

RAPT 2006
Survey (n=30)

0% 10% 13.3%

Of the 20 students entering RAPT CS3, there were no D’s, F’s, or
W’s from the course. This is the first point where there is a fairly
large difference from the regular CS3 course. In regular CS3, D’s,
F’s, and W’s were obtained by 16% of the people taking the
course.
In order to show the effects of the RAPT sequence on students, all
students passing CS3 were tracked through CS4 during the spring
quarter and will be tracked through Software Engineering I and
Operating Systems. None of these courses are taught by the
professor teaching the RAPT courses.
CS4 introduces students to the C++ language and more
sophisticated software design. Of the 20 RAPT students entering
CS4, all passed the course but one. The one that did not pass
failed multiple courses during the spring quarter. Of students
taking the course, 60% of the students passing CS4 received a
grade of A in the course, 35% received B’s, and 5% (1 person)
received a C. None of these students have changed majors.
The grades obtained from a regular CS4 section during the spring
quarter (n=34) were 38% A’s, 24% B’s, 12% C’s, 3% D’s, and
24% F’s (rounded percentages). The trend of RAPT students
obtaining higher grades with less of a likelihood of dropping out
or failing CS classes continues with CS4.

62

4. DISCUSSION AND FUTURE WORK

The higher success rates of RAPT students in CS3 and CS4 could
be due to several factors. The main factors most likely affecting
the success of these students are the games emphasis of the course
and the self-selected nature of the students themselves.
Students themselves think that the games emphasis is a very
positive experience with subjective comments like the following
as indicative of the majority of the class: “The one thing I really
like about this course is that it’s programming focused on video
games. Personally, when I first started this program, I thought it
was going be average CompSci class, just with like one or two
references to video games. Then, probably after the second day, I
realized that this program was new and demanding, yet exciting,
fun and way different then regular CS classes.” One hundred
percent of those going through the program wanted RAPT to
continue for future students.

CS4 was taught to RAPT CS4 students in a studio learning
environment and could have contributed to the higher number of
A’s seen between the RAPT and regular students. The course
materials, projects, and outcomes are the same between the
sections.

The self selected nature of the RAPT students means that they
could be more highly motivated to achieve than regular students.
Several occurrences outside of RAPT indicate the nature of the
RAPT program may have picked out these kinds of students, even
though they are not generally students who would have been
chosen for the university honors program and they did not have
CS AP exam credit in general.
As an example, the regular CS4 course is normally taught in a
lecture/lab delivery style. Upon hearing this, the RAPT students
in CS3 put together a petition in order to ask the Computer
Science Department to consider allowing a RAPT CS4 section in
the studio delivery model. All students in the course signed this
petition and after meeting with the CS department chair, the
course was allowed to be in the studio delivery model as opposed
to the normal lecture/lab model.
RAPT students have also been very active in the department. The
Computer Science Department hires student lab instructors to help
teach CS1-4 labs. Of the 42 lab instructors for fall of 2006, 6 are
from the 20 that went through RAPT CS3. This represents 30% of
the RAPT section. It is much more normal to see around 10% of
students from a CS3 section apply to be lab instructors.
In the future, more results from RAPT will be collected as the
program is in its second year. Original RAPT students will also be
tracked through Software Engineering I as well as Operating
Systems in order to look at any grade/retention differences.

5. ACKNOWLEDGMENTS
This program was supported by a Microsoft Computer Gaming
Curriculum grant.

6. REFERENCES

[1] Ali, M.,GGL’s First Annual Gaming Survey, Retrieved

September 8, 2006 from
http://www.ggl.com/news.php?NewsId=3886

[2] Sweedy, E., deLaet, M., Slattery, M. C., and Kuffner, J.,
Computer game and CS education: why and how, Proc. of
the 36th SIGCSE technical symposium on Computer science
education (Feb. 2005), 256-257.

[3] Parberry, I., Roden, T, and Kazemzadeh, M. B.., Experience
with an industry-driven capstone course on game
programming, Proc. of the 36th SIGCSE technical
symposium on Computer science education (Feb. 2005), 91-
95.

[4] Clua, E, Feijo, B., della Rocca, J., Schwartz, J., Das Gracas,
M., Perlin, K., Tori, R., and Barnes T., Game and
Interactivity in Computer Science Education, SIGGRAPH
Educators Program, 2006.

[5] Schrier, K., Using Augmented Reality Games to Teach 21st
Century Skills, SIGGRAPH Educators Program, 2006.

[6] Rankin, Y. A., Gold, R., and Gooch, B., Playing for Keeps:
Gaming as a Language Learning Tool, SIGGRAPH
Educators Program, 2006.

[7] Schwartz, J., Stagner, J., and Morrison, W., Kid's
Programming Language (KPL), SIGGRAPH Educators
Program, 2006.

[8] Lewis, M. and Massingill, B., Graphical Game Development
in CS2: a Flexible Infrastructure for a Semester Long
Project, Proc. of the 37th SIGCSE technical symposium on
Computer science education, 2006.

[9] Parberry, I., Kazemzadeh, M., and Roden, T., The Art and
Science of Game Programming, Proc. of the 37th SIGCSE
technical symposium on Computer science education, 2006.

[10] Chamillard, A.T., Introductory Game Creation: no
Programming Required, Proc. of the 37th SIGCSE technical
symposium on Computer science education, 2006.

[11] Bayliss, J.D. and Strout, S., Games as a Flavor of CS1,
Proc. of the 37th SIGCSE technical symposium on Computer
science education, 2006.

[12] Coleman, R., Krembs, M., Labouseur, A., and Weir, J.,
Game design & programming concentration within the
computer science curriculum, Proc. of the 36th SIGCSE
technical symposium on Computer science education (Feb.
2005), 545-550.

[13] The EA Spouse Letter, Retrieved August 10, 2006 from
http://ea-spouse.livejournal.com/274.html.

[14] Bayliss, J., RAPT CS1 Course Home Page, Retrieved
September 8, 2006 from http://www.cs.rit.edu/~cs1.

[15] Bayliss, J., RAPT CS2 Course Home Page, Retrieved
September 8, 2006 from http://www.cs.rit.edu/~cs2.

[16] Bayliss, J., RAPT CS3 Course Home Page, Retrieved
September 8, 2006 from http://www.cs.rit.edu/~cs3.

[17] The Gamebots mod, Retrieved September 8, 2006 from
http://www.cs.rit.edu/~jdb/gamebots.

63

http://www.armadilloaerospace.com/n.x/johnc/Recent%20Updates
http://www.armadilloaerospace.com/n.x/johnc/Recent%20Updates
http://ea-spouse.livejournal.com/274.html
http://www.cs.rit.edu/%7Ecs1
http://www.cs.rit.edu/%7Ecs2
http://www.cs.rit.edu/%7Ejdb/gamebots

XYZZY: Finding New Magic in Text Adventure Games
 Brian C. Ladd

State University of New York,
Potsdam

Potsdam, NY 13676
1-315-267-2944

laddbc@potsdam.edu

ABSTRACT
. Computer game development entices, entertains, and engages
students of the "Nintendo" generation. Many instructors have
taken this to mean that students must develop games as
graphically intensive as those recently released by Nintendo. The
current work describes the use of text adventure games to engage
students at much lower cost. The focus on text means students
work with standard C++ and the fundamentals of computer
science rather than being distracted producing eye candy. Student
enthusiasm, evaluations, and outcomes attest to the success of our
approach.

Categories and Subject Descriptors
K.3.2 [Computer Science Education], K.8.0 [Games]

General Terms
Design

Keywords
Text adventure game, computer science education, C++, game
studies

1. INTRODUCTION
Before the recent slump in interest in undergraduate computer
science, computer games were well nigh invisible in the computer
science curriculum. Now, as the computer games industry grows
and new cohorts of undergraduates come to college having been
raised on game consoles of ever increasing capability, computer
science educators look to computer video games to entice,
engage, and educate new computer scientists. Computer science
educators look to bring technologies from the computer games
industry into the classroom in capstone projects, game
development concentrations, and even introductory courses.
Unfortunately, the use of industrial strength solutions in
introductory courses can add to introductory students' frustration
as they must surmount the learning curve for both a new
programming language and a complex and powerful video game
engine. This paper reports on success in harnessing the
engagement and entertainment aspects of computer games for
introductory students by reaching back into the history of

computer games, back to the era of text adventure games. This
approach has been applied as both a final project in an objects-
early CS1 course as well as a project-based CS1.5 course.
These projects also lend themselves to the use of reinforcing
parallel development of both a game and a game engine, the
introduction of current literature in game studies, the use of prose
and oral design presentations, and student designed assignments.
All of this while maintaining a focus on computer science
fundamentals clearly wrings new magic from a venerable game
genre.

2. DIGITAL GAMES IN CSE
Soloway and Guzdial [24, 6] both discuss how many students
now entering college were exposed to computers through 16-bit
consoles. Both discuss ways to use games in the computer
classroom to raise interest and engagement in programmers of the
"Nintendo generation." The Oblingers make similar observations
across the curriculum, also noting that increased engagement
correlates with improved performance[17].
For all the reasons discussed in the above, the use of digital games
in computer science education has grown in recent years.
Bayliss[1], Ladd[13], Ladd and Harcourt[12], and Parberry et.
al.[18.19] all discuss using game development assignments in
different level courses. Several different approaches were
discussed in a panel by Woltz et. al.[27].
Except for Ladd, the above examples all focus on the use of
graphical computer games in the classroom. Even descendants of
Karel the Robot use graphics and sound to reward students
learning to use them [20,4].
Recent work in game studies has looked past graphical digital
games to a simpler, text-based age. Jerz has described scholarship
in interactive fiction or text adventure games[8] and Monfort's
Twisty Little Passages is a deep literary study of the genre,
examining it as a modern expression of the timeless art of the
riddle[14].
Text adventure games have been used in computer science
education: Moser looked at making a text adventure game to
teach programming concepts[15] and Summit's class notes teach
C using a text adventure game project[25].
Using games to entice, entertain, and engage introductory
programmers has been successful; many of the approaches,
however, use graphical programming. This either requires a
complex game engine or toolkit for students to program or a lot
of additional effort for students to get the game looking the way
they want. Taking a page from the game studies literature, the
current paper reports on gaining the benefits of games without the
graphics, of traveling back in time to the days of the great text
adventure games.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

64

3. T
EXT
ADVE
NTUR
E
GAM
ES

Our
Goals
Having
historical
ly taught
a CS1.5
project
course
with each
professor
designing
their own semester long project, the computer science faculty
sought a single project that met five goals: use standard C++;
include opportunities for student communication in written and
verbal form; require creative, student-designed content; provide a
context for the introduction of a wide range of software
engineering topics; and engage our students.

Limiting ourselves to standard C++ meant that students would
focus on fundamental concepts such as classes, functions, and
containers rather than loading a different animated image on
every button. Success in CS2 requires a mastery of the syntax and
semantics of simple data structures, not a particular GUI or
toolkit.

Communicating across the curriculum is important, particularly in
a small liberal-arts institution with a required capstone
experience. Students have a tendency to compartmentalize
educational topics, keeping writing for English classes and oral
presentation for public speaking class. Explicitly including them
in the projects goals communicates to all instructors how
important they are.

Student-designed assignments protects students from plagiarism
while still permitting them to talk about their projects. Being able
to help one another improves all students' learning. Further, by
designing their own content, students are masters of their own
destiny; it increases their buy-in to the project and thus their
engagement.

A semester-long project could lead to workman-like lectures. To
keep up instructor interest a good project would serve as a starting
point for introducing a wide variety of topics.

Designing a text adventure game along with a text adventure
game system to display the game fits these five criteria
marvelously. Our success in using student-designed content, in
particular, mirrors that reported in in Toothman[26].

Operational History
Current students were born after the golden age of the text
adventure game; they have little or no knowledge of Adventure,

the first
text

adventure
game[5]

(see
Figure 1).
A text
adventure
game is a
simulated

world in
which

players
use text
command

s to
control

their
character'

s actions.
Input and

output
limited to text fit very well with the capabilities of early home
computers and programming languages. Purely text adventure
games enjoyed a commercial heyday through the early 1980's.
Companies such as Infocom, Level 9, Magnetic Scrolls, and
Adventure International enjoyed financial success with games like
Zork, The Hitchhiker's Guide to the Galaxy, and Amnesia. As the
power of home computers grew, consumers and producers of
computer entertainment began to move from text-based
interactive stories to more and more graphically intensive games.

Figure 1: Screenshot: Colossal Cave Adventure

As the commercial viability of text adventure games waned, a
crop of community-produced interactive fiction rose. Free
interactive fiction authoring kits were developed and deployed
including Inform and TADS. Over the past decade the quality of
interactive fiction produced by the on-line community has
surpassed the best commercial games and the Interactive Fiction
Archive [7] holds the winners of the Interactive Fiction Awards
(for winners of the Comp, an annual competition for short works)
and the XYZZY Awards.

It's All Writing
Students are introduced to the field of interactive fiction and then
sent off to select and play a game. They must write up their
experience and also give a short (5 minute) presentation on the
plot and interface of their game. This acquaints the class with the
conventions of text adventure games much more broadly than
playing just their one game.

The course project is about constructing both a game and a game
engine in parallel. This introduces students to the idea of data
driven programming and permits each type of writing to support
and reinforce the other.

Data driven programming, the idea of creating an "engine" with
performance that is changeable through the use of different data
files, is something that many students have been exposed to
without even realizing it. Many have played game "mods" or
modifications which demonstrate that the games are data driven.

65

They are, in many ways, amazed that they, too, can write games
that can be modded.
The idea that programming is just a specialize form of writing has
been explored by the author (see Ladd[11] and its references) and
used to good effect. The successful translation of writing
assignments to programming assignments and the utilization of
students' familiarity with writing essays to enhance beginning
programming skills led to thoughts about how writing a game and
writing a game engine are similar.
Consider the execution of a single-threaded program. The point of
control begins in main()and "visits" lines sequentially unless
directed otherwise. Thus an executing program can be compared
directly to a single player moving into and through the world of a
text adventure game. So designing a program is akin to designing
a game; designing a method is akin to designing a room; the
calling stack is akin to the history of path from where the avatar is
back to the beginning of the game. These similarities are
explained as each portion of the game project unfolds. This
permits students to see that groups of nodes can provide a useful
abstraction (so that they can talk about "the mansion" without
having to specify exactly which nodes are in it) just as defining
classes can provide abstraction for groups of methods.
In the classroom (and on-line discussions with students) the
author has seen the light come on for some struggling students
when the explanation from the "other" strand of writing is given
to them. Work to tease out the exact relationship between the two
design realms remains for another day.

4. PROJECT-BASED CS1.5
CS1.5 begins with an introduction to C++ (CS1 is taught in Java).
Thus it begins with a series of review exercises to teach students
the new syntax. The remainder of the semester uses the text
adventure game. (Portions of this section are modeled on Section
4 of [13].)

Review Assignments
Prior to settling on a text adventure game project, review
assignments were ad hoc, designed by each instructor as the
semester began. This meant that there was sometimes a
disconnect between the review exercises and the project.
When the text adventure project was adopted, a set of review
assignments were designed that take students from zero to being
able to parse a string into a vector of strings. This assignment is
similar to that found in Koenig and Moo's fifth chapter[10]. The
final review assignment is to read files containing attribute=value
pairs. These simple files then serve as the basis for all
configuration files for the text adventure game engine.

Phases of Adventure
Introduction to Interactive Fiction
The first day of class students are introduced to the genre of text
adventure games. As described above they are guided to the
Interactive Fiction Archive and to the Comp winners in particular.
The Comp entrants are designed to be finished in two hours by
experienced judges; the short story lines, limited number of
puzzles, and generally high quality make these very good
introductions to interactive fiction for the students.

At the end of two weeks, most students have completed their
game and give a good presentation. This phase focuses on
communication and engaging students; it runs in parallel with the
review assignments. Starting with the history of Adventure leads
to discussions of the history of games, history of the Internet, and
even a history of computers.

Game Design
Students hear about all the games played in the class and then the
design their own. While designing, students read Nelson's The
Craft of Adventure[16]. This document takes them inside the head
of an author of great interactive fiction and a great interactive
fiction system. It provides students with insight into the job of a
game designer.
The design assignment specifies as little as possible so that
students make their creative contribution to the assignment at this
stage. They select who the player is, what the goal of the game is,
and how the avatar interacts with the game world and its
inhabitants (combat, conversation, other). This last bit is crucial.
With a decade of experience in using digital game assignments in
CS1-CS2, the author has observed that gratuitous violence turns
women away from computer science; research bears this out[9].
This has led us to give students as much leeway as possible to
determine the level and types of conflict in their games. Research
also suggests that customization has positive effects on student
outcomes[23].
This assignment now culminates in both a written and oral
presentation of the design. The oral presentation, added after the
first time the course was taught, has greatly improved student
engagement and made the entire class aware of all the different
games.
This assignment mixes customization of the game with
communications skills practice. Topics presented during this
phase include the difference between a "choose your own
adventure" book where there is no memory of previous actions
and a good adventure game where choices have consequences.
This is also where faculty guidance is most important. Student
game designs are typically far too ambitious. Rapid turn around is
necessary to help students scale-back their designs and move
some of the harder ideas into the "Extended Game" phase at the
end of the semester.

Location Class
Students design and code their Location class. They also build
a temporary driver program that loads 10% of their game world.
Though it is never described in these terms, the locations of a text
adventure game are the nodes of a digraph. Students must
determine how to serialize this structure in a self-describing text
file (as per Bentley[3]); the file format must be field-order-
independent with support for comments.
This is the first coding phase, the first trip from design to code
and back again. They learn that designs are not static. They are
also introduced to the Factory design pattern (though we do not
use that terminology at this point). This phase teaches and uses
standard C++. It is a perfect opportunity to discuss what
serialization is and how data driven programs work.

Detailed Game Design
The game design seldom survives the first engagement with the
code. Using the guidance from the instructor students fill in

66

blanks in their game, specifying the gameplay and attributes for
critters and items.
While working on this design, students are introduced to different
views of games. Lectures and readings from Salen and
Zimmerman's Rules of Play[22] present games as simulations,
entertainment, and stories. Monfort's analysis of text adventure
games is also presented at this point.
Students played text adventure games and then stepped back to
present what made them fun or not fun; this is the first step into
game design. While this assignment focuses on learning C++, the
"fun factor" in the game is critical to engagement so students must
learn something about game design. This phase also works on
written communication skills.

Game Class
As the next phase begins, students are presented with a suggested
architecture for the game engine. Presenting a suggested
architecture pushes all of the programs to have similar structure;
this runs counter to the idea of student customized project. This
compromise is a necessary evil: CS1.5students lack the design
maturity to create a moderately complex multi-class solution.
Students construct the Game class, a Singleton that brings
together all of the resources for a game. This replaces the driver
program from the Location phase. It leads to the discussion of the
"game loop" which displays the game state, processes user input,
and updates the game state. Students are sometimes surprised to
find that this loop is at the core of all interactive programs.

Critter, Item, Inventory, and Playable Game
At the end of the Game phase, students have a navigable map
without any interaction. It would be possible to make the
development of a playable game a single phase yet with five
weeks to implement three major classes (Critter, Item,
Inventory) internal milestones serve to motivate students and
keep them on track.
The Inventory class is the one non-STL container constructed
during the class. Students learn about linked lists in this course
and don't really understand it until they have implemented it for
themselves. Students practice using pointers, reading different
kinds of configuration files, and implement all additional
commands designed in previous phases.

Extended Game
At the end of the previous phases students have a working text
adventure game. As with the grading described in Becker [2], a
working text adventure game with locations, items, and critters,
constitutes a threshold. Completing it by the end of the semester
(while it is "due" two weeks before the end of the semester) is
worth 2.5/4.0. The final phase of the project, due at the end of the
semester, is to extend the game using some technique presented in
class: inheritance, templates, conversation trees (really just
``mini-maps'' with different labels on the movement directions),
combat, saving/restoring games in progress, etc.
We also present MS Windows specific GUI programming at this
point and offer students the chance to extend their project by
adding an MFC-based GUI to it. The change from having control
of the game loop to an event-driven program is a real challenge
but many students want to have a "pretty" program when they are

done. Student feedback on this led us to bend our rule to use only
standard C++.
During the final exam period, all of the students return to the
classroom for one last time, each having prepared a slightly
longer presentation on their completed game. They highlight the
extensions they completed and lament the extensions they could
not get working. These presentations are well received by
everyone in the class. They are the capstone on the course,
showing students just how far they have all come.

5. EVALUATION
Ours is a small liberal arts college with a long history in computer
science and a short history with a computer science major. The
CS1.5 course is designed to help smooth the learning curve for
new students while permitting staffing with our two tenure-track
computer scientists. Developing a text adventure game
assignment is a lot of work; writing both a text adventure game
and a game engine in one semester is a whole lot of work. Is this
assignment worth staff and student investments?
The assignment has fulfilled its five primary requirements very,
very well. Except for the optional GUI extension, student game
engines use nothing but standard C++. Written and oral
communication assignments are built into the assignment and
enhance student engagement when the present both their game
design and their final game. Student game designs are not always
prefect but they do increase student commitment to their project
and again, enhance engagement. The game motivates discussions
of computer history, interactive programs, software design
patterns, and an oblique introduction to the graph data structure.
Student engagement is obviously improved. Graduating seniors
have been known to talk about their text adventure game in front
of their parents or siblings. They also talk about them at
departmental social events, commiserating with sophomores who
are taking the course and mentioning that most programs they
write in later courses had parts they had first written in their text
adventure game.
Students who finish CS1.5 are obviously prepared and motivated
to go on to CS2; in four years only one student has chosen not to
go on (a greatly improved retention rate) and only one who went
on failed CS2. Anecdotally, poorer students have done better with
this assignment than before. Another measure of our success is
anonymous student evaluations. Comparing semesters with the
text adventure game with the authors evaluations in the same
course before the text adventure game, every measure of student
satisfaction is better. The only negative in the student evaluations
is student perception of workload in the course.
This project is large even with high-level architecture and a great
deal of code presented in class, students work very hard in this
class. Since this serves as an introduction to software engineering
in our curriculum, this is currently acceptable. Student buy-in to
the project is the only reason they will work this hard.

6. CONCLUSION
Four successful years of using the text adventure game
assignment shows that it has met its goals. Student-designed
content increases student motivation. The use of threshold grading
also motivates them with a feeling of control over their academic

67

outcome. The use of simple text I/O helps students focus on the
fundamentals.
The author hopes, in future courses, to extend this success in
several ways. The addition of more software engineering tools
such as on-line discussion boards, wikis, and software version
control will enhance the introduction to software engineering. It
will also provide useful base knowledge for later courses. This
assignment might also lend itself to the use of agile development
methods. Finally, the addition of more game design and game
studies material would help students place their creations in a
broader context and give them a deeper understanding of games
so they can decide whether or not to take our upper-level
Computer Games and Simulations course.
 The use of a project-based CS1.5 has proven its usefulness over
the years. The text adventure game project has, also, proven its
worth. It has met all of our pedagogical goals and eased the
preparatory burden for teaching CS1.5 while still keeping the
project fresh for both the Atari and the Nintendo generations.

7. ACKNOWLEDGMENTS
The author wishes to thank Dr. Collen Knickerbocker for the idea
of using text adventure games in introductory courses as well as
his invaluable support of my tenure case.

8. REFERENCES
[1] Bayliss, J. D. and Strout, S. 2006. Games as a "flavor" of

CS1. In Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education (Houston,
Texas, USA, March 03 - 05, 2006). SIGCSE '06. ACM
Press, New York, NY, 500-504.

[2] K. Becker. Teaching with games: the minesweeper and
asteroids experience. In The J. of Computing Small Coll.,
17(2):23–33, 2001.

[3] J. Bentley. More Programming Pearls. Addison Wesley
Publishing, Reading, MA, USA, 1988.

[4] Bergin, J., Roberts, J., Pattis, R., and Stehlik, M. 1996
Karel++: a Gentle Introduction to the Art of Object-
Oriented Programming. 1st. John Wiley & Sons, Inc.

[5] W. Crowther, D. Woods, and K. Black. Colossal cave
adventure. ftp://ftp.gmd.de/if-
archive/games/pc/adv350kb.zip. MS-DOS Executable.

[6] M. Guzdial and E. Soloway. Teaching the nintendo
generation to program. Commun. ACM, 45(4):17–21, 2002.

[7] Interactive fiction archive. http://ifarchive.org/.
[8] D. Jerz. Interactive fiction: An introduction to scholarship.

http://jerz.setonhill.edu/if/bibliography/intro.htm, August
2001.

[9] S. Kiesler, L. Sproull, and J. S. Eccles. Pool halls, chips, and
war games: women in the culture of computing. SIGCSE
Bull., 34(2):159–164, 2002.

[10] Koenig, A. and Moo, B. E. 2000 Accelerated C++:
Practical Programming by Example. Addison-Wesley
Longman Publishing Co., Inc.

[11] Ladd, B. C. 2003. It's all writing: experience using rewriting
to learn in introductory computer science. J. Comput. Small
Coll. 18, 5 (May. 2003), 57-64.

[12] Ladd, B. and Harcourt, E. 2005. Student competitions and
bots in an introductory programming course. J. Comput.
Small Coll. 20, 5 (May. 2005), 274-284.

[13] Ladd, B. C. 2006. The curse of Monkey Island: holding the
attention of students weaned on computer games. J. Comput.
Small Coll. 21, 6 (Jun. 2006), 162-174.

[14] N. Monfort. Twisty Little Passages: An Approach to
Interactive Fiction. MIT Press, Cambridge, MA, USA, 2003.

[15] R. Moser. A fantasy adventure game as a learning
environment: why learning to program is so difficult and
what can be done about it. In ITiCSE ’97: Proceedings of the
2nd conference on Integrating technology into computer
science education, pages 114–116, New York, NY, USA,
1997. ACM Press.

[16] G. Nelson. The craft of adventure. Web,
http://www.ifarchive.org/ifarchive/info/Craft.Of.Adventure.
T1.letter.pdf, 1995.

[17] D. Oblinger and J. Oblinger, editors. Educating the Net
Generation. Educause, June 2005.
http://www.educause.edu/educatingthenetgen/.

[18] Parberry, I., Roden, T., and Kazemzadeh, M. B. 2005.
Experience with an industry-driven capstone course on game
programming: extended abstract. In Proceedings of the 36th
SIGCSE Technical Symposium on Computer Science
Education (St. Louis, Missouri, USA, February 23 - 27,
2005). SIGCSE '05. ACM Press, New York, NY, 91-95.

[19] Parberry, I., Kazemzadeh, M. B., and Roden, T. 2006. The
art and science of game programming. In Proceedings of the
37th SIGCSE Technical Symposium on Computer Science
Education (Houston, Texas, USA, March 03 - 05, 2006).
SIGCSE '06. ACM Press, New York, NY,

[20] Pattis, R. E. 1981 Karel the Robot: a Gentle Introduction to
the Art of Programming. 1st. John Wiley & Sons, Inc.

[21] J. M. Ross. Guiding students through programming puzzles:
value and examples of java game assignments. SIGCSE
Bull., 34(4):94–98, 2002.

[22] K. Salen and E. Zimmerman. Rules of Play : Game Design
Fundamentals. MIT Press, Cambridge, MA, USA, October
2003.

[23] G. Sindre, S. Line, and O. V. Valvåg. Positive experiences
with an open project assignment in an introductory
programming course. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages
608–613, Washington, DC, USA, 2003. IEEE Computer
Society.

[24] E. Soloway. How the nintendo generation learns. Commun.
ACM, 34(9):23–ff.,1991.

[25] S. Summit. Intermediate c programming assignments.
http://www.eskimo.com/scs/cclass/asgn.int/index.html, 1999.

[26] B. Toothman and R. Shackelford. The effects of partially-
individualized assignments on subsequent student
performance. In SIGCSE ’98: Proceedings of the twenty-
ninth SIGCSE technical symposium on Computer science
education, pages 287–291, New York, NY, USA, 1998.
ACM Press.

68

[2 7] Wolz, U., Barnes, T., Parberry, I., and Wick,
M. 2006. Digital gaming as a vehicle for learning. In
Proceedings of the 37th SIGCSE Technical Symposium on
Computer Science Education (Houston, Texas, USA, March
03 - 05, 2006). SIGCSE '06. ACM Press, New York, NY,
394-395.

69

Using XNA-GSE game segments to Engage Students
in Advanced Computer Science Education

G. Michael Youngblood
The University of North Carolina at Charlotte

College of Computing and Informatics, Dept. of Computer Science
Charlotte, NC 28223

youngbld@uncc.edu

ABSTRACT
This paper presents the notion of using game segments which are
developed solution packs providing the full code for a segment
of a game with a clear element left for implementation by a stu-
dent. In conjunction with a course teaching targeted principles and
techniques, game segments provide reinforcing homework assign-
ments. Seven guiding principles for design, and five example game
segments used in an upper-division undergraduate/mid-level grad-
uate class are described and lessons learned discussed. The game
segments are targeted at XBOX 360 deployment using Microsoft’s
XNA Game Studio Express for the online XNA Creators Club.

Keywords
Artificial Intelligence Games, Games in Computer Science Educa-
tion, game segments

1. INTRODUCTION
Since the introduction of the first game console computer science

students and game enthusiasts have desired to write programs and
games for these machines. There is a large homebrew movement
based on hacking and writing programs for game consoles; how-
ever, the legality of these endeavors is at a minimum questionable
since they often infringe on security protections and use unreleased
development tools (sources not provided to protect those involved,
but they can be easily found on the Internet). In particular, the
XBOX—since it is based on common PC hardware—has been a
popular platform to modify. To their credit, Microsoft Corporation
has realized the desire by many current and aspiring developers to
develop games and applications on the latest generation of console
platforms—the XBOX 3601.

In August 2006 Microsoft released the first beta of the XNA
(originally an acronym for XBOX Network Architecture, but now
symbolizing a game development suite of tools) Game Studio Ex-
press (GSE) [9, 8]. GSE is built upon the freely available Visual
C# 2005 Express Integrated Development Environment (IDE) [6].

1XBOX and XBOX 360 are registered trademarks of Microsoft
Corporation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Microsoft Academic Days on Gaming 2007 Ft. Lauderdale, FL USA
Copyright © 2007 G. Michael Youngblood .

This is a scaled down version of the professional Microsoft Visual
Studio IDE and provides a similar professional feeling develop-
ment platform. Using the XNA GSE, anyone can develop games
for the Windows platform and starting on December 11, 2006, they
will be able to deploy their games on a special developer version of
XBOX Live called the XNA Creators Club ($99/year subscription
fee) for the XBOX 360 [7]. This product and system for XBOX
360 signifies the first time that it will be possible for anyone with
the desire, a little money, and modest access to a PC to develop for
a game console platform.

Computer science students who, like most individuals, spend a
large part of their entertainment time playing computer games are
particularly interested in game development for a game console.
This is unchartered territory for many students and represents the
cutting edge that many students seek. Using XNA GSE also satis-
fies their desire to use tools similar to those they will use in indus-
try and many report that when using professional quality IDEs that
they feel their work is more relevant and closer to what profession-
als do.

Utilizing these student interests, I incorporated XNA GSE into
my upper-division undergraduate/mid-level graduate Artificial In-
telligence for Interactive Computer Games class (Game AI) this
Fall (2006) at the University of North Carolina at Charlotte (UNCC).
The goals of this paper are to share my experiences in developing
challenging homework assignments for the class, provide a number
of guiding design principles, relate my observations from the stu-
dent work, and overall forward my ideas of creating game segments
for use in computer science education.

This course was originally designed to delve deep into the specifics
of agent-based AI for controlling the environment, characters, and
elements specifically for interactive computer games. Since it was
a first-time offering at UNCC and the prerequisites were open, all
of the students that signed up for the class had no prior AI classes
and only 2 had considered taking an AI class before this course was
offered. From the onset, the game aspect had already drawn in 82%
of the class to take a course of study that would not have prior—
introducing them to the field of artificial intelligence. However, this
class was originally intended to be a more advanced agents class,
but because of the lack of prior AI experience this class ended up
providing more of an introduction to AI—so, I strongly believe that
everything discussed in this paper is equally applicable to an Intro-
duction to Artificial Intelligence class. I also believe that games
could also be applied to most upper-level and masters specialty
classes (e.g., networking, computer graphics, databases) in a simi-
lar manner.

2. GAMES IN CS EDUCATION
Using games incorporated into computer science education is by

70

no means something new or novel, but most of the focus has been in
introducing game development classes, incorporation into the CS1
and CS2 curriculum for lower-division undergraduates, or allowing
a game as a capstone project [15, 10, 4]. Games are a popular topic
in education at the moment.

This paper specifically discusses games as applied to homework
assignments in an artificial intelligence class for the upper-division
undergraduate/mid-level graduate student providing another data
point of game incorporation into collegiate education. It does not
promote the use of a single game adapted through the semester as
in [4], but rather a different mini-game or game segment for each
assignment providing a focused and relevant assignment for the de-
sired learning task.

3. GAME SEGMENTS
One of the biggest problems facing students with any assignment

is how to get started. In assignments where the object is to apply the
learned concept from class to a computer game, the student needs
to be isolated from everything that does not pertain to the knowl-
edge they are to apply. This means that they should not program
any aspect of the game not related to the specific objective. The
method that I use to focus the students starts with creating project
scaffolding for what I call a game segment. A game segment is
not a full game, although it could be, but merely a section of a
game where it would be feasible to apply the technique that the
student should program into the game. It should make sense from
a broader perspective that a game segment could fit into a larger
setting becoming a part of a much larger game—this helps engage
the student and reduces the burden for developing scaffolding. All
of the game segment elements that do not pertain to the learning
objective should be programmed and the areas where the student is
to insert their application of the desired technique should be clearly
indicated. Getting started is not so scary to the student now since
they can build the project (which should initially compile and run
without their additions) and have clear areas for them to contribute.

The game segments should include the following elements:

1. Clear and concise assignment instructions

2. A solution pack for XNA Game Studio Express or similar
construct using other middleware with the following:

(a) Project file that maps all content into the IDE

(b) Well-documented object-oriented code files making the
game

(c) A working solution or video/class demonstration to il-
lustrate the desired action of the game when properly
developed

(d) Art and audio assets to support the game

(e) Any data files necessary

(f) Development notes

(g) Clearly defined areas for students to perform their pro-
gramming tasks

3. Source material for any incorporated elements (e.g., code li-
braries)

The key idea is to get the student to focus on the main learning
objective—the application of the learned technique and not all of
the other aspects of the game. However, students do also desire to
adjust the parameters of the game, examine the code to understand
it, and change the art and sound assets to evolve the game to their

own liking. Game segments should support these activities and may
incorporate them into the assignment.

In the Game AI class, five home work assignments in the form of
game segments were developed. At the time of the writing of this
paper only four have been currently assigned, but we can examine
the basic elements of each to gain a better understanding of what
they provide and what they test. All of these game segments are
designed for XBOX 360 deployment and make use of the XBOX
360 game controller which can also be used on a PC. In some cases
the computer keyboard is used, which is consistent with XBOX
360 deployment since a USB-based keyboard can be plugged in
and will work with the XBOX 360.

3.1 Chat Bot
The first game segment assignment is an exercise on developing

a reflex agent without state through the creation of a conversation
agent. This chat bot will engage in discourse and interact via the
screen with a character controlled by the player using game con-
troller for movement and the keyboard for text entry. Wallace’s
AIML (Artificial Intelligence Markup Language) [13],used in AL-
ICE [14] and winner of the Loebner Bronze Prize [5], is used in
conjunction with Nick Tollervey’s open source C# AIML engine
[2].

The student only needs to create the AIML (developed in XML)
file for the chat bot and the bot profile that creates some background
for the agent. The AIML establishes a set of conversation patterns
and corresponding responses. As an exercise in state overlap, the
students were also asked to include the default knowledge base and
two others of their choosing from a set of 28 provided. The conflict
from their conversation elements with ones from the incorporated
conversation knowledge base is inevitable and requires the student
to explore and modify all of the knowledge bases used in order to
create a seemingly intelligent agent.

Figure 1: Liz Sherman has a Secret game segment.

The example provided with the base code is called “Liz Sher-
man2 has a Secret”. This involves two characters, Abe Sapien3

(played by the human player) and Liz Sherman, in which Abe is
supposed to determine Liz’s secret (i.e., that she is a firestarter)
through verbal discourse as shown in Figure 1

In order to promote more interest and engagement of the class
with the exercise, they were also tasked to exchange the charac-

2After the Mike Mignola character from the Hellboy oeuvre.
3Ibid.

71

ter and background images in order to change the premise of the
game which is summarized in the following statement: You are
[the] {blank} of {blank}, and your job is to ask {blank} about
{blank} in order to {blank}.

3.2 Motion Planning
The second game segment assignment is an exercise on develop-

ing a reflex agent using state and planning in a three phase exercise
involving a foraging task. The agent takes the form of a chipmunk,
Zippy, in a 32×24 discretized field with a river as shown in Figure
2 in which he must find an acorn and then return to his burrow.

Figure 2: Elysium Fields game segment.

The game segment has been setup to accomodate an agent chip-
munk with a percept interface and a control interface in two modes.
The percept interfaces allows the agent to see in a 5 × 5 grid cen-
tered around the agent. Separate percepts for the acorn smell and
capture are provided. Acorn smell is reported true if the acorn is
within a 5 grid radius of the agent. If the acorn is picked up by
the agent using the pickUp action when the agent and acorn occupy
the same grid area, then the haveAcorn percept will be true. The
agent is also provided two distance sensing sensors when in reac-
tive mode which are placed 2 grid squares forward and diagonal left
and right in front of the agent. These sensors relay the Euclidean
distance of the acorn to each sensor.

The control interfaces is broken into two modes of operation.
In deliberative mode the agent can move in one of five possible
ways (moveUp, moveRight, moveDown, moveLeft, burrow). The
burrow action can only occur on the entry location to the agent
chipmunk’s home (a known location) and will allow the agent chip-
munk to enter its home. The second mode involves agent moves of
rotateRight, rotateLeft, moveForward, moveReverse, and pickUp
for reactive control of the agent chipmunk.

The goal of this game segment is to locate the single acorn in
the level map, pick it up, and then return to the chipmunks burrow
with the acorn. Successful entry into the chipmunks home with the
acorn results in a win. Goal execution is performed in 3 distinct
phases:

1. The first phase is for the agent to explore the map using a
search method and one of the following collision avoidance
methods: Contour tracing, Collision avoidance tracks, Way-
points from the centroids of decomposed cells, or Voronoi
pathways or other potential field methods other than pure
gradient [3, 12].

2. The second phase is initiated upon smelling the acorn and
consists of a shift from a deliberative search to a reactive fo-
cus and grab behavior. The agent shall focus on the acorn
and move close to the acorn center and issue a pickUp com-
mand. Capture of the acorn signals the end of the foraging
task and the beginning of the next phase.

3. The third phase is to plan a path and execute traversal from
the acorn location to the home burrow location using A*
search [12]. When the agent chipmunk enters its home bur-
row and has the acorn then the game segment is completed.

3.3 Adversarial Search
The third game segment assignment is an exercise on develop-

ing an adversarial search [12] game segment revisiting the Elysium
Fields of game segment 2. Using that grid discretized world, con-
sider a game where player one, Zippy the chipmunk who starts in
the lower left corner, is trying to cross over the bridge to the land
of acorns. Player two is a group of three trees who occupy four
grid spaces each in a square shape. The trees are randomly started
on the left side of the board and may not cross the bridge. This is
a turn-based game where the first player moves one square in ei-
ther a North, East, South, or West direction. The second player is
the three trees who must also all move one square each under the
same motion constraints. Player one’s goal is to get to the bridge
and cross over. Player two’s goal is to trap player one so that they
cannot move. The rock and water obstacles may not be crossed by
either player. The student is to design a Static Board Evaluation
(SBE) metric programmed as a method for this game to be used in
adversarial search where player one is MAX and player two is MIN
[12].

3.4 Neural Networks
The fourth game segment assignment is an exercise on training

a back propagation neural network [12] to control a game charac-
ter. This game segment is called Brainatars Revenge! It features
Brainatar in the upper, center of the screen who is trying to stave
off numerous apprehenders who approach from one of five direc-
tions and take six turns to approach him directly (five slots, touch-
ing Brainatar on the sixth). Some of the apprehenders have super
powers and travel twice as fast, but are recognized as supers during
their approach. The apprehenders appear randomly in each vec-
tor with only one apprehender allowed in an approach vector at a
time. Brainatar can only be touched a maximum of 10 times before
defeat. In order to prolong his freedom from his inevitable cap-
ture, Brainatar has equipped himself with a laser stun gun which
can move one position at a time or fire in this turn-based game.
Stunning the apprehenders sends them back to an offscreen pool of
individuals.

The exercise for the student is to either play the Brainatar charac-
ter or write some simple if-then logic (examples provided) to con-
trol him successfully enough to capture play data. Then using the
generated data, it is split into a training and test set as determined by
the student and used to train a C# ported libneural-based [1] back
propagation network of the student’s encoding to play Brainatar.
The trained network can be easily saved and loaded to control the
character. A provided timer displays how long Brainatar survives
in order to provide a basis for class competition.

3.5 Flocking
The last game segment assignment is an exercise on developing

flocking and steering behaviors in agents. This game segment is
called Herding Cats. There are 20 cats running stray in a field
that like to travel together in a loose herd and will follow certain

72

other animals. One animal they like to follow is the trained Basenji,
Sambuka, who is controlled by the human player. Sambuka must
lead the stray cats into a pen where they stay to feast on cat nip.

The students provide the localized leader following and flock-
ing behaviors [11] for the cat object. If the behaviors are imple-
mented correctly the character motion will appear realistic (maybe
not for cats necessarily, but other herding animals) and will allow
the player to guide them into the pen. A timer is added to allow
competition in herding.

3.6 Availability
All of the game segments described in this paper and others in

development are compatible with the XNA GSE version 1.0 re-
leased on Dec. 11, 2006, and are available for free download at
http://serenity.uncc.edu/GameSegments. I also plan to make these
available in some form on the XBOX Live XNA Creators Club
which will make them available for play on the XBOX 360. These
game segments can be incorporated into classes, used as examples,
or modified in any way compatible with the GNU Public License.

4. LESSONS LEARNED
The game segments described in this paper have been used in the

Game AI class previously mentioned up through assignment four
which is due near the time of writing this paper, but the student
questions on this assignment also provide some insight. Through-
out the design, development, assignment as homework, teaching,
and grading of these game segments a number of design princi-
ples have become evident and guided this process.

My first experience with teaching a game-related course was at
The University of Texas at Arlington (UTA) where I assisted as a
co-instructor in an Introduction to Software Engineering for Com-
puter Games course. This was the first course of its kind offered at
UTA, and as with most first-time courses had a few bumps along the
way—the most noticeable being that it takes some time to develop
a game, and if you want to develop several games in a semester the
basics needed to be provided. There are options for middleware
that greatly simplify game-making, but most do not provide the
professional level IDE or full expandability. They are also usually
limited in deployment to a single platform (the development one)
and certainly not to a game console. From these lessons learned, I
knew that XNA GSE offered the right platform, but in order to fo-
cus on learning objectives the games would need to be completed to
the point that the only elements remaining were the programming
artifacts to be provided by the students. When I first developed
the notion of putting together game segments to scaffold the stu-
dent’s work and have them focus on the application lessons and not
necessarily the game two initial rules guided me. These were the
following:

Design Principle 1:. The areas where students are to modify, incor-
porate their code, or examine for debugging should be very clear
in the game segment.

Design Principle 2:. Allow the student to easily change the cos-
metics and/or behavior of the game so they can customize it and
take ownership.

DP1 (Design Principle 1) was simply my main goal, but in dis-
cussions with many game students it became clear to me that they
wanted to be able to make the games their own. In examining the
art asset incorporation in XNA GSE, it became clear that DP2 was
possible by using simple graphics with clear directions for replace-
ment. If designed correctly changing the entire game should be
simple and not time consuming. This principle was tested in game

segment 1 with great success as can be seen in Figure 3 where the
students focused on the chat bot AI, but easily modified the segment
into a character setting of their own. All of the game segment’s art
assets can be easily changed creating an entirely different basis for
each.

While developing the game segments I was often pressed for
time in getting them prepared for the class, so the game segments
usually only contain the scaffolding needed to setup the game seg-
ment and support the programming assignment. As such, some
user friendly aspects or improvements are left as an exercise for the
students. For example, in game segment 1 which requires a conver-
sation the backspace ability for correction was not implemented.
89% of the students did implement backspace in their assignments
(one additional line of code) and spent some time exploring the
entire code base. This led to DP3, and since students look through
the entire code base—DP4. The desired element in game segment 2
(and 3) that was left out was the ability of the chipmunk to move di-
agonally in the planning phase—67% of the students implemented
those extra methods though not required.

Design Principle 3:. Always leave an element of the base code that
the students would like to change but is not required to be changed.

Design Principle 4:. Document all of the game segment source
code well. It serves as an example student will refer to for addi-
tional learning.

When game segment 2 was due many students underestimated
the amount of work it would take to accomplish the assignment.
Only 44% completed the full assignment. Upon reviewing their
work and reimplementing the solution myself, DP5 became evi-
dent. The remainder of the class was given a chance to revisit game
Segment 2 for redemption and with another week 100% had com-
pleted the assignment.

Design Principle 5:. Keep the game segment simple by testing
only one major application of a learned technique at a time with
the addition of at most one minor applied technique.

While reviewing student code for the game segments, one thing
became quite clear—that despite the style and manner that the game
segment was coded, the students would use whatever style they
were used to for programming and not follow the provided exam-
ples. In the case where they would change the entire game many
would leave all of the original variable names which usually made
no sense in the changed context of the game. Although DP6 cap-
tures an important essence of the game segments, an accompany-
ing (well-matched) coding standard and the requirement to follow
it may better help the students—particularly those bound for indus-
try.

Design Principle 6:. The game segment should encourage the de-
sired proper coding style and paradigm (e.g., object-oriented).

Throughout the semester of using game segments the students
have reported very positive feedback on using them (except for the
initial game segment 2, which was too long). They all report that
it has helped them understand XNA GSE and C# better than they
could have done on their own—only one student was a C# pro-
grammer prior to the class. Game segment 2 could be split into two
parts giving effectively three game segments from the same base as
game segment 3, which was also based on GS2. The students also
liked being able to focus on their programming objective while hav-
ing the control to improve and modify the existing code base. All
of the students are involved in a larger class game project of their
choosing and are reusing parts of provided game segments even

73

Figure 3: The unique games developed from a game segment. The original, provided game segment is in the upper left.

though not required. One group of students had converted a game
segment (#2) into a game tile engine, and another group has started
a local game company and used some parts of game segment 1 for
their initial prototype.

During the Game AI course we have often paused to share the
work of the class and at the student’s urgings have setup the ability
to have competitions starting with game segment 4. Gaming seems
to bring out the competitive nature of the students, but even though
they all do not win they seem to be learning and are all enjoying
the experience–no bruised egos experienced so far. DP7 captures
the student’s desire to share their work with each other and engage
in friendly competition.

Design Principle 7:. Design for competitions or diversity to help
show off the student’s work in class incorporating it back into the
lessons.

These design principles capture the guiding elements for the game
segments I have worked on so far, but as more become evident
they will be posted on the website and incorporated into future seg-
ments.

5. CONCLUSIONS
While most of the gaming attention in computer science is either

focused on the CS1 & 2 curriculums or game design and develop-
ment courses, their incorporation into advanced computer science
courses can help engage students in those classes as well. Stu-
dents want to work with professional level tools, work with new
technologies, and deploy applications to new frontiers. XNA GSE
offers them this opportunity using a modern IDE with game de-
ployability to the XBOX 360 platform. Instructors and students
both want to focus on the application of learned principles and
techniques allowing for some customization and therefore personal
ownership but not taking focus away from the primary task. In
this paper, I introduce the concept of a game segment created using
seven design principles and successfully used in a Game AI class
taught in the Fall of 2006 at UNCC. Using game segments allows
students to learn and do more in a focused manner.

I plan to incorporate game segments into more classes, make
more available on the Internet, and further develop design princi-
ples for creating them. Their effectiveness as a teaching and learn-
ing mechanism needs to be evaluated. As fully tested suites mature
for courses and are adopted, their impact on learning will be as-
sessed.

6. REFERENCES

[1] P. Crochat and D. Franklin. libneural home page.
http://ieee.uow.edu.au/∼daniel/software/libneural/.

[2] N. H.Tollervey. An AIML Chatterbot in C#.
http://ntoll.org/article/project-an-aiml-chatterbot-in-c.

[3] A. LaMothe. Tricks of the Windows Game Programming
Gurus. Sams, Indianapolis, IN, USA, 2002.

[4] M. C. Lewis and B. Massingill. Graphical game development
in cs2: a flexible infrastructure for a semester long project. In
SIGCSE ’06: Proceedings of the 37th SIGCSE technical
symposium on Computer science education, pages 505–509,
New York, NY, USA, 2006. ACM Press.

[5] H. Loebner. Home Page of The Loebner Prize in Artificial
Intelligence.
http://www.loebner.net/Prizef/loebner-prize.html.

[6] Microsoft Corporation. Microsoft Visual C# 2005 Express
Edition.
http://msdn.microsoft.com/vstudio/express/visualcsharp/.

[7] Microsoft Corporation. XNA Frequently Asked Questions.
http://msdn.microsoft.com/directx/xna/faq/.

[8] Microsoft Corporation. XNA Game Studio Express.
http://msdn.microsoft.com/directx/xna/gse/.

[9] Microsoft Corporation. Microsoft Game Technologies
Center, Nov 2006.
http://msdn.microsoft.com/directx/XNA/default.aspx.

[10] I. Parberry, M. B. Kazemzadeh, and T. Roden. The art and
science of game programming. In SIGCSE ’06: Proceedings
of the 37th SIGCSE technical symposium on Computer
science education, pages 510–514, New York, NY, USA,
2006. ACM Press.

[11] C. Reynolds. Steering behaviors for autonomous characters,
1999.
http://www.red3d.com/cwr/papers/1999/gdc99steer.html.

[12] S. Russel and P. Norvig. Artificial intelligence, 2002.
[13] R. Wallace. AIML: Artificial Intelligence Markup Language.

http://www.alicebot.org/aiml.html.
[14] R. Wallace. The Anatomy of A.L.I.C.E.

http://www.alicebot.org/anatomy.html.
[15] U. Wolz, T. Barnes, I. Parberry, and M. Wick. Digital gaming

as a vehicle for learning. In SIGCSE ’06: Proceedings of the
37th SIGCSE technical symposium on Computer science
education, pages 394–395, New York, NY, USA, 2006.
ACM Press.

74

Using a simple MMORPG to teach
multi-user, client-server database development

Greg Wadley
Department of Information Systems

The University of Melbourne
Australia 3010

+613 8344 1586

greg.wadley@unimelb.edu.au

Jason Sobell
Philology Pty Ltd
111 Barry Street

Carlton, Australia 3053
+613 9349 4735

jason@philology.com.au

ABSTRACT

Applications built for undergraduate programming assignments
are typically single-user systems, of which the programmer is also
the sole user. Real-world information systems differ from this
scenario in a number of ways. In particular, they are usually
client-server systems within which many users concurrently
access the same data. In order to illustrate for our students the
benefits and pitfalls of multi-user systems based around a shared
database, we asked them to build a simple massively-multiplayer
online role-playing game (MMORPG) which stored game-world
and player state in a relational database. We provided students
with a graphical client written in Visual Basic. As players moved
about the game world, interacting with objects and other players,
their client programs called procedures in the central database to
update game state accordingly. The students’ task was to
implement database tables and procedures that allowed the clients
to work. The system’s client-server architecture resembled that of
commercial information systems and often occasioned concurrent
access to data. In this paper we describe the system, the students’
experience of building it, and our perception of its pedagogical
pros and cons.

Categories and Subject Descriptors

K.3.2 [Computing Milieu] Computer and Information Science
Education – Information systems education.

General Terms

Design, Human Factors, Languages, Theory

Keywords

database, multi-user, education, project, MMORPG, RDBMS

1. INTRODUCTION
Computer games are used as undergraduate programming

assignments for a number of reasons. Many students play games,
understand this class of application well, consider games fun to
develop and use, and are interested to find out how they work.
Games emphasize the user interface of an application, and are

well suited to real-time visualization of system state. They can
readily illustrate a number of problems from simple program logic
to graphics, usability and artificial intelligence. Game
development expertise can lead to a career that many students
regard highly.

Different genres of games are suited to different courses and
competencies. For example, students in introductory programming
courses are often asked to build simple puzzle games, while
advanced students in game development courses might build 3d
games or graphics engines.

The authors teach an advanced database course in a Bachelor
of Information Systems degree. Our aim is to expose final-year
students, who have completed an introductory course in SQL and
E-R modeling, to issues concerning the development, physical
implementation and administration of database systems. Lab
exercises in our course involve hands-on use of both Oracle and
Sql Server database management systems and related tools.

Information systems in industry typically use a client-server
architecture, by which many users connect to a central database.
Yet projects in database courses are typically single-user systems,
of which the student is both the programmer and the only user.
While this architecture is easy to program, teach and administer, it
obscures the main purpose to which most relational databases are
put, which is to store a representation of entities and events that
are significant to a group of people, who read and write the data in
an ad-hoc way and effectively communicate through it. An
understanding of this function of multi-user databases cannot
easily be gained by building single-user applications in which the
database is simply a convenient disk-based data store.

Figure 1. Typical I.S. architectures used in Industry (above)

and Education (below)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
2nd Annual Microsoft Academic Days Conference on Game

Development, February 22–25, 2007, Florida, USA.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

Database

Client

Client

Client

Clients

Database

Database

Database

75

Nor do single-user systems readily illustrate the problems,
such as lost updates, uncommitted dependencies, and inconsistent
reads, that can arise when several users concurrently access the
same data. Without experience of these problems it is difficult for
students to understand the techniques that database and DBMS
designers use to solve them, such as transactions and locks, or the
problems that these techniques in turn can cause, such as
deadlock.

We reasoned that in order to better understand client-server
database programming, our students should build a multi-user
system in which an update to the database by any user affected
everyone else’s view of the data in an obvious way. Taking into
consideration also the benefits of using games in programming
assignments, we concluded that building a multi-user game which
stored the state of the game-world and players in a relational
database would be an informative and motivating project.

Our students were not expert GUI programmers and our
course does not focus on writing client programs, especially the
kind of graphics-intensive clients used in commercial multi-player
computer games. Also, because of the limited power of our server,
lab computers and network, a fast-paced game was inappropriate.
These restrictions excluded some genres of games from
consideration, such as team-based ‘shoot-em-ups’.

Inspired by the popularity of massively multiplayer role
playing games such as World of Warcraft, we decided to use a
simple MMORPG as the project theme. To preserve the course’s
focus on database rather than GUI programming, we wrote a
client program using Visual Basic and gave it to students. We
provided also a list of the tables and stored procedures that the
client would look for in the supporting database. The students’
task was to implement these tables and procedures.

The essence of an MMORPG is that all players act within the
same, single virtual world. Each player’s actions affect, and are
visible to, the other players. Furthermore, the game-world is
persistent: world and player state are maintained independently of
any particular individual’s login sessions. These criteria require
properly managed, central, disk-based storage.

We hypothesized that this function of an MMORPG – to
maintain a single, persistent representation of a (in this case,
virtual) world, which is read and written to by many users – is
essentially the same function we wanted to illustrate for RDBMS-
based information systems generally.

2. HOW THE GAME WORKED
To simplify the task of programming the client, and to make

the game rules and mechanics clear, we designed a simple game
that took place in a two-dimensional 10 x 10 ‘grid world’ shaped
like a chess board. Players navigated around this grid by moving
up, down, left or right, one square (‘room’) at a time, using
buttons on the game client. To illustrate an avatar’s location, the
client simply highlighted the appropriate square. As well as the
players’ avatars there were items scattered about the world which
players could pick up, hold in their inventory as they moved
about, and drop again in a different location. These were
displayed to the player in listboxes.

Figure 2. the Game Client (GUI)

Each individual player and item was represented by a row in
a table in a central relational database. As the game progressed,
the database kept track of players’ locations, health and scores,
and the locations of items. Location had low resolution, and could
be stored as an integer. Items had to be located either in one of the
rooms or in a player’s inventory. To pick up an item, a player’s
avatar needed to be located in the same room as the item. The
player then pressed a ‘pick up’ button on his/her game client.

Some items (‘weapons’) could be used to attack other
players. Attacks could only occur when two players occupied the
same room. Players accumulated points by picking up items, and
lost health when attacked. Health could be restored by finding a
health pack. These game actions were effected by the player by
pressing a button in the client, triggering execution of a stored
procedure which read and wrote data in the database.

Each room in the game-world was represented by a row in a
database table. A room was marked 'out of bounds’ by omitting
that row from the table (we represented non-traversable rooms
graphically in the client as a river and a tree). Movement by a
player required that the client perform a Select against the
database to check whether the desired destination room was
traversable, and if it was, to read which items and players were in
the room: these were then listed in the client. Finally movement
required an Update to change the player's recorded position.

Players could send text messages to each other. The
messages were displayed in a list box in the game client. The
sending player’s client inserted a row in the Chat table, and the
receiving player’s client eventually selected it for display.

Players had to identify themselves to the game (ie log in) by
supplying a name and password already recorded in the Player
table. Thereafter a player’s game client was able to supply the
player’s identifier to the database when sending or retrieving data.
Following the ‘persistent world’ approach used in MMORPGs, a
player’s location and state was preserved between any logout and
the next login. Logged-out players did not appear in game clients
and could not be attacked. Logins, logouts and other game events
were recorded by inserting rows into an event-logging table.

76

Figure 3. the Database Schema

The database schema is illustrated in figure 3. Several of the
kinds of tables typically implemented in relational databases are
present in this schema, including:

• entities (people, objects, places) - the Player, Item,
and Room tables

• associative entities (relationships between other
entities) – the RoomContents and Inventory tables

• logged events - the EventLog and Chat tables

• lookup tables – the ItemType table

The individual tables were:

Player: contained one row for each individual person who
was registered to play the game (ie students and teachers taking
the course). Like a typical ‘person’ table, it recorded identifying
information (a player’s name and password), some dynamic
properties (location, health, points), and whether the player was
currently logged in.

Room: contained one row for each of the game world’s
rooms (except for non-traversable ones), identified by the integers
1 to 100 and by x-y coordinates. Players and items in the game
world were situated in exactly one room at any given time. We
programmed the client in such a way that it would be relatively
straightforward to re-implement the game with more or fewer
rooms.

Item: contained one row for each individual object in the
game world. Items were classified into four categories - Points,
Health-packs, Weapons and Fixed - using the lookup table
ItemType. While health items were consumed when picked up,
players could carry weapons and points items in an Inventory,
implemented as a table pairing items with players. We arbitrarily
restricted the size of an inventory to three items, to reduce
hoarding by players. Players could not interact with Fixed items.
At any given time an Item had to belong either to a player’s
inventory or to a room. This method of representing items made it
relatively straightforward for game administrators to insert new
items into the game.

The Inventory and RoomContents tables associated Items
with Players and Rooms respectively.

EventLog: recorded actions by players for (fictitious)
auditing purposes. For simplicity we described events with a
string of text rather than categorizing them with a lookup table.

Chat: contained one row for each text message sent by a
player to another player. When the receiving player’s game client
fetched a message for display, it marked the message as ‘seen’
rather than deleting it from the table.

When a player carried out a game action, their game client
made one or more calls to the database. The students’ task was to
enable these calls using stored procedures, according to the
specifications listed in table 1. For each procedure we gave
students the procedure name, a description of its behaviour, the
inputs that a client would provide, and the outputs a client would
expect. The client was programmed to call the appropriate
procedure in the database when the user pressed a button. The
‘getter’ procedures were also called every few seconds by a timer
in the client, to check whether the room’s contents had changed,
check incoming messages, and allow the screen to be refreshed.

Table 1. Stored procedures that supported game actions

Procedure Inputs Outputs

spLogin: See if there is a
row in Player that matches
this name and password. If
there is, change that row’s
LoggedIn field to 1, write a
row to the Event table, and
return the row from Player.

Otherwise, return nothing.

PlayerName,
Password

1 row from
Player table

spMovePlayerTo: Select
from Room to check that
desired room exists (is
traversable). If it is, update
player’s location.

PlayerId,
X, Y

‘Success’
= 1 or 0

spGetPlayer: Join Player
and Room tables to select
all information about this
player and current room

PlayerId Player and
room details

spGetItems: Join Item and
RoomContents tables to get
information about each item
in this room.

RoomId list from
Item table

spGetPlayers: Return info
about all players in this
room, except this player

PlayerId,
RoomId

list from
Player table

spGetInventory: Join Item
and Inventory tables to get
information about each item
in this player’s inventory

PlayerId list from
Item table

spPickUpItem: Delete item
from RoomContents and
add it to Inventory. Update
player’s point score.

PlayerId,
ItemId

(none)

spDropItem: Delete one
row from Inventory, add
one row to RoomContents.

PlayerId,
ItemId

(none)

77

spAttack: Check that
selected item is a weapon
and how much damage it
inflicts. Reduce victim’s
health accordingly.

PlayerId,
VictimId,
ItemId

Message
about how
much
damage was
inflicted

spGetAllPlayers: Return a
list of all players in the
Player table, to populate
chat dropdown.

(none) list of
PlayerId,
PlayerName

spAddChat: Write one row
to Chat table

Text,
PlayerId1,
PlayerId2

(none)

spGetChat: Select all chat
messages addressed to this
player and not yet seen.
Mark them as seen.

PlayerId list of
PlayerName,
ChatText

spAddEvent: Write one row
to Event table

PlayerId,
EventDetail

(none)

spLogout: Change this
player’s LoggedIn field to
False.

PlayerId (none)

3. THE STUDENT EXPERIENCE
We provided each student with a Sql Server database in

which to implement his/her tables and procedures. We encouraged
students to check the behaviour of their databases by using both
the game client and Sql Server Query Analyzer to execute
procedures. The latter made it easy to display several different
SQL statements and their outputs on the same screen, such as
‘select *’ before and after a procedure execution, which was
useful when debugging procedure code.

While each student implemented their own project database,
they could, when desired, allow another student’s client to log
into their database, in order to play their game with the other
student.

We also provided a working 'black box' solution to the
assignment. This was a database with tables and procedures
already implemented by us. It allowed students to play and
observe a working version of the game, to better understand their
project requirements. We used server permissions to ensure that
students’ game clients could execute the procedures in this
database without being able to read the procedure code or table
structures. During a number of lab classes we asked all students to
log into the provided database and play a game together. During
these sessions we displayed the contents of some tables on a
screen in the lab, using the Enterprise Manager and Query

Analyzer tools. Students were able to simultaneously observe their
own screen, the screens of other students nearby, and the
changing table data on the projection screen, in order to
understand how game clients were interacting with and within the
shared database.

To submit their work, each student placed their ‘create table’
scripts and stored procedure code into a text file, and emailed it to
the teachers. Code was assessed according to correctness of client
behaviour, with bonus marks for elegance and efficiency.

4. WAS THE PROJECT SUCCESSFUL?
In using a multiplayer videogame as a database project our

aim was not to teach game design, but to utilize a type of
application which we believed undergraduate students would find
interesting and intuitive, and which would successfully illustrate
the benefits and pitfalls of developing systems based on multi-
user access to shared data. Therefore in analyzing whether our
project was successful, we need to ask whether students acquired
a better understanding of how systems are built around relational
databases. That is our ‘general’ question. We can also analyze our
detailed decisions. For example, was the project too easy or hard?
Was the database schema too simple or too complex? Was it
reasonable to give students a pre-programmed client and ask them
to develop the server?

We did not conduct a formal experiment to measure the
educational impact of the project. However we can give brief
answers based on informal feedback received from students
during the project, the University’s ‘Quality of Teaching’
feedback received after the project was over, the work submitted
by students, and our subsequent reflections on the course. Overall,
we felt that the project was successful in engaging and educating
students. However there were some problems, and these are listed
below.

4.1 Pros
Our game emphasized user interaction via shared data. The

game was multi-user in a way that was easily understandable by
students. It emphasized ‘computation-as-interaction’ over
‘computation-as-calculation’; the client-server, networked,
interaction-based view that Stein [1] suggests is the best metaphor
for understanding modern information technology use.

The project utilized an architecture which is common in
business contexts: a client written in Visual Basic, running on a
Windows PC, accessing a Sql Server database.

The game client helped students to monitor the changing
values stored in the underlying database, realizing some of the
pedagogical advantages of visualization [2]. The visual client
encouraged students to frequently compare their client screen with
the underlying database tables and see more clearly the effect of
their procedures on the database.

The system afforded communication among users. Other than
tools such as email and instant messaging, it is difficult to think of
an application class that lends itself as readily as multiplayer
games to having several users communicate through a shared
database. The collaborative and visual nature of the system helped
to motivate students.

The project emphasized that the core function of an
information system is to represent some interesting subset of the
world; in particular some entities, their properties and
relationships, categorized into classes, which are relevant to a
business problem [3]. Although a game-world is fictitious, using a
relational database to represent the properties and behaviour of a
game world emphasized the representational function of
databases.

Some common database project applications (such as order
entry) tend not to excite students. The MMORPG was an unusual
project for a database course and was more interesting for many

78

students. They were happy to explore the system in class and even
after hours. While the system was presumably not as engaging as
a commercial MMORPG, its relative simplicity made the
underlying mechanisms clear to students curious about how
MMORPGs might work.

Although this project did not use a business-oriented theme,
many of the design issues exposed here are relevant also to
business systems. The most important tables in a business
database typically represent classes of entities and events. Event
tables tend to become large over time. Miscellaneous tables are
needed to implement sub-classes and many-to-many relationships.
These phenomena were present in our game database.

In common with many real-world applications, our game had
to adequately handle user identity (established through a login) to
allow the system to work in a meaningful way, and to allow
communication between users.

A number of game actions lent themselves to demonstrating
problems of concurrent access to data. For example, to pick up an
item required a Delete from the RoomContents table, an Insert to
the Inventory table, and an Update of points in the Player table.
Getting this code to work correctly when two players
simultaneously tried to pick up the same item required careful
ordering of these statements, and the use of transactions. Game
scenarios such as these may demonstrate problems of concurrency
in a more visual and dramatic way than do commonly-used
teaching examples such as “transfer funds”.

4.2 Cons
While many students are interested in games, some are not.

Our assignment was not a typical business application. While this
was a plus for some students, many of them were business-
focused, and some felt a game to be relevant only to recreation.

There were some problems fine-tuning our approach of
giving students a finished client and asking them to implement a
database to support it. In typical system development the server
would be developed before, or at least in conjunction with, the
client. It took some redrafting before we specified the inputs and
outputs of the client clearly enough for students to write their
procedure code. Without access to client code, it was more
difficult for students to debug database code (they could not, for
example, display client variables), and students were not exposed
to methods of data validation in the client. It is probably better for
students to program both client and database in an application:
however this was not feasible in our project.

4.3 Relevance to game development courses
The aim of our project was to illustrate the design and

development of client-server databases rather than games. Our
game-world and game-play were not to commercial standards. We
did not intend that the game closely resemble a commercially
viable MMORPG. However some comments can be made on the
relevance of this project to game development.

It is possible that for performance reasons some commercial
MMORPGs do not use a relational database to store game-world
and player state. However our research indicated that several do,
and at least one open-source MMORPG does so [4]. Our two-
tiered architecture was much simpler than the complex multi-tier,
multi-server, distributed architectures needed to operate a large-
scale MMORPG. However we feel that we captured the essence
of multiplayer game design in this project. A course oriented to
game design or development might make use of a system like this
as a starting point to discuss multiplayer game design.

5. CONCLUSION
We found that development of a relational database to support a
simple MMORPG worked well as a project in an advanced
database course. Multiplayer games are well-suited to illustrating
issues of identity, interaction, and concurrent access to data in
multi-user information systems. In this paper we have described
the game mechanics, the database tables and stored procedures
that our students produced, and our experience as teachers using
this project in an undergraduate course.

The game is easy to simplify or expand, allowing it to be
easily tailored to different pedagogical goals, course levels and
class sizes. For example, students could be assigned a simple
version of the game in an introductory database course, and a
more complex version in an advanced course. Students in a game
design course could be given this game and asked to improve its
game play, game world, or interaction design. A web interface for
game administration could be added. The authors would be
pleased to discuss the application with educators interested in
using it in their courses.

6. ACKNOWLEDGMENTS
The authors would like to thank the students who undertook the
project, and to Graeme Simsion and Darren Skidmore at the
University of Melbourne for reviewing a draft of this paper.

7. REFERENCES
[1] Stein, L. Challenging the computational metaphor:

implications for how we think, in Cybernetics and Systems
30:473-507, 1999

[2] Hundhausen, C. Integrating algorithm visualization

technology into an undergraduate algorithms course:

ethnographic studies of a social constructivist approach, in
Computers and Education, 39:237-260, 2002

[3] Weber, R. Ontological Foundations of Information Systems,
Coopers and Lybrand, 1997

[4] Riddoch, A. and J. Turner. Technologies For Building Open-

Source Massively Multiplayer Games, Worldforge.org, 2005

79

Educating Game Programmers

Timothy E. Roden
Center for Advanced Computer Studies

University of Louisiana at Lafayette
Lafayette, LA, USA

troden@cacs.louisiana.edu

James Etheredge
Department of Computer Science

University of Louisiana at Lafayette
Lafayette, LA, USA

jne1390@louisiana.edu

ABSTRACT
The University of Louisiana at Lafayette is now in its third year
offering a game programming concentration within the degree of
Bachelor of Science in Computer Science. We describe this new
curriculum and our experience so far.

Categories and Subject Descriptors
K.3.2 [Computing Mileux]: Computers and Information Science
Education [Computer Science Education]

General Terms
Design, Experimentation.

Keywords
Game programming, Graphics, Undergraduate education

1. INTRODUCTION
Sales of console and PC games in the U.S. exceeded 7 billion
dollars in 2004. Worldwide, total sales of game hardware and
software exceeded 23 billion dollars in a market expected to grow
at an annual rate of approximately 20%. A record 12 games in
2004 sold more than one million units and 52 console games sold
more than 500,000 units. In addition, gaming platforms are
increasingly moving away from the traditional single computer or
console. In a survey by the Electronic Software Association,
nearly half of frequent game players reported playing games
online, while over a third used a wireless device, such as a cell
phone, to play games [7].

In terms of jobs, the industry is growing commensurate with the
market. Game industry jobs represent very lucrative employment
opportunities for newly graduating Computer Science majors. A
recent survey reflected both the youth and vitality of the industry
[5]. More than half of game industry programmers (58%)
responding reported less than seven years experience with an
average salary of $82,107. For non-lead programmers with less
than three years experience, the average salary was $52,989.
Lead programmers with less than three years experience averaged
$76,848.

Universities across the U.S. have responded in varying measure to
the growing video game phenomenon [3,4,6,9,14,15]. Despite the
obvious need for trained workers, especially programmers, few
models exist that describe a comprehensive undergraduate
curriculum tailored especially for those entering the game
industry. What follows is a description of the curriculum
developed by the Department of Computer Science at the
University of Louisiana at Lafayette. The curriculum targets
undergraduate computer science majors interested in game design
and programming.

2. THE CURRICULUM
The Computer Science Department at the University of Louisiana
at Lafayette (ULL) offers an ABET-accredited, well-rounded
undergraduate degree. In addition to the core curriculum, the
department requires students to choose an area of concentration.
The concentrations represent 15 hours of study in one of five
areas. These 15 hours include computer science courses as well
as relevant courses in other disciplines. The newest concentration
area is Video Game Design and Development. Students are
required to take two game programming courses, one at the junior
level and one at the senior level. For the remaining nine hours
students choose among approved electives from Visual Arts,
Theatre, English (creative writing), and Communications
(production and editing). In addition, students are required to
take two Visual Arts courses and a Physics course as part of their
Arts and Sciences electives.

In designing the new concentration, there were few academic
models to follow. Most universities with computer science game
programming courses had only established their courses within
the last few years. A notable exception is the game programming
curriculum developed by Parberry at University of North Texas
(UNT). Parberry was an early pioneer in game programming
education, offering the first course in 1993. While not
specifically having a concentration area, the UNT Computer
Science Department offers two game programming courses and
maintains a dedicated game programming laboratory for the
students taking these classes [14]. Parberry identifies an
important feature of the courses is a close collaboration with the
UNT School of Fine Arts. The chief motivation for the content of
the courses is based on what the game industry wants in new
college graduates. The success of the UNT program is evident by
the long list of game companies now employing former UNT
students. Another, more recent, example of a two-course
undergraduate curriculum within the traditional computer science
degree is the recent adoption of such a program at Marist College
as reported by Coleman [4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Microsoft Academic Days Conference on Game Development ’07,
February 22–25, 2007, Orlando, Florida, USA.
Copyright 2007 ACM x-xxxxx-xxx-x/xx/xxxx…$5.00.

80

In looking to industry for advice on creating a game development
curriculum, perhaps the best example is the International Game
Developer’s Association’s (IGDA) website [8]. The IGDA
publishes a list of topics useful for developing game-related
educational courses. It is notable, however, the IGDA does not
recommend specific courses despite the first draft of their
Curriculum Framework was published in 2002. This is likely due
to the lack of curricula with an established track record and the
changing nature of game development.

3. THE GAME DEVELOPMENT LAB
We established a dedicated game programming laboratory with 20
PCs. Our reasons for this are similar to Parberry [l4] and include:

1. General access computer labs are not equipped with the
hardware and software we need. To develop the caliber of
PC games currently marketed to consumers we require the
same hardware required by these games.

2. We require graphics cards that are fairly expensive and could
not be purchased for general purpose labs.

3. We prefer to have the latest audio cards in our game
development computers. While this is not strictly a
necessity, as compared to graphics cards, having high quality
audio cards opens the possibility for our students to create
games with sophisticated audio.

4. We want dual monitors at each workstation. Our students
typically create full-screen games. During development
games often crash. With one monitor this often results in the
crashed game remaining on the screen. Using two monitors,
a crashed game can be cleared away without rebooting the
computer by accessing the desktop on the second monitor.

5. We want a separate lab where students can both develop and
play games.

6. Having students playing games in a general purpose lab
would be too distracting for other students.

7. We want to have a single lab where our game development
students can meet with other students sharing similar
interests.

8. One of our instructors schedules some game development
classes in the lab so the lab needs to function as both an open
lab and a teaching lab.

9. We want the lab computers on a separate network to
facilitate student development of networked games in a
controlled setting.

10. We have a comprehensive suite of game development-
related software for which we have a limited number of
licenses.

The lab is connected with a dedicated 48-port gigabit ethernet
switch. A server hosts 1.2 terabytes of disk space for student
accounts. We have both color and B/W laser printers, color
scanner, digital camcorder, a digital camera and web cameras.
The current hardware configuration of each workstation in the lab
is listed in Table 1. An ongoing challenge is keeping the
hardware updated, given gaming hardware continues to improve
rapidly. We estimate the computers need a yearly upgrade

consisting of at least a new graphics card. In addition, all the
computers will likely need replacement every two to three years.

Table 1. Hardware Installed on Each Workstation

3.2 GHz Intel Pentium 640 Processor
2 GB Dual Channel DDR2 SDRAM, 533 MHz
512 MB PCI Express graphics card
128-voice audio card
160 GB Serial ATA hard disk
16x CD/DVD burner (DVD+/-RW)
Dual 20” LCD monitors
Desktop speakers
Headphones with microphone

The software installed on each workstation is listed in Table 2. In
addition we have several copies of FaceGen from Singular
Inversions and one copy of Alias MotionBuilder. FaceGen is
used to create 3D models of human heads while MotionBuilder is
used to generate animation data for 3D models created in Maya.
We also have several collections of sound and texture libraries
available for use in the lab. We installed the Maya 3D modeling
software since the Visual Art Department at ULL uses Maya
exclusively and we want art students to use the lab. We also
installed Lightwave because we felt it was a simpler program to
use and would allow our computer science students to create
simple 3D models if needed. To convert 3D models between
different file formats, we added a file conversion utility.

Table 2. Software Installed on Each Workstation

Software Purpose

Microsoft Windows XP Operating system
Microsoft Office Word processing, spreadsheet,

etc.
Microsoft Visual Studio
.NET

Compiler

Adobe Photoshop 2D image editor
Adobe Audition Sound editor
Adobe Premiere Video editor
Alias Maya Complete 3D modeling
NewTek Lightwave 3D modeling
SnagIt Screen capture program
GameMaker 2D game creation editor
Okino NuGraf / PolyTrans
for Maya

3D file conversion

Our department system administrator and several graduate
students maintain the lab. Our administrator spends an average of
three hours per week on lab administration and the graduate
students spend an average of ten hours per week working in the
lab. We provide lab accounts to both computer science and art
students registered in the game courses in addition to students
simply interested in learning more about game development.
Students with accounts can access the lab via an electronic card
reader that scans their student ID card.

81

Figure 1. A student-created game from the intro course.

4. INTRODUCTORY COURSE
The first game programming course is a junior level course aimed
at students who have successfully completed a sequence of
introductory programming courses. We also require students to
have completed Calculus I. This requirement is imposed to
ensure an appropriate level of mathematical maturity that we have
found to be a good predictor of success in programming-intensive
courses. An example of a game created by a student in the
introductory course is shown in Figure 1.

4.1 Course Content
Since our first game programming course is aimed at juniors, we
focus on 2D game development. Limiting the first course to 2D
game programming offers several distinct advantages:

1. The task of learning the material is more manageable.

2. Students are able to begin developing viable games very
early in the course.

3. The concepts underlying game engines are easily
demonstrated using object-oriented 2D game engines.

4. Many concepts encountered in 3D video game development
have a 2D counterpart that is simpler to understand.
Collision detection is a good example of this.

5. Most of the software needed is readily available.

The content of the 2D game programming course has the
following three components. First, there is a design component.
Students are exposed to the methodologies and issues involved in
the design of games. Topics include game scope, playability,
level design, artificial intelligence, art, sound, and design
documentation. These topics are presented as in-class discussions
based on material in a game design text. Throughout the course,
students are taught game design principles via lectures and in-
class discussions. The textbook used for the course includes
game design document examples and a discussion of each
element of the design [2]. The text also presents each major type
of game genre and explains the unique aspects and design issues
associated with it.

The second component of the course is the rapid development of
complete 2D games using a high-level game development
authoring tool. The tool we use is Game Maker [13]. It uses an
object-oriented approach to creating games. Levels, sprites,

characters, sounds, music, and control structures are defined as
objects. The creation, destruction, behavior, and interaction of
objects are defined within the context of the game. Other features
such as timing, scoring, level change, game start and game end
conditions, and particle systems, can be easily incorporated into
the game. Game Maker provides an integrated development
environment to allow development, testing, and the creation of an
executable version of the game. Students use Game Maker to
develop two games during the course. One game is done
individually and the other is developed as a team effort. All
games are required to have supporting design documents.

The final component is the development and use of a simple game
engine written in C++ using the Microsoft DirectX 9 Software
Development Kit (SDK). The game engine is the subject of
another required text by Jones [10]. The text also includes 3D
topics such as 3D modeling, texture mapping and 3D lighting.
These topics prepare students for the advanced course.

4.2 Lessons Learned
Aside from determining the overall design of the game, the
hardest part of game development is the creation of the artwork
and game audio (sound effects and music). While it is relatively
easy to find a great deal of art and sound effects on the Internet, it
is not easy to find good quality art assets that are in the public
domain.

We found it an advantage to get students creating games as soon
as possible. It provides students with a great feeling of
accomplishment and keeps them enthusiastic. It also allows them
to start developing a portfolio that will be invaluable when they
begin to look for a job after graduation.

We gave students time to play games during class. Students are
interested in game development because they are interested in
playing games. We wanted to maintain that enthusiasm. We
alternated between playing the games and looking at the
underlying code. Another way to keep the course enjoyable is to
let the students play each other's games in class. We were
impressed at how good students are at evaluating other student’s
games and how much they enjoyed seeing what others had
accomplished.

We let the students know that any form of vulgarity or excessive
violence will not be tolerated. This is stated in the course
syllabus including a clear penalty for failure to comply. We
placed a requirement that all games developed in the class had to
be rated PG. The students offered a compromise rating of PG-13,
which we accepted.

We gave the students time to complete projects. There is an
enormous time commitment involved in designing and
implementing a game. Even taking into account the Game Maker
software and working in teams, for most of the students this
course is the most time-consuming course they have had to date.

5. ADVANCED COURSE
The advanced game programming course is for computer science
students who have completed the introductory game course. The
course is also open to upper level undergraduate art students who
have completed three to four semesters of computer animation.

82

Figure 2. A student-created game from the advanced course.

The course is project-oriented with students working in teams of
two to three programmers plus one or two artists to develop a 3D
game over the course of the semester. A team-based semester
game project has also been used by Parberry [14] and Sindre [16].
An example of a game created by a student in the advanced
course is shown in Figure 2.

5.1 Course Overview
There are three texts: one required book for programmers [11], a
second recommended book [10], and a required book for artists
[12] that the instructor also recommends for programmers. The
class meets once per week for three hours of lecture. Generally,
the first hour of class is devoted to art issues with the remaining
two hours covering programming. Multiple topics may be
covered during one class with some topics spanning two sessions.

The first class is devoted to introducing the course, the game lab,
and describing the project. Students are asked to complete a
survey indicating their particular interests. Each student is given
a copy of the survey from all other classmates. Using this
information, students are asked to contact their classmates outside
of class and form teams for the remainder of the semester. During
the second class the teams are finalized. During the first few
weeks of class each team is asked to complete a preliminary and
later a final design document describing their game. The final
design document includes the game concept, genre, summary of
gameplay, major features, setting, story, target audience, a list of
art assets to be created and a weekly work schedule. The project
consists of five milestones during the semester. The milestones
are team formation, the two design documents, a presentation
demonstrating the game late in the semester, and a final demo and
presentation of the game.

5.2 Art
The art component of the course follows closely with the art
textbook by Omernick [12]. Multiple chapters from the text are
grouped together into six topics. The text does not cover
character animation so the seventh topic is an addition made by
the instructor. The seven topics are:

1. Creating concept art – the use of reference art such as
photographs.

2. Creating 3D models – basics of 3D modeling for games
including typical constraints such as low polygon count and
limited texture usage.

3. Creating textures – file formats, resolutions, seamless and
tileable texture sets.

4. Applying textures to 3D models – UV mapping.

5. Special effects – particle systems, billboards, environment
mapping and texture animation.

6. Game lighting – precomputed versus in-game lighting.

7. Character animation – modeling, rigging, animation
methods.

5.3 Art/Programming Issues
Early in the course students are encouraged to create a simple
program that loads and displays a 3D model. The instructor’s
expectation is this activity should take at least a month with
ongoing modification made throughout the course of the semester.
This exercise is important to get programmers and artists working
together as soon as possible. There is typically a significant
disconnect between what artists can create in a modeling program
and what a game engine can import. This is one of the most
difficult problems faced by artist-programmer teams. The
problem is not so much that 3D file formats are difficult to
understand. With some degree of effort, students can create a 3D
file parser. Instead, the problem centers around what artists put
into these files. A 3D modeling program allows the artist great
flexibility in creating and texturing a model whereas a game
engine typically requires a model to be created using a very
specific subset of functions available in modeling software. For
example, modeling programs may allow the artist to add
procedural textures while game engines may only be able to
import simple UV-mapped 2D textures.

We have had success using the Lightwave file formats including
the 3D object file format and scene file format. The scene file
contains bones and key frame animation data. Students are
encouraged early in the semester to work with and refine their
model viewer to discover any problems in their content creation
pipeline.

5.4 Programming
Students are expected to use the C++ programming language and
Microsoft DirectX 9 as the underlying Application Programming
Interface (API) for their game. DirectX is the most widely used
low-level API in commercial games and there are many books
available that describe its use. Like Adams, we also provide
students with a basic code framework to get started [1]. A set of
demo projects based in part on the DirectX SDK provides basic
game engine functionality including graphics, input device
support, audio playback, and networking. The most important
part of the code is support for loading Lightwave object and scene
files. Other specific components include a file-level texture
manager, integrated event processing for multiple input devices,
particle systems, skeletal animation, visibility queries, collision
detection, and streaming audio support. The multi-threaded code
abstracts details of the DirectX SDK which enhances the
maintenance of the code since each new version of DirectX has
had changes to the API. Hiding the low-level DirectX
implementation of a game engine was also reported by Coleman
to be beneficial to an undergraduate game programming class [4].

83

Unlike the art component of the course, the programming
textbooks serve as reference material. Programming lectures are
supplemented with simple C++ demonstration code and are
grouped into the following 11 topics:

1. The compiler – presentation of the Microsoft Visual Studio
integrated development environment.

2. DirectX SDK – primary interfaces including graphics, sound,
and input.

3. Game graphics – basic 3D concepts, hardware and software,
3D transformations, 3D object representation, file formats
and 3D camera control.

4. Windows programming – OS architecture, SDKs, event-
driven programming and multi-threading.

5. Game architecture – major software components of a 3D
game engine.

6. Thread programming – thread creation, termination,
prioritization and synchronization.

7. Advanced 3D graphics – visibility, bounding volumes, and
scene management.

8. Socket programming – TCP and UDP application protocols.

9. Texturing - texture coordinates, texture filtering, texture
animation, multi-texturing, cubemaps, and volume textures.

10. Terrain and water.

11. Procedural game level generation – scene management for
indoor levels and automatic generation of indoor geometry.

5.5 Lessons Learned
The advanced course was taught for the first time in spring 2006.
Those students who had previously taken the undergraduate
graphics course did better than those who did not. As a result we
intend to add undergraduate graphics as a prerequisite for the
advanced game course.

The art students were not accustomed to creating models for
games and working under the constraints that game engines place
on textures and material properties. The art textbook, while
presenting good information in general, did not provide practical
methods for many texture-related tasks such as creating UV maps.
To remedy this we have added another software package to the
game lab specifically designed for creating UV maps and adding
textures to 3D models including painting directly onto a model.

6. THE FUTURE
In spring 2007 we will establish a motion capture laboratory for
use by students in the advanced course. Commercial games rely
heavily on motion capture to generate human animation. As an
added benefit to the Visual Art Department, the motion capture
laboratory can also be used by art students for non-game
animation projects.

7. REFERENCES
[1] Adams, J. Chance-It: An Object-Oriented Capstone

Project for CS-1. In Proceedings of the 29th SIGCSE
Technical Symposium on Computer Science Education

(SIGCSE ’98) (Atlanta, Georgia, Feb. 26 – March 1,
1998) ACM Press, 1998, 10-14.

[2] Bates, B. Game Design, Second Edition. Thomson
Course Technology, 2004.

[3] Becker, K. Teaching with Games: The Minesweeper
and Asteroids Experience. The Journal of Computing
in Small Colleges, 17, 2 (Dec. 2001), 23-33.

[4] Coleman, R., et. al. Game Design & Programming
Concentration within the Computer Science
Curriculum. In Proceedings of the 36th SIGCSE
Technical Symposium on Computer Science Education
(SIGCSE ’05) (St. Louis, Missouri, February 23-27,
2005) ACM Press, 2005, 545-550.

[5] Duffy, J. Game Developer’s 5th Annual Salary Survey.
In Game Developer (April 2006), CMP Media Group,
2006, 11-17.

[6] El-Nasr, M. S., and Smith, B. K. Learning Through
Game Modding. ACM Computers In Entertainment, 4,
1 (January 2006).

[7] Entertainment Software Association. Essential Facts
about the Computer and Video Game Industry: 2004
Sales, Demographics, and Usage Data. Entertainment
Software Association. http://www.theesa.com,
2005

[8] IGDA Curriculum Framework. Report version 2.3 beta,
International Game Developer’s Association.
http://www.igda.org, 2003.

[9] Jones, R. M. Design and Implementation of Computer
Games: A Capstone Course for Undergraduate
Computer Science Education. In Proceedings of the
31st SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’00) (Austin, Texas, March
7-12, 2000). ACM Press, 2000, 260-264.

[10] Jones, W. Beginning DirectX 9. Thomson Course
Technology, 2004.

[11] Moller, T., Haines, E., and Akenine-Moller, T. Real-
Time Rendering, Second Edition. AK Peters, 2002.

[12] Omernick, M. Creating the Art of the Game. New
Riders Games, 2004.

[13] Overmars, M. Game Maker 6.0.
http://www.gamemaker.nl, 2006.

[14] Parberry, I., Kaxemzadeh, M., and Roden, T. The Art
and Science of Game Programming. In Proceedings of
the 2006 ACM Technical Symposium on Computer
Science Education (SIGCSE ’06) (Houston, Texas,
March 1-5, 2006). ACM Press, 2006, 510-514.

[15] Pleva, G. Game Programming and the Myth of Child’s
Play. The Journal of Computing in Small Colleges, 20,
5 (Dec. 2004), 125-136.

[16] Sindre, G., Line, S., and Valvag, O.V. Positive
Experiences with an Open Assignment in an
Introductory Programming Course. In Proceedings of
the 25th International Conference on Software
Engineering (ICSE ’03) (Portland, Oregon, Ma3 3-10,
2003). ACM Press, 2003, 608-613.

84

Design Issues for Undergraduate Game-Oriented Degrees
Michael Mateas

Dept. of Computer Science
Univ. of California, Santa Cruz

Santa Cruz, CA 95064

michaelm@cs.ucsc.edu

Jim Whitehead
Dept. of Computer Science

Univ. of California, Santa Cruz
Santa Cruz, CA 95064

ejw@cs.ucsc.edu

ABSTRACT
The paper describes the most significant design issues concerning
the development of game-oriented undergraduate degree
programs. These issues fall into two broad categories, those that
concern the organization of the degree, including its framing and
naming, as well as issues concerning the degree’s content.
Content issues include the amount of computer science content,
use of digital media content, game design and game projects,
ethics requirements, breadth requirements, and the impact game
degree programs can have on the existing computer science
curriculum.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education

Keywords
Curriculum design, computer game degree, game education

1. INTRODUCTION
Motivated by several factors, many universities are considering or
implementing degree programs at the graduate and undergraduate
level focused on computer games. One reason these programs are
being instituted is the goal of increased enrollment, leveraging the
widespread cultural interest in computer games into student
involvement in game-oriented degree programs. Computer games
are also intellectually exciting, sitting at the nexus of computer
science, film, digital media, theater, art, literature, economics, and
social science, thereby offering new opportunities for dramatic
expression, nonlinear storytelling, social commentary, and
interactive education. This intellectual interest in the expressive
and interactive potential of computer games is also driving the
creation of degree programs.

Like any complex design activity, the creation of a new degree
program involves the simultaneous consideration of a wide range
of issues. Some of these issues are universal across all kinds of
degree program creation—gathering resources, building political
support—and some are distinctive for game-oriented programs.
The authors of this paper have been involved in the design of
game-oriented undergraduate degree programs at the University
of California, Santa Cruz (Bachelor of Science in Computer
Science: Computer Game Design) and the Georgia Institute of
Technology (Bachelor of Science in Computational Media).
Within, we discuss many of the core design issues involved in the
development of new undergraduate degree programs focused on
computer games, drawing upon our personal experience, as well
as other notable degree programs. While much of this discussion
is useful for the creation of any game-oriented degree program,

due to the authors’ backgrounds the discussion will be more
focused on technically focused and interdisciplinary degrees, with
less discussion of art-focused game degrees.

The sections below begin by discussing issues concerning the
framing and naming of undergraduate game-oriented degree
programs (Section 2). Following is an exploration of a series of
curricular design issues (Section 3) that affect the academic
content of game-oriented degree programs.

2. CURRICULUM ORGANIZATION
The following two sections present issues concerning the overall
emphasis of a gaming oriented degree program, and the naming of
such programs.

2.1 Degree Emphasis
Perhaps the most important issue in designing a computer game
degree program is determining its emphasis. Reflecting the broad
and interdisciplinary nature of professional computer game
creation, degree programs have emphases along a continuum from
very art focused programs to very technically focused programs,
with a number of broadly interdisciplinary programs exploring
different niches in between. Undergraduate computer game
degree programs in the United States tend to fall into one of three
categories:
Art focused:
These programs emphasize the artistic and graphic design aspects
of computer games, with only a small number of programming
courses. Students graduating from these programs are well suited
to join the art track of a computer game company. Example: BA
in Game Art and Design, Art Institute Online.
Evenly interdisciplinary:
These programs have strong computer science foundations, but do
not go into computer science topics with the same depth as
technology focused programs. Instead, they offer a broader mix of
courses on game design topics, and tend to emphasize game
design. These degree programs can also provide students some
degree of choice as to whether to focus on technology or arts.
Example: Georgia Tech: BS in Computational Media; Worcester
Polytechnic Institute: Interactive Media and Game Development.
Technology focused:
These programs are strong computer science degrees, with
additional courses adding depth in computer game design.
Students graduating from these programs can enter the technical
track in computer game companies. As compared to the other
kinds of programs, the technically focused programs provide
greater depth in computer science topics. Examples: UC Santa
Cruz BS Computer Science: Computer Game Design, Univ. of

85

Southern California, BS Computer Science (Games); Univ. of
Denver, BS Game Development and Animation.
The difference between the evenly interdisciplinary and
technically focused programs can be subtle. One way of thinking
about the difference is that the evenly interdisciplinary programs
emphasize technology-inflected design, while the technically
focused programs have curricula that emphasize design-inflected
technology.
The choice of emphasis will often be strongly determined by the
kind of organization developing the degree. An art-focused
department or school, such as the Art Institute Online, will
naturally develop an art-focused degree program. In a similar
vein, computer science departments will tend towards technically
focused degree programs, since it permits building upon their
existing strength.
Interdisciplinary programs are more challenging to attempt, since
they require more new courses to be developed. Most colleges
and universities in the United States do not have dedicated game
studies departments or research groups, and hence do not have a
ready base of game design or game studies courses to draw upon
when creating a new major. Prospective undergraduate students
are typically very motivated by degree programs that permit them
to engage in game design. As a result, evenly interdisciplinary
programs tend to better match this desire.
One concern when developing programs is the career prospects
for students after graduation. For students in art focused or
technology focused programs, there is a straightforward story to
tell, with art focused students going into the art track of game
studios, and technology focused students going into the game
development track. Additionally, art-focused students could
perform a wide range of digital art work, and technology focused
students are sufficiently well trained that they can take almost any
kind of information technology job. With evenly interdisciplinary
programs, the story is more complex. Many game development
studios are unlikely to hire freshly graduated students to perform
game design, since this is typically a senior role. However, a job
as a level designer is certainly a reasonable expectation.
Additionally, students in the interdisciplinary programs do receive
a solid technical background, though it is not as deep as the
technically focused degrees. As a result, they are likely qualified
for some game development tasks. Since these degree programs
are very new, they do not yet have enough graduates to fully
understand their career trajectories.
While many game-oriented degree programs focus on vocational
outcomes for their students, it is important for programs to ensure
their students are adequately prepared to embark on graduate
study. There are an increasing number of graduate programs
focused on computer games. As well, students who complete a
game-oriented degree in their undergraduate studies may very
well choose a different type of degree for their graduate studies.

2.2 Naming Game-Oriented Programs
At present there is no consensus on what title is granted to
students after completing a game-oriented degree program. An
extensive listing of game degree program names can be found in
Davidson [Davi05], which is current as of 2005. We see a few
emerging trends in program names.

Game Development

Several programs have game development in their title. This title
is directly descriptive, since students are taught how to develop
computer games. The title gives the impression of being more
vocational than a science or engineering degree, similar to the
term “programming”. Examples:

Game Development (FullSail)
Electronic Game and Interactive Development (Champlain
College)

Computer Science plus

Technically focused programs that are emerging out of computer
science departments are choosing to use the BS Computer Science
title, and then tack on additional descriptive terms. These titles
carry the gravitas of the existing BSCS, itself an upstart scant
decades ago. These titles fuzz the issue of whether these are
specialized computer science degrees, or completely novel
degrees. Examples:

BS Computer Science (Games) (Univ. of Southern California)
BS Computer Science: Computer Game Design (UC Santa Cruz)

Media oriented

Titles using the term “media” recognize that computer games
have created a new form of computational media. This ties
computer games into ongoing work in digital media, and creates a
broader intellectual space for the degree program, as it can expand
beyond an initial focus on computer games into different forms of
computer afforded media. The drawback is that the general
population currently does not have a strong understanding of
interactive/digital/computational media, and does not necessarily
equate that with the creation of computer games. Examples:

Computational Media (Georgia Institute of Technology)
Interactive Media and Game Development (Worcester
Polytechnic Institute)

Simulation oriented

Some degree titles focus on the virtual world simulation aspect of
creating computer games. This is an interesting move, evoking
aspects of Simon’s Sciences of the Artificial [Simo68] or
Gelernter’s Mirror Worlds [Gele91], which emphasize the
simulation science aspect of computer science. These degree titles
also broaden the programs, opening up the possibility of covering
more simulation-focused content in the future. Like degrees with
media in their title, it is not clear that prospective undergraduate
students equate simulation with computer games. Examples:

Real Time Interactive Simulation (DigiPen)
Digital Simulation and Gaming Engineering Technology
(Shawnee State University)

3. CURRICULUM CONTENT
3.1 Computer Science Content
Technically focused programs have to strike a balance between
how many traditional CS courses are required, which provide
students with a firm CS foundation, vs. how many game specific
courses to offer (both design and technology), which give
students depth in games. This is an opportune moment for CS
programs to create game specializations, as many computer

86

science departments are already reconsidering their core
curriculum. Significant downturns in CS enrollments have caused
CS departments to question why current CS curricula fail to
attract students [Denn05].

One way of characterizing the resulting curricular debates is in
terms of a big-kernel vs. small-kernel understandings of what it
means to be a computer scientist. Big-kernel approaches assume
that, in order to be a computer scientist, all students must acquire
a large shared body of knowledge consisting of “core” CS topics
before taking more specialized courses. The large “core”
generally consists of the union of the research specialties of the
department faculty (everyone thinks their specialty is something
everyone should know), skewed towards specialties that were
already well established in the 1970s and 1980s. Thus, for
example, systems, compiler and theory topics may comprise a
large portion of big-kernel curricula, while software engineering,
human-computer interaction and ubiquitous computing will not,
precisely because the former were well-established subfields
before the later. Obviously there are only so many topics that can
be fit into a four year degree. In a union-of-research-interests big-
kernel model, early subfields will naturally dominate more recent
subfields for the simple reason that, in a curriculum that grows by
accretion, the “core” is already full before the arrival of more
recent subfields. Small-kernel approaches acknowledge that CS
has grown into a large and unruly confederation of often only
loosely related research areas. The core of topics every computer
scientist should know is therefore small, with students branching
into sub-areas of computer science more quickly, and
consequently more choice available earlier in the curriculum. A
number of highly-ranked programs are making the move towards
small-kernel CS, the most publicized being the Georgia Institute
of Technology’s Threads program [Furs06].

Within this climate, the creation of a technically-focused game
specialization can energize the departmental discussion and
debate around curriculum reform. A game degree puts pressure on
CS departments to offer more specialized classes, and to make
those classes available earlier in the curriculum. The high-level of
interest in such programs among entering freshman guarantees
that game specializations will quickly have a large number of
students, further putting pressure to reduce the number of “core”
courses, as the number of students in the game specialization
equals or exceeds the number of students in the traditional major.
Curriculum changes necessary to accommodate a game degree
have the happy side-effect of setting up departments to be able to
quickly establish additional specializations in the future, making
the department more nimble in its ability to address future
technological and social changes.

While the argument above has counterpoised big-kernel CS vs.
small-kernel plus specialization, big-kernel CS is actually a
specialization itself. Since the sub-disciplines that were
established early (and which dominate big-kernel curricula) tend
to focus on computers and computing as ends in themselves,
while more recent sub-disciplines tend to connect computing to
specific social and cultural contexts, big-kernel CS can be
characterized as the specialization focusing on computing for
computers, while more recent sub-disciplines can be characterized
as computing for people. Interestingly, this directly relates to the
much decried lack of women in computer science programs. The
seminal, multi-year Women in Computer Science study run at

Carnegie Mellon University [Marg03] found that women attracted
to computing, more so than men, tend to care about the context
and connections of computing to other arenas; it is these
connections that make computer science meaningful to them
[Marg99]. Thus, traditional big-kernel CS programs, with their
focus on “computing for computers,” are almost perfectly
designed to chase women from the program. Games, as the
emerging and potentially dominant expressive medium of the 21st
century, are poised to connect to every facet of cultural life, from
politics to public policy, from education to entertainment. The
creation of a game degree, and the resulting structural changes
within the CS department that ease the creation of future
specializations, create opportunities for students to connect
computer science to other disciplines, and to broader social and
cultural concerns, addressing the female retention issues that have
plagued traditional computing curricula.

3.2 Digital Media Theory
Any game program has to decide how much of the design and
theory side of the curriculum should be explicitly focused on
games vs. on situating games within the broader framework of
media studies, particularly looking at digital and interactive
media. While at first blush it may seem appropriate for game
degree programs to focus entirely on game design and theory, so
as to maximize the students’ depth of knowledge in games, we
feel that this would be serious mistake. This is for a quite simple
reason: what it means for something to be a “game” is not stable.
An over-focus on the design elements, approaches, and rules of
thumb that are used to create what is currently understood as a
game will leave students unprepared to track the ongoing
evolution of the medium as the very definition of game continues
to change and morph.

As an example of the fluidity of the concept of “game”, in
[Ward05] Wardrip-Fruin examines a number of interactive media
work that have been explicitly declared “not games” by their
creators, and yet have strong game-like qualities that, in some
cases, have resulted in the definition of “game” broadening to
accept the new type of interactive experience. For example, the
website for Electronic Arts declares The Sims to be “The #1 best
selling game of all time”, yet both academic commentary as well
as the commercial game press have described The Sims as more of
a software toy than a game. Creator Will Wright has also referred
to his sim games (from Sim City on) as software toys. The Sims
has no winning condition, no score, and no explicit game goals.
Yet now it is fairly commonplace to refer to such open-ended
“playable simulations” as games; the concept of “game” has
expanded to include such experiences. As another example,
alternative reality games (ARGs) explicitly smudge the
boundaries of the magic circle, creating conspiracies for groups of
players to uncover through a mixture of real-world and web-based
sleuthing. ARGs purposefully obscure the distinction between
fiction and fact, mixing players’ everyday lives with the game
world. Such games often explicitly declare “this is not a game” as
a way to help players maintain a belief that the events in the game
are really happening. But ARGs, as the name implies, are now
considered a standard game genre; the ever-plastic concept of
“game” has again expanded to encompass this new form.

In order to prepare students to not only participate, but hopefully
play a leadership role in this continuing innovation in the nature
of games, they must not only understand the current state of game

87

design, but how games participate in the broader media ecology.
A firm foundation in the history of interactive media prepares
students to understand how new media forms come into being,
and how communities of practice develop conventions that
simultaneously realize and constrain the technical possibilities of
the medium. By investigating media phenomena such as
networked communities, mobile communications and geo-
positioning technologies, ambient media, and electronic literature,
students become familiar with how different combinations of
social and technical infrastructures function as expressive forms.
A broad foundation in digital media, in addition to depth courses
in game design, prepares students to create the games of today as
well as invent the new game genres of tomorrow.

3.3 Game Design Content
Even technology-focused game design programs must have
significant game-design content in the curriculum. The game
industry as a whole is moving towards interdisciplinary work
practices, as exemplified by the organization of the team working
on Spore, Will Wright’s “Sim Everything” game. As Wright has
described in his Game Developers Conference talks on Spore,
designers and programmers are tightly coupled in the design
process, with designers knowing enough programming to write
lightweight prototypes that demonstrate design concepts, and
programmers knowing enough design to iterate tightly with the
designer as they write robust production code. The UC Santa Cruz
degree program aims to create design literate programmers who
have the CS chops to design the architectures and write the
engines necessary to realize the game, while being first-class
participants in the design process.
The most basic element of game design is the notion of rule
systems, formal systems that govern player interaction and the
evolution of game state. Students learn how to think about rule
systems, and learn standard rule patterns found in many games,
such as the rock-paper-scissors pattern governing relationships
between units in RTSs and spells and equipment in RPGs.
Additionally, students learn how to use rapid prototyping,
including paper and pencil prototyping, to understand emergent
interactions between rules. Concepts from psychology, such as
flow, cognitive understandings of problem solving, and affective
response, prepare students to think about player response during
game playing. Concepts from sociology provide students with
tools to think about community design for MMOs. Students learn
about the game design process, including the typical roles found
on game teams, milestones, resource management, and lessons
from design science. In addition to focusing on design for the
interactive entertainment industry, students learn about serious
games, including political and policy games, training games, and
games for health. Finally, students learn about emerging game
design topics, including alternative reality gaming, and mobile
and casual gaming,

3.4 Project Based Learning (Game Projects)
One area on which there is rough consensus is the need for at least
one substantial game development project in the curriculum.
Typically this project is viewed as a final year capstone, in which
students work as members of a team to create a large computer
game. Like most project-based learning activities, the senior game
project is intended to allow students to synthesize knowledge
developed in the classroom by applying it to the construction of a
computer game. Game projects also allow students to experience

all aspects of a typical game development lifecycle, from initial
game concept through coding and art asset creation, to testing and
deployment. Additionally, the project provides students with a
completed game they can add to their portfolio and demonstrate
to prospective employers or graduate schools. As an example of
one such project, in the UC Santa Cruz degree program, students
take the Game Design Studio sequence (3 quarters) during their
entire senior year. Many other programs have similar project
sequences.
Game project classes can also be used to energize students early
in the program. Incoming students are very eager to begin
learning the primary focus of their chosen degree in their first
year. However, this is the year when most degree programs focus
on background courses, such as an introduction to programming,
calculus, physics, and institution-specific general education
requirements. This leads to a mismatch between student interest
and excitement to engage in game design and development, and
the coursework they are required to take. One way to address this
is to have students engage in game project development early in
their curriculum. The DigiPen BS in Real-Time Interactive
Simulation (RTIS) degree program is an excellent example, with
students taking a game project class in each semester, starting the
second semester of their freshman year. Another approach taken
by the UC Santa Cruz program is to have a freshman year game
project course, called the Game Design Experience. This course
combines lecture material introducing game design with a small
team development project.

3.5 Ethics Content
There are several negative aspects of computer games that appear
in mainstream media. Some games have graphic violence, and
there are concerns that repeated exposure to this violence leads to
more aggressive behavior. Other games, especially massively
multiplayer online games, can be extremely engaging, resulting in
extensive gameplay hours that can lead to loss of relationships or
job loss. These concerns are a mixture of both real issues and
general societal concern with any new and powerful medium that
is adopted by youth. Addressing these concerns is an aspect of
designing a game-oriented degree program, since they will likely
be raised by faculty examining any new proposed curriculum, and
may affect the degree of enthusiasm among faculty members
towards the degree. In addition to this internal consensus-building
concern, the parents of prospective students, who are often
quizzically amused by the game-playing activities of their
children, are happy to hear that ethical issues, rather than being
ignored or side-stepped, are dealt with squarely within the
curriculum. Finally, for the students themselves, an ethics course
ensures that students are familiar with some of the societal
debates swirling around games.
One way to address these concerns is to introduce an ethics
requirement. An ethics course provides students with a framework
for critically examining a wide range of ethical issues, including
those that are associated with computer games. We do not
anticipate that students taking an ethics course will, for example,
immediately stop using violence as an interaction mechanism in
their games. Depictions of violence may, in fact, be an entirely
appropriate design choice for a particular game. The goal is
instead to ensure that inclusion of violence, or creation of
extremely compelling gameplay, will be done after considering
the ethical implications, and with full knowledge of any tradeoffs

88

that are being made. Furthermore, if a new game ends up creating
unforeseen negative issues, students will have the ability to reason
about the ethical implications.

3.6 Breadth Content
One tension in creating a game-oriented degree program is the
need to provide sufficient depth in either the artistic, design, or
game development areas so that graduating students are
competitive in applying for game development jobs, while at the
same time providing a broad education across a wide range of
topics so that students can draw upon this rich background
knowledge when designing games. Job advertisements for
computer game professionals focus on specific skills, such as
specific programming languages, graphics libraries, AI
techniques, etc, and say nothing about broad backgrounds. In
contrast, game designer Chris Crawford lists a very broad set of
books, movies, and periodicals in his, “Education of a Game
Designer.” (Chapter 9, in [Craw03]).

One solution to this tension is to require students to take some
number of breadth courses that are not directly related to
computer games. Colleges and universities with a wide range of
degree programs tend to have a variety of courses covering
history, literature, psychology, music, film, theater, and so on,
which students can draw upon for this breadth. Most 4 year
colleges and universities have some kind of formal breadth
requirement for all students. At UC Santa Cruz, 80 credits out of a
180 credit degree program must satisfy campus General
Education requirements, which are split across a wide range of
subjects, and include a writing intensive course. The UC Santa
Cruz game degree has a series of “Art and Social Foundation”
requirements in which students select three from a list of five
categories: Art, Film, Theater Arts, Music, and Economics. In
each category, students select a single course from a list of
approved courses for the major. In this way, students have part of
their general education requirements targeted towards courses of
particular relevance for game design, while still giving students
substantial freedom in picking additional breadth courses.

More specialized institutions need to explicitly create courses to
provide some of this depth. FullSail has required courses on
Historical Archetypes and Mythology and Media and Society, and
DigiPen has courses on Mythology for Game Designers and
Society and Technology. One of the clear tradeoffs is that
specialized institutions offer fewer breadth courses, thereby
allowing them to offer more game design courses, while
traditional colleges and universities can draw upon a broad array
of breadth courses, but with fewer slots available for focused
game design courses. The lack of required breadth courses also
permits more compressed schedules, with FullSail’s program
taking just three years.

3.7 Impact of Computer Game Topics on
Existing Curricula
The creation of a game degree program is not only an opportunity
to add new game-specific courses to the curriculum, but also an
opportunity to add gaming related content to existing CS courses.
Games are a great student motivator and, due to the breadth of
topics CS topics that play a role in games, can be incorporated
into almost any class in the CS curriculum. As an example of
organizing a CS course around games, one of us (Mateas)
developed a version of the sophomore introduction to hardware

systems course at Georgia Tech organized around the Game Boy
Advance (GBA) portable game system.

The Media Device Architectures course covers the basics of
binary representation, memory and processor architecture,
memory-mapped I/O, interrupts, and low-level C programming
(bit masking, bit shifting, etc.), but using the GBA as the
reference architecture. Though a fairly contemporary game
system, the GBA is organized like many classic consoles, with no
OS, a memory-mapped architecture for I/O (requiring explicit
memory manipulation to, say, draw on the screen), and interrupt-
based input handling. Thus, students can gain real experience
coding “close to the silicon”, while having the motivation of
programming a real game console. Further, unlike many
introductory hardware systems courses which make use of an
artificial simplified reference architecture for teaching assembly
language programming, GBA programmers have a real
motivation to embed assembly blocks in their C code, as assembly
may be needed to optimize critical paths within the game code, or
to write interrupt handlers that can require the use of opcodes that
aren’t generated by the C compiler. Finally, GBAs can be
networked together with serial cables, giving students the
opportunity to play with simple network protocols.

4. CONCLUSION
This paper has presented a series of design issues that confront
any group seeking to develop a new game-oriented undergraduate
degree program. Our goal in presenting these issues is to make
these design considerations explicit, so that future designers can
more easily create new, compelling degree programs by
understanding the issues involved in the creation of existing ones.

References
[Craw03] Chris Crawford, Chris Crawford on Game Design, New
Riders, 2003.
[Denn05] Peter Denning and Andrew McGettrick. Recentering
Computer Science. Comm. ACM, 48 (11), Nov. 2005, 15-19.
[Davi05] Drew Davidson, “Games by Degrees: Playing with
Programs,” On The Horizon. Special Issue. Second Generation E-
Learning Part 2: Serious Media. 13(2), 2005, pp. 70-74.
[Furs06] Merrick Furst and Richard DeMillo. Creating
Symphonic-Thinking Computer Science Graduates for an
Increasingly Competitive Global Environment, The Georgia
Institute of Technology, 2006,
http://www.cc.gatech.edu/images/pdfs/threads_whitepaper.pdf.
[Gele91] David Gelernter, Mirror Worlds, Oxford University
Press, 1991.
[Marg99] Jane Margolis, Allan Fisher and Faye Miller. Caring
about connections: gender and computing. IEEE Technology and
Society Magazine, 18 (4), 1999, 13-20.
[Marg03] Jane Margolis and Allan Fisher. Unlocking the
Clubhouse: Women in Computing. MIT Press, 2003.
[Simo68] Herbert A. Simon, The Sciences of the Artificial, MIT
Press, 1968.
[Ward05] Noah Wardrip-Fruin. Playable Media and Textual
Instruments. Dichtung Digital: Journal on Digital Aesthetics (1).
2005. http://www.dichtung-digital.com/2005/1/Wardrip-Fruin

89

SAGE: A Simple Academic Game Engine

[Extended Abstract]

Ian Parberry
Jeremiah R. Nunn
Joseph Scheinberg

Erik Carson
Jason Cole

Department of Computer
Science & Engineering

University of North Texas
Denton, TX, USA

ian@unt.edu

ABSTRACT
SAGE is a simple academic game engine for use in a game pro-
gramming class in the undergraduate Computer Science curricu-
lum, designed specifically as a core onto which students can add
their own game engine features. SAGE consists of a sequence of
demos written in C++ using Microsoft DirectX, each extending its
predecessor in a process called incremental development. Incre-
mental development is a proven pedagogical technique used for the
education of game programmers at the University of North Texas
since 1997.

Categories and Subject Descriptors
K.3.2 [Computing Mileux]: Computers and EducationComputer
and Information Science Education[Computer science Education]

General Terms
Design, Experimentation

Keywords

1. INTRODUCTION
In 1993 we introduced a game programming course to the un-

dergraduate computer science program at the University of North
Texas. At the time this was a difficult task, both because there
were no course materials, books, or web pages available, and be-
cause the industry-driven focus of the class and the perceived trivial
nature of entertainment computing made the subject matter contro-
versial. Interestingly, the objections came from faculty - both the
students and the administration were in favor of the class. Since
1993 the initial game programming class has evolved with the fast-
moving game industry, and spawned a second, advanced game pro-

gramming class. After more than a decade of operation, our game
programming classes have positioned our alumni for employment
in companies including Acclaim Entertainment, Ensemble Studios,
Gathering of Developers, Glass Eye, iMagic Online, Ion Storm,
Klear Games, NStorm, Origin, Paradigm Entertainment, Ritual,
Sony Entertainment, Terminal Reality, and Timegate Studios. For
more information about these classes, see [11, 12].

Despite a rocky beginning, game programming is now gaining
acceptance in academia (see, for example, Adams [1], Becker [2],
Faltin [4], Feldman and Zelenski [5], Jones [7], Moser [8], and
Sindre, Line, and Valvåg [13]), resulting in a proliferation of new
classes and programs both internationally and nationwide and a
move towards a professionally recommended curriculum in game
studies [6]. In contrast to institutions such as Digipen, Full Sail,
and SMU’s Guildhall that offer specialized degrees or diplomas in
game programming, UNT offers game programming as an option
within a traditional computer science curriculum.

The students in our game programming classes are usually se-
niors in the computer science program, who are technologically
savvy and experienced programmers. They are usually quite capa-
ble of reading the documentation for game APIs, such as Microsoft
DirectX, themselves. For them, the biggest road-block is pick-
ing the small subset of techniques that they actually need from the
wealth of options available. The lectures focus on getting started,
and leave exploration of options in the more than capable hands of
the students. Our game programming classes have a positive effect
on undergraduate enrollment in the Department of Computer Sci-
ence and Engineering at UNT. Out of almost 200 students from the
prerequisite classes surveyed in 1993, 49% of students intended to
take the introductory game programming class, and 39% said that
the class was a contributing factor to their presence in the Computer
Science program at UNT (for full figures, see [12]).

Selection of a game engine is a major decision that can make
or break a game programming class. Students learning game pro-
gramming in academia need an engine that is flexible, extensible,
stable, and well-documented. Industry game engines such as Ver-
tigo’s Quake II .NET, Unreal Technology’s Unreal Engine, and
Valve’s Half Life 2 engine, are large, complex, and relatively com-
plete. An academic game engine should in contrast be small, sim-
ple, and incomplete. It should be suitable as a foundation on which
students can build, and above all be easy to understand and mod-
ify, especially by relatively inexperienced students. It should illus-

90

trate new concepts in enough detail for students to get started, but
should avoid “completeism”. It should obey the educational prin-
ciple “proceed from the known into the unknown”.

The main part of this paper is divided into five sections. The
first section lists the requirements for a simple game engine, and
the technology necessary to implement them. The second section
gives an overview of the SAGE project. The third section describes
the seven SAGE demos in more detail. The fourth section describes
our experience with SAGE in the classroom in Spring 2006. The
fifth section discusses our choice of DirectX and Visual C++ for
this project.

2. MINIMUM REQUIREMENTS
SAGE is designed to provide the minimum requirements for a

game, which are a 3D world that a player can explore in real time,
with interesting objects in it, with which the player can interact.
The key adjectives in the preceding sentence are real time and in-
teractive. The technology necessary for this includes:

• A graphics renderer, using pixel shaders and HLSL. It is es-
sential for student morale that the rendering engine be close
to cutting edge, and to provide the latest shader technology.

• Objects, including a method for importing 3D models cre-
ated by artists, and an object manager that takes care of ob-
ject creation, behaviour, rendering, and destruction.

• A 3D world, consisting of terrain and some method for level-
of-detail to increase rendering speed.

• Input from the keyboard, mouse, and joystick to enable the
player to interact with the world and the objects in it.

• Collision detection to enable interaction between the player,
the objects, and the world.

• A particle engine to enable visual effects that follow from
that interaction.

3. SAGE OVERVIEW
SAGE is a 3D game engine developed as a sequence of demos,

each built on its predecessor, in a process called incremental devel-
opment. Incremental development has been used in the construc-
tion of a billboard demo in a simple 3D world with limited cam-
era movement (Ned’s Turkey Farm, see Figure 1) for introductory
game programming classes at UNT since 1997 (see [11]). Earlier
versions have been published in two books [9, 10]. The aim is not
to teach this game per se, but rather to teach the development of
games in general using this engine as an example. It is designed to
have many of the features of a full game in prototype form so that
students can use code fragments from it as a foundation on which
to build their own enhancements. The students are graded on the
basis of a project, which is to create a sprite-based game in groups
together with art students from the concurrent game art and design
class.

SAGE brings this experience to a fully 3D game engine, based
on an educational pedagogy that has a proven track record. SAGE
includes a sample game, Ned’s Turkey Farm 3D. The code con-
sists of a sequence of game demos, each showcasing a new feature.
The feature is demonstrated in rudimentary form, leaving room for
students to enhance it. The trick is getting it complex enough to
convey the fundamental principles, yet simple enough for students
to understand. SAGE has Doxygen generated documentation, and
approximately 200 pages of tutorials.

SAGE is developed in C++, uses DirectX 9.0, and is accompa-
nied by Visual Studio project files. It is released under a BSD open
source license, and is available on the first author’s website and in

Figure 1: Screen shot of Ned’s Turkey Farm.

the Microsoft Developer Network Academic Alliance Curriculum
Repository.

SAGE is organized as follows. The following description applies
to Demo 6, the complete fully-featured project. The top-level folder
contains two subfolders, Ned3D containing game-specific code, and
SAGE containing engine code. The Ned3D folder consists mainly of
game-specific classes derived from the basic SAGE classes, which
we will not describe further here. The SAGE folder contains two
subfolders, SAGE Resources containing resources for the console
and effects files for the pixel shaders, and the Source folder con-
taining SAGE source code.
SAGE\Source contains the following subfolders.

• Common: Low-level code, which will be described in more
detail below.

• Console: The game console.
• DerivedCameras: A free camera and a tether camera.
• DerivedModels: An animated model using animation frames

and linear interpolation, and an articulated model.
• DirectoryManager: A directory manager, which manages

the organization of resources in subfolders.
• Game: The GameBase class, which contains game logic code.
• Generators: A name generator and an identifier manager.
• Graphics: Graphics related code, including vertex buffers,

index buffers, and effects.
• Input: Input using DirectInput.
• Objects: Game objects and the object manager.
• Particle: The particle engine.
• Resource: The resource manager.
• Sound: The sound manager.
• Terrain: The terrain code, including height map and LOD.
• TinyXML: TinyXML code.
• Water: Code for water animation, including use of the re-

flection pixel shader.
• WindowsWrapper: An abstraction layer for Microsoft Win-

dows specific code.

The Common folder is of particular interest, since it contains the
low-level code for SAGE. SAGE is based on the freely available
low-level code from Dunn and Parberry [3]. Common includes the
following utilities:

• AABB3.cpp, AABB3.h: Axially aligned bounding boxes.
• Bitmap.cpp, Bitmap.h: Bitmap image reader.

91

Module Code
Common framework 13,729
SAGE 13,469
tinyXML 4,883
Ned specific 2,750

Total: 34,831

Table 1: Number of lines of code in SAGE.

• CommonStuff.h, CommonStuff.cpp: Common stuff that
doesnt belong elsewhere.

• EditTriMesh.cpp, EditTriMesh.h: Editable triangle mesh
class.

• EulerAngles.cpp, EulerAngles.h: Euler angle class.
• MathUtil.cpp, MathUtil.h: Basic math utilities.
• Matrix4x3.cpp, Matrix4x3.h: Homogenous transforma-

tion matrix code.
• Model.cpp, Model.h: Simple class for a 3D model.
• Quaternion.cpp, Quaternion.h: Quaternion class.
• Renderer.cpp, Renderer.h: Rendering engine (modified

somewhat from its original form in [3]).
• RotationMatrix.cpp, RotationMatrix.h: Rotation ma-

trix class
• TriMesh.cpp, TriMesh.h: Triangle mesh class.
• Vector2.h, vector3.h: vector class.
• WinMain.cpp, winmain.h: Windows dependent code.

The following low-level code was added to Common:

• camera.cpp, camera.h: Base camera class, from which the
free camera and the tether camera are derived.

• fontcacheentry.cpp, fontcacheentry.h: Encapsulates
the Direct3D font class.

• plane.cpp, plane.h: Math plane class.
• random.cpp, random.h: Pseudorandom number generator.
• rectangle.h: Rectangle class.
• texturecache.cpp, texturecache.h: Texture cache class.

Phase 1 of SAGE consists of approximately 35,000 lines of C++
code (including header files, code, and comments). The code is dis-
tributed into four parts, the Common framework (described above),
SAGE code, tinyXML, and code specific to the sample game, Ned’s
Turkey Farm 3D. The number of lines of code in each of these mod-
ules is given in Table 1. The code architecture is described in Fig-
ure 2, with the foundation being code from Microsoft DirectX and
the Windows API, the Common framework being layered on top of
that, supporting the SAGE engine, with code specific to the partic-
ular game supported by SAGE layered on top of that.

4. SAGE DEMOS
SAGE consists of seven incremental demos, as follows:

• Demo 0: Model importation and display
• Demo 1: Terrain input and rendering
• Demo 2: Shaders using HLSL
• Demo 3: Game engine architecture
• Demo 4: Collision detection
• Demo 5: Particle engine
• Demo 6: 3D sound

4.1 Demo 0
Demo 0 demonstrates the code for reading and displaying a model.

The code for Demo 0 shows the programmers how to import a

Figure 2: SAGE architecture.

model, render it, and perform simple operations such as rotation
and camera motion under user control. In addition, the executable
is a useful tool for artists and programmers to check for correct
export of models, which can be created using a 3D modeling tool
such as Maya or 3D Studio Max (see Figure 3).

Each modeling program has a proprietary file format that changes
with each version, the updating of which can cause previously used
models to become unusable. Each has facilities for plug-ins to ex-
port to a different file format. Some file formats are text, some are
binary. Direct3D has a native file format (.X). Other popular file
formats exist, eg. Quake II, Quake III models. Managing the input
of art assets is one of the biggest startup hurdles in making a game
demo. File format converters exist, but our experience with them
has in general been less than positive, often resulting in the intro-
duction of degenerate triangles, sliver triangles, missing triangles,
detached triangles, and the mangling of origin, axes, normals, and
scale.

To help avoid these problems, SAGE uses the S3D format from
[3], and includes an S3D plug-in for Maya. S3D is a simple text
format that enables the programmer to view the model data directly
in a text editor to check for simple errors.

Figure 3: Demo 0 showing the plane model.

4.2 Demo 1
Demo 1 covers terrain input and rendering. It reads a height map

92

from an image file and renders an island surrounded by a small
finite area of ocean (see Figure 4). Simple grid-based level of detail
is provided. A free camera can be used to explore the terrain. A
simple console allows the user to modify game properties easily.

Figure 4: Demo 1 showing ocean and island.

4.3 Demo 2
Demo 2 covers shaders using HLSL. Shaders are provided for

texture blending (demonstrated on textures that change with terrain
height), and for reflections in water (see Figure 5). A triangle of wa-
ter that moves with the camera gives the illusion of ocean extend-
ing to infinity. We particularly avoided the temptation to create a
large number of shaders, preferring to leave that for students. Since
shaders are an intricate subject the shader tutorial is the longest of
our tutorials, consisting of approximately 50 pages.

Figure 5: Demo 2 showing terrain reflections and texture
blending.

4.4 Demo 3
Demo 3 covers game engine architecture, including objects, an

object manager, a tether camera, and DirectInput. Types of objects
supported include rigid objects, articulated objects, and animated
objects. Articulated objects consist of separate hierarchically orga-
nized parts that may be moved or rotated independently, such as the
propellor on the airplane and the blades on the windmill in Ned’s
Turkey Farm 3D. Animated objects consist of key frames created by

the artist as a set of rigid objects. The SAGE animated object pro-
vides in-betweening using linear interpolation. Ned’s Turkey Farm
3D has crows implemented as animated objects.

4.5 Demo 4
Demo 4 covers collision detection using axially aligned bound-

ing boxes (AABBs). Collision of objects with terrain, objects with
objects, bullets with objects are detected. Object-terrain collision
is implemented by interpolating terrain height within a triangle,
object-object collision is implemented using AABB-AABB inter-
section, and bullet-object collision is implemented using ray-AABB
collision detection. In a real game, AABB collision detection would
be only the first or primary level of collision detection, designed to
quickly eliminate noncolliding objects. Subsequent levels of col-
lision detection, including bounding boxes and bounding spheres
at the secondary level, and triangle-triangle collision detection as
the tertiary level, are left as possible projects for the student. For
educational purposes, SAGE will render AABBs in real time for
classroom demonstrations (see Figure 6).

Figure 6: Demo 4 showing AABBs.

4.6 Demo 5
Demo 5 covers particle engines and provides a general purpose

particle engine that is used in Ned’s Turkey Farm 3D for explosions,
clouds of feathers (see Figure 7), smoke, gunfire flash, and dust
raised by a bullet hitting the terrain.

4.7 Demo 6
Demo 6 covers stereo 3D sound using DirectSound.

5. SAGE IN THE CLASSROOM
SAGE was used for the first time in the classroom in Spring 2006

in the first author’s CSCE 4220 (Advanced Game Programming)
class while the code and tutorials were still under development. The
resulting student games were of a higher quality than in previous
years, and included the following:

• Duck Hunt: A medieval first-person shooter in which the
played floats across a lagoon at twilight in a canoe, shoot-
ing flaming arrows at ducks.

• Sink This: A third-person submarine game in which the player
attempts to torpedo other submarines.

• Fury Mallard: A third-person shooter in which a duck at-
tempts to kill men in black suits.

93

Figure 7: Demo 5 showing cloud of feathers created using par-
ticle engine.

• Ghost Hunter: A third-person shooter in which the player
attempts to kill zombies.

• Galactic Battlefield: A third-person space shooter.
• Great Space Race: A third person space racing game where

the player must navigate between portals against the clock.
• VertiGo: A 3D puzzle game in which the player attempts to

navigate a marble through a 3D array of cubes.

6. ON DIRECTX AND VISUAL C++
The authors of this paper have attracted a substantial amount

of criticism from academics over their choice of DirectX for the
graphics API and Visual C++ for the compiler supported in this
project, over OpenGL and g++ respectively. In response, the au-
thors wish to make the following observations:

1. The DirectX SDK (Software Developer’s Kit) can be down-
loaded and used free of charge. Visual Studio Express can be
downloaded and used free of charge, which with the addition
of the Windows Platform SDK (also available for free) and
the DirectX SDK can be used for game development under
Windows.

2. DirectX is updated every two calendar months. This means
that bug fixes are applied quickly. Unlike OpenGL, there is
little or no trouble supporting available video cards. A major
version of DirectX is released regularly (DirectX 10 will be
available within a year), which ensures that the API keeps up
with the latest in graphics technology.

3. We believe that students benefit from using in class the same
tools and techniques used by a substantial fraction of the
game industry.

4. We strongly believe that students should be exposed to as
many different compilers and APIs as possible during their
academic tenure. Our students are already exposed to open
source software including g++ and OpenGL in other Com-
puter Science classes. DirectX and Visual Studio add to this
experience, and are in no way intended to supplant it.

7. CONCLUSION
SAGE Phase 1 was completed in June 2006, and can be down-

loaded from http://larc.csci.unt.edu/sage. SAGE is funded
by a grant from Microsoft Research.

8. REFERENCES
[1] J. C. Adams. Chance-It: An object-oriented capstone project

for CS-1. In Proceedings of the 29th SIGCSE Technical
Symposium on Computer Science Education, pages 10–14.
ACM Press, 1998.

[2] K. Becker. Teaching with games: The minesweeper and
asteroids experience. The Journal of Computing in Small
Colleges, 17(2):23–33, 2001.

[3] F. Dunn and I. Parberry. 3D Math Primer for Graphics and
Game Development. Wordware Publishing, 2002.

[4] N. Faltin. Designing courseware on algorithms for active
learning with virtual board games. In Proceedings of the 4th
Annual Conference on Innovation and Technology in
Computer Science Education, pages 135–138. ACM Press,
1999.

[5] T. J. Feldman and J. D. Zelenski. The quest for excellence in
designing CS1/CS2 assignments. In Proceedings of the 27th
SIGCSE Technical Symposium on Computer Science
Education, pages 319–323. ACM Press, 1996.

[6] IGDA. IGDA Curriculum Framework. Report Version 2.3
Beta, International Game Developer’s Association, 2003.

[7] R. M. Jones. Design and implementation of computer games:
A capstone course for undergraduate computer science
education. In Proceedings of the 31st SIGCSE Technical
Symposium on Computer Science Education, pages 260–264.
ACM Press, 2000.

[8] R. Moser. A fantasy adventure game as a learning
environment: Why learning to program is so difficult and
what can be done about it. In Proceedings of the 2nd
Conference on Integrating Technology into Computer
Science Education, pages 114–116. ACM Press, 1997.

[9] I. Parberry. Learn Computer Game Programming with
DirectX 7.0. Wordware Publishing, 2000.

[10] I. Parberry. Introduction to Computer Game Programming
with DirectX 8.0. Wordware Publishing, 2001.

[11] I. Parberry, M. Kazemzadeh, and T. Roden. The art and
science of game programming. In Proceedings of the 2006
ACM Technical Symposium on Computer Science Education.
ACM Press, 2006.

[12] I. Parberry, T. Roden, and M. Kazemzadeh. Experience with
an industry-driven capstone course on game programming.
In Proceedings of the 2005 ACM Technical Symposium on
Computer Science Education, pages 91–95. ACM Press,
2005.

[13] G. Sindre, S. Line, and O. V. Valvåg. Positive experiences
with an open project assignment in an introductory
programming course. In Proceedings of the 25th
International Conference on Software Engineering, pages
608–613. ACM Press, 2003.

94

Designing Shape-shifting Collaborative Laboratory Spaces
to Facilitate Game-Design Education

David I. Schwartz
Cornell University

Department of Computer Science
5137 Upson Hall
+1 607-255-5395

dis@cs.cornell.edu

Tony Cosgrave
Cornell University

Cornell University Library
109 Uris Library

+1 607-255-7148

ajc5@cornell.edu

Steve Weidner
Cornell University

Cornell Information Technologies
215 Computing & Communication

Ctr.
+1 607-254-7403

sw275@cornell.edu

ABSTRACT
In this paper, we describe a novel approach to computer
laboratory design for multidisciplinary education, including game
design. The Cornell Library Collaborative Learning Computer
Laboratory (CL3) is a shape-shifting workspace in which students
and instructors can move semi-circular, dual-workspace computer
tables to fit a wide-variety of group needs and sizes. We
demonstrate that this concept facilitates game-design and
development education. Early studies indicate that CL3 does
indeed work, though the concept needs a few refinements with
respect to training and demonstration.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – teams.

K.3.1 [Computers and Education]: Computer Uses in Education
– collaborative learning.

H.5.2 [Information Interfaces and Presentation]: User
Interfaces – ergonomics, evaluation–methodology, interaction
styles.

H.5.4 [Information Interfaces and Presentation]: Group and
Organization Interfaces – collaborative computing, computer-
supported cooperative work evaluation–methodology.

General Terms
Management, Design, Experimentation, Human Factors.

Keywords
Collaborative Learning, Computer Laboratories, Game Design,
Multidisciplinary, Education.

1. INTRODUCTION
Game-design programs involve multidisciplinary work, often
involving artists, writers, musicians, engineers, and so forth.
However, typical computer laboratories, especially those for
traditional face-front instruction and course needs, do not serve
the wide range of game-oriented team work. When the Game
Design Initiative at Cornell University (GDIAC, [1]) began in
2001, our own labs were limited to individual workspaces. As the
multidisciplinary component grew, GDIAC realized the need for
flexible, collaborative space. By merging with the Cornell
University Library’s CreationStation multimedia development
facility [2], a cross-departmental team (Computer Science,
University Library, and Academic Technologies) jointly

developed the Cornell Library Collaborative Learning Computer
Laboratory (CL3). CL3 opened in August, 2004 [3].

CL3 currently hosts GDIAC’s core game-design courses,
academic excellence workshops for introductory programming,
and the new CreationStation laboratory. The facility can fit
upwards of 30 students and has supported approximately 10K
users each year in the past two years of operation. In this report,
we first explain the background components that drove CL3’s
design. Next, we highlight elements of the implementation that
can assist others in building similar collaborative space. Finally,
we summarize the results of the current analysis and propose
future work.

2. Background
2.1 Collaborative and Cooperative Learning
Collaboration and cooperation have become essential elements of
modern educational pedagogy [4-6]. The CL3 project did not
seek to justify the importance of teamwork, but instead, to
determine how to facilitate collaboration with hardware and
software. To explain this facilitation, we provide the following
definitions:

• Collaborative learning: general team-based education.

• Cooperative learning: a specific form of collaborative
learning that requires team interdependence, different
skill sets, final product, and individual accountability.

We describe CL3 as collaborative because of the availability for
public use. We describe how Cornell’s game courses use
cooperation in Section 2.3.

2.2 Collaborative Programming
When CL3 was first conceived, the original model addressed the
need for collaborative programming space. Cornell University’s
College of Engineering introductory courses often provide
academic excellence workshops, which are pass/fail classes in
which students work collaboratively on extra course material [7].
For introductory programming, the insufficiency of typical face-
front computer labs drove the original plans for CL3. A common
model involves pair programming, in which a pilot and co-pilot
program as a pair, which has shown excellent results in education
and practice [8]. Manufacturers have even begun to provide pair
programming computer desks [9], and various programs have
researched how computer desks can facilitate collaboration [10-
12].

95

2.3 Game Design and Development Education
Game design and development education has flourished in the
past few years, leading towards a call for an understanding of best
practices [13]. Although pedagogy and content still vary
(notwithstanding the wide range of courses and program names),
one common aspect is the need for multidisciplinary teamwork.
Although game design is an interdisciplinary field [14], students
from music, art, writing, engineering, and more work together to
produce original works. This collaboration drives tremendous
interest in such education, which offers excellent team-skill
development, appealing to many students.
As noted in Section 2.1, working on a game often involves
cooperation. At Cornell, groups receive individual and group
grades, whereby the individuals also rate themselves. This need
for close collaboration and multidisciplinary work necessitates a
collaborative learning space.

2.4 Learning Spaces and Location
One fundamental aspect of CL3 is the location, an issue perhaps
often not addressed. By situating CL3 in a university library, we
provide “neutral ground.” Whereas not all schools may have this
extreme separation, but the computer science and art departments
are at literal ends of the campus. Because game design requires
joint effort and mutual respect, identifying central and neutral
areas is key to facilitating collaboration.

3. LABORATORY DESIGN
This section explains how CL3 addresses the fundamental issues
and ideas expressed in Section 2.

3.1 Table Design
CL3’s core design starts with a pair-programming computer desk,
two of which are illustrated in Figure 1:

• Curved, one eighth-circle to allow for semi-circles in a
classroom arrangement.

• Seating on the inside curve to use classroom space more
efficiently. Note that an inside curve helps to alleviate
lines of sight that aim away from partners.

• Table rollers—each table forms a moveable unit to
create larger collaboration groups, perhaps even an
entire class.

To determine the dimensions shown in Figure 1, we worked with
Cornell’s laboratory guidelines. We also developed a full-scale
mockup to test user-responses to the environment with informal
surveys.

Figure 1. Two of CL3's pair programming desks.

3.2 Workstations and Input Devices
A commonly asked question is the choice against laptops. For
example, Stanford’s “Teamspace” lab [12] uses a shared large-
screen monitor with individual laptop inputs. However, given the
interest in building flexible space, portable large-screen monitors
proved too costly.
The fundamental design seeks to provide a space in which neither
the pilot nor co-pilot at a workstation would have an advantage,
driving the project. So, CL3 workstations are dual input: two mice
and two keyboards. Both users at a single workstation must
negotiate for control. Given the use of Windows XP for maximum
software flexibility for public use, support for simultaneous dual-
cursors/pointers was limited. In Section 5, we will address this
notion further, due to upcoming collaboration software releases.
To allow for rapid table movement and shape-shifting, each table
has a UPS unit that provides “plug-and-play” capability to each
workstation. Albeit not a standard use of a UPS, our units have
lasted over two years.

3.3 Networking
The original conception for CL3 had a completely shared
network, where any group could send their project to any other
machine, real-time. Due to the demands of games, the software at
the time did not suffice. For schools with limited budgets our
solution provided a suitable alternative. CL3’s computers all
connect to a common network, both wired and wireless. So,
students can share files, moving files to machines (including the
instructor’s). Technologically, this option required relatively little
extra cost and still afforded the inter- and intra-group
collaboration that we sought.

3.4 Instructors and Facilitators
When designing CL3, we accounted for multiple instructors,
especially with the needs for game-design education. Co-
instructors, peer facilitators, and teaching assistants all need to
weave from group to group. Two catch phrases in education
nicely summarize teaching styles: “chalk-and-talk” and “guide-
by-the-side.” As students develop their game, allowing group
time is often more productive than the traditional lecture style.
Thus, a classroom space that allows for guided group time greatly
assists project development. In CL3, we provide two locations for
an instructor podium (shown in Figure 2), portable wireless
keyboard, and operator workstation, all linked together. Not only

[copyright info]

96

do co-instructors have an ability to demonstrate and communicate
examples, but student groups can split duties during presentations
(e.g., play a prototype and give PowerPoint slides).

Figure 2. Portable instructor podium

3.5 Layouts
For mobility and flexibility, we endeavored to place as many
power outlets in the raised floor as possible. To avoid breaking
the budget with a completely electrified grid, we used cutouts of
the tables to determine a large variety of table configurations for
the given space. Figure 3 shows three configurations for the room.
Given a choice of space, we would have preferred a square room,
though the rectangular space sufficed.
The configurations in Figure 3 demonstrate three kinds of
collaboration for game design groups. From top to bottom,

• Parallel order: provide an approximate traditional
environment for lecturing.

• Distinct order: provide semi-private workspace.

• Shared order: provide larger-scale group space or inter-
group review areas.

In each of these cases, the configurations facilitate common
activities for game-design groups. Moreover, allowing the
students to shift table configurations “on-the-fly” provides a
degree of fun to the class time, in keeping with the focus on
games.

3.6 Resources
One key aspect of the design is the involvement of an independent
organization outside of game creation. For Cornell, the University
Library provides several services that match the needs of game
creation:

• Storage of digital-arts tools (e.g., musical keyboards,
recording equipment, drawing tools).

• Storage of games, systems, and accessories.

• Staffing and oversight.

Figure 3. Example table configurations (to scale)

Besides finding space, designing the tables, and finding resources,
accounting for constant monitoring was crucial. Allowing
students to move tables breaks common conceptions. An
organization set up for monitoring, staffing, and loaning—a
library—provides an ideal partner for game creation [3].

4. EVALUATIONS
From Fall 2005—Spring 2006, two Cornell courses involved in
human-computer interaction and ergonomics offered to use CL3
as an example to study. We present the general findings of both
studies in this section [15].

4.1 Human-Computer Interaction
In Fall 2005, the first course project sought to investigate whether
or not CL3 facilitates collaboration and suggest improvements to
the design. The study involved a questionnaire given during class
times. About 55% of the 38 responses came from the introductory
game-design students. Key findings that the evaluation reported
include the following for the total number of respondents:

• 30% moved tables.

• 46% struggled over the mouse.

• 39% struggled over the keyboard.
In terms of moving the tables, common comments from students
included the following:

• “no need” (as the instructors or other students have
already picked a suitable arrangement).

• Being unaware of mobility (lack of instruction or
demonstration of CL3 tables).

• Fear of breaking something

97

The report provides further details. Given that 74% reported
preferring collaboration, and 83% reported satisfaction, the
surveyed students seemed genuinely interested in a collaborative
facility. The survey team concluded that while collaboration does
indeed occur in CL3, there are weaknesses that need addressing,
based on the above findings. One key issue that the team related is
the need for communication concerning CL3’s mobility and
assuaging fears of damaging the equipment.

4.2 Ergonomics
In Spring 2006, an entire advanced course in ergonomics used
CL3 as an experimental project to test. This study expanded upon
the first team’s work, delving into the specifics of the table
design, instruction on lab use, measurement of collaboration, and
constructive suggestions.

The team surveyed 55 CL3 users and gathered the following data:

• 43% move the tables, with about half of the responses
indicating that table movement helps to facilitate
collaboration.

• 37% of non-movers were unaware of table mobility.

The survey team points out another interesting notion in terms of
conflicting understanding of collaboration during public hours.
Outside of “trained” game-design students, other students would
sometimes consider the space strictly as quiet, despite CL3’s
name. Although the library offers neutral ground, it carries this
other preconception.

Whereas this survey also concluded that CL3 does facilitate
collaboration, they did offer several constructive suggestions to
improve the concept:

• Educate users about posture to improve seating and use
of input devices.

• Educate users about table adjustments and mobility,
especially to improve collaboration. For example,
visual/hardware “cues,” such as handles would help.

5. FUTURE WORK
In both studies, the surveys reached a small group of students.
Our next step is performing a large-scale study with questions
focused on table movement and collaboration. In the interim, we
intend to focus on educational material (e.g., signs, login screens,
lab operator training, instructor training, and workshops) to help
demonstrate CL3’s capabilities. The subsequent results should
prove interesting to see if our proposed efforts will help to break
down preconceptions on lab use.

6. ACKNOWLEDGEMENTS
We would like to acknowledge the Cornell University Libraries
for funding, ideas, staffing, and continuing support; the Faculty
Advisory Board on Information Technology for a Cornell Faculty
Innovation in Teaching grant; the Cornell University Academic
Technology Center for funding and continuing support; Greg
Bronson, David Davies, and Daisy Fan for collaborating on the
original design; The Intelligent Information Systems Institute for

software donations; and Electronic Arts for additional financial
support.

7. REFERENCES
[1] Game Design Initiative at Cornell University (GDIAC).

http://gdiac.cis.cornell.edu.
[2] Cosgrave, T. Completing the Learning Cycle: Managing the

Cornell CreationStation Experiment. In Managing Library
Instruction Programs in Academic Libraries, Selected
Papers Presented at the Twentieth-Ninth National LOEX
Library Instruction Conference, pages 41-45, 2001.

[3] Steele, B. New computer lab can morph to fit its users’
collaborative needs, The Cornell Chronicle, October 7, 2004,
http://www.news.cornell.edu/Chronicle/04/10.7.04/
CL3.html.

[4] O’Donnell, A., Hmelo-Silver, C., Erkens, G. (Eds.).
Collaborative learning, reasoning, and technology, L.
Erlbaum Associates, 2006.

[5] Bosworth, K. and Hamilton, S. Collaborative learning :
underlying processes and effective techniques, Jossey-Bass,
1994.

[6] Sharan, S. (Ed.). Cooperative learning : theory and research,
Praeger, 1990.

[7] Cornell Engineering: Academic Excellence Workshops.
http://www.engineering.cornell.edu/student-
services/learning/academic-excellence-workshops/index.cfm.

[8] Pair Programming, an Extreme Programming Practice.
http://www.pairprogramming.com.

[9] Woodware Designs -- Pair Programming Desks.
http://www.charm.net/~jriley/pairall.html.

[10] Scott, S., Sheelagh, M., Carpendale, T., Inkpen, K. Tabletop
design: Territoriality in collaborative tabletop workspaces,
Proceedings of the 2004 ACM conference on Computer
supported cooperative work, ACM Press, 2004.

[11] Ryall, K., Forlines, C., Shen, C., Morris. M. Tabletop design:
Exploring the effects of group size and table size on
interactions with tabletop shared-display groupware,
Proceedings of the 2004 ACM conference on Computer
supported cooperative work, ACM Press, 2004.

[12] Shih, C., Fox, A., and Winograd, T. Teamspace: An
Innovative Workspace for Collaborative Academic
Computing. Learning Technology publication of IEEE
Society, 6,4 (Oct. 2004), 29-31.

[13] IGDA - Curriculum Framework.
http://www.igda.org/academia/curriculum_framework.php.

[14] Hoetzlein, R and Schwartz, D. Computer Game Design as A
Tool for Cooperative Interdisciplinary Education,
Proceedings of The American Society for Engineering
Education St. Lawrence Section Conference, Queens
University, October 2003.

[15] Cornell Library Collaborative Learning Computer
Laboratory (CL3). http://www.cs.cornell.edu/dis/cl3.

98

	01_1477.pdf
	02_1495.pdf
	1. INTRODUCTION
	2. INSIGHTS FROM OUR PILOT YEAR
	2.1 Limitations of a Product-Centered Model
	2.2 The “Silo” Model Creates Balkanization

	3. CROSS-DISCIPLINARY CONTENT
	4. INDIVIDUALIZED DELIVERABLES
	4.1 Generic Assignments for All Students
	4.2 Breadth vs. Depth of Skills Development
	4.3 Large Project Collaboration

	5. FACULTY ROLES
	6. SUMMARY
	7. ACKNOWLEDGMENTS
	8. REFERENCES

	03_1506.pdf
	1. INTRODUCTION
	2. STRUCTURE OF THE COMPUTER SCIENCE CLASS
	2.1 Choice of Game Engine
	2.2 Assignments
	2.2.1 Game Review
	2.2.2 Weapon Mod (Introduction to UnrealScript)
	2.2.3 Path Planning (Artificial Intelligence)
	2.2.4 Heads-up Display (HUD)
	2.2.5 Project Design Document and Pitch (Group Assignment)
	2.2.6 Level Design (Group Assignment)
	2.2.7 Project Milestones (Group Assignment)

	3. STRUCTURE OF THE DESIGN CLASS
	4. INTERACTION BETWEEN CS AND DESIGN
	4.1.1 Case Study #1: Quidditch (Without Design Students)
	Case Study #2: Strong Desire For Quickness (With Design Students)
	4.1.3 Case Study #3: Bored With Paradise (With Design Students)
	Case Study #4: The Dryad Game (Without Design Students)

	5. OBSERVATIONS AND CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

	04_1474.pdf
	05_1492.pdf
	1. Introduction
	Cognitive scientists understand that learning occurs in the context of meaningful tasks [4][5][8][11]. In actuality, these tasks represent regular practices of a particular community or group or people. Rather than introducing theoretical concepts separate from real-world applications, effective teachers guide students through situated activities that demand the application of information or a specific skill [4][5][11]. As the student participates in activities under the guidance of the teacher, the student develops the skill set required to complete the task. Cognitive scientists refer to this as the apprenticeship model [5].
	We extend the model of cognitive apprenticeship to the design and instruction of the Game Authoring Course. We carefully select assignments (e.g. writing a game design document, conducting play-tests of game prototype, etc.) that reflect authentic game design practices in the gaming industry. As students acquire knowledge necessary to complete the assignments, they develop proficiency using the tools of the trade. Under the careful guidance of the instructor, class discussions create a safe environment in which learners feel that they contribute to a community of learners while gaining expertise in a particular activity or task. Game play demonstrations give students the opportunity to assess their peers’ work and to refine their ideas about what it means to be a game designer.
	Interaction with students enrolled in the course provides secondary means for support and self-reflection as students develop proficient skills as game designers. Additionally, the assignments instantiate tasks that game developers do on a regular basis. Hence, the project deliverables represent opportunities for situated learning as students play the role of game developers throughout the Game Authoring Course. We now turn our attention to the learning objectives for each project and assess students’ mastery of game design principles.
	3. Game Authoring Course
	Project 1: Game Design Document

	 What is the appropriate audience for this game?
	Project 2: Developing a 2D Mobile Game
	Project 3: 3D Game Module
	5. Course Assessment

	4. Conclusion and Acknowledgments

	06_1510.pdf
	4.5 Coordinating Tracks
	4.6 Group Participation
	4.7 Career Viability
	4.8 Guest Speakers
	4.9 Challenges and Benefits of Cross-School Enrollment
	4.10 Need for Lab Time

	07_1448.pdf
	INTRODUCTION
	RELATED WORK
	THEORITICAL BACKGROUND
	Goal Net
	FCM
	Dynamic Storytelling
	Interactions

	FRAMEWORK
	System Architecture
	Development Framework
	Game Development
	Agents Development
	Characters
	Plots

	GAME FOR SCIENCE LEARNING
	CONCLUSION AND FUTURE WORK
	REFERENCES

	08_1469.pdf
	1. INTRODUCTION
	2. THE GAME PROJECTS
	3. THE DESIGN PATTERNS USED
	3.1 Singleton Pattern
	3.2 Strategy Pattern
	3.3 Observer Pattern
	3.4 Making the Students Believe in Interfaces

	4. CONCLUSION
	5. REFERENCES

	09_1466.pdf
	10_1467.pdf
	11_1496.pdf
	INTRODUCTION
	Games and Learning
	Gaming for Girls Courses
	Engines used
	Curriculum

	Evaluation
	Capture and Motivate
	Self Efficacy and Perception of IT

	Discussion
	Future Work
	Conclusion
	REFERENCES

	12_1444.pdf
	1. INTRODUCTION
	2. The RAPT Program
	2.1 RAPT CS1
	2.2 RAPT CS2
	2.3 RAPT CS3

	3. Results
	4. DISCUSSION AND FUTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	13_1502.pdf
	1. INTRODUCTION
	2. DIGITAL GAMES IN CSE
	TEXT ADVENTURE GAMES
	Our Goals
	Operational History
	It's All Writing

	4. PROJECT-BASED CS1.5
	Review Assignments
	Phases of Adventure
	Introduction to Interactive Fiction
	Game Design
	Location Class
	Detailed Game Design
	Game Class
	Critter, Item, Inventory, and Playable Game
	Extended Game

	5. EVALUATION
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

	14_1512.pdf
	15_1394.pdf
	16_1407.pdf
	1. INTRODUCTION
	2. THE CURRICULUM
	3. THE GAME DEVELOPMENT LAB
	4. INTRODUCTORY COURSE
	4.1 Course Content
	4.2 Lessons Learned

	5. ADVANCED COURSE
	5.1 Course Overview
	5.2 Art
	5.3 Art/Programming Issues
	5.4 Programming
	5.5 Lessons Learned

	6. THE FUTURE
	7. REFERENCES

	17_1480.pdf
	1. INTRODUCTION
	2. CURRICULUM ORGANIZATION
	2.1 Degree Emphasis
	2.2 Naming Game-Oriented Programs

	3. CURRICULUM CONTENT
	3.1 Computer Science Content
	3.2 Digital Media Theory
	3.3 Game Design Content
	3.4 Project Based Learning (Game Projects)
	3.5 Ethics Content
	3.6 Breadth Content
	3.7 Impact of Computer Game Topics on Existing Curricula

	4. CONCLUSION

	18_1391.pdf
	19_1478.pdf
	1. INTRODUCTION
	2. Background
	2.1 Collaborative and Cooperative Learning
	2.2 Collaborative Programming
	2.3 Game Design and Development Education
	2.4 Learning Spaces and Location

	3. LABORATORY DESIGN
	3.1 Table Design
	3.2 Workstations and Input Devices
	3.3 Networking
	3.4 Instructors and Facilitators
	3.5 Layouts
	3.6 Resources

	4. EVALUATIONS
	4.1 Human-Computer Interaction
	4.2 Ergonomics

	5. FUTURE WORK
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

