
Journal of Computational and Applied Mathematics 29 (1990) 357-367
North-Holland

357

Avoiding stability-induced inefficiencies
in BDF methods

Kris STEWART
Department of Mathematical Sciences, San Diego State University, San Diego, CA 92182-0314, USA

Received 9 May 1989
Revised 24 August 1989

Abstract: Time-dependent partial differential equations are often treated by semidiscretization and the resulting
problem solved using existing ordinary differential equation software restricted to low-order formulas. For certain
classes of problems, the Backward Differentiation Formulas (BDF) are often dismissed due to their poor stability
behavior near the imaginary axis for orders three and above. We explain why and for what problems this happens,
what the appropriate tactic should be, and why this is not the tactic taken by most automatic codes. We present an
idea that avoids this inefficiency in one automatic code.

Keywords: BDF, order selection, stability, stiff ODE.

1. Introduction

The finite-element method and the method of lines are popular semidiscretization techniques
which convert a system of partial differential equations (PDEs) into a larger system of ordinary
differential equations (ODES). The parabolic equations that describe diffusion of heat yield a
system of ODES in time where the eigenvalues of the linearized problem tend to be on or near
the negative real axis and exhibit a wide range of decay constants. ODES with this property are
called stiff, occur in other contexts and impose stability restrictions on the stepsize used by the
ODE technique [16]. Backward Differentiation Formulas (BDF) work well in this case. Implicit
Runge-Kutta techniques are also appropriate for stiff ODE systems, but their cost is much
higher than BDF when the eigenvalues are primarily real and negative.

If the PDE is parabolic with both diffusion and advection active, as in Burgers’ equation with
moderate Reynolds number, we have a linearized ODE system with some eigenvalues having
large, negative real part (stiff components) as well as eigenvalues near the imaginary axis
(nonstiff components). Explicit ODE techniques are inappropriate for coupled systems with stiff
and nonstiff components due to the small stepsize required for stability of the stiff component.
Implicit Runge-Kutta are frequently proposed, despite their cost, because they are stable in the
entire left half-plane.

Implicit BDFs of order three and above have a stability limitation when solving linear
problems with eigenvalues near the imaginary axis. We show that the reason standard BDF
codes exhibit poor behavior there is due to incorrect order selection. We explain why the

0377-0427/90/$3.50 0 1990, Elsevier Science Publishers B.V. (North-Holland)

358 K. Stewart / Avoiding inefficiencies in BDF

standard order selection strategies do not work in this case and propose a technique that avoids
this limitation.

2. The difficulty

We examine the behavior of a collection of codes on a problem which is stiff and which has a
pair of eigenvalues near the imaginary axis. The Stiff Test Set [2] is a battery of tests often used
to compare implementations of ODE methods. Though this test set is not an exhaustive test [15],
it is widely available and contains a well-known problem with the characteristics we desire to
explore.

The family B2 to B5 examines behavior for complex eigenvalues in linear, constant coefficient
systems using a parameterized family with increasingly dominant imaginary part in the eigen-

-10 0 0 0
--(Y -1: 0 0 0

0
0

y’= 0 0 -4 0 0 0
0 0 O-l 0 0 YY Y(o)=

0 0 0 0 -0.5 0
0 0 0 0 0 -0.1

with eigenvalues Xi = -0.1, -0.5, - 1, -4, - 10 f cui. B2 sets (Y = 1, B3 sets (Y = 8, B4 sets
(Y = 25 and B5 sets (Y = 100. B5, in particular, produces poor behavior when most, current BDF
based codes are used.

value of largest modulus.

The following results are obtained for low and moderate absolute accuracy tolerances using
STRUT (Stewart and Krogh) [21], LSODE (Hindmarsh) [5], LSODA (Petzold and Hindmarsh)
[12], and DC03A (Curtis) [l] using the CRAY X-MP/48 at the NSF SuperComputer Center, San
Diego. Error is computed at each step by comparison with the results of LSODE using an
accuracy tolerance four orders of magnitude smaller than the test run. NG indicates the number
of iteration matrices formed. NJ is the number of ODE Jacobians (STRUT and DC03A
distinguish the need for Jacobian from need for iteration matrix). Time is CPU-time. NBDF is
the number of BDF steps (LSODA and STRUT automatically detect stiffness and switch
between Adams and BDF methods).

As shown in Tables 2 and 4, the codes LSODE and DC03A are expensive for B5, but not for
B4 given in Tables 1 and 3. For most of the integrations presented above, the order that LSODE
and DC03A use is constant and the stepsize is nearly constant. We analyze the reasons for this

Table 1
Stiff test set no. B4; absolute tolerance =1.0.10P2

Code Error Step NFE

STRUT 1.9.10-2 49 89
LSODA 2.2.10-2 67 124
LSODE 2.5.10-2 56 67
DC03A 2.0.10-2 59 87

NG NJ Time

7 1 1.9.10-2
6 6 1.2-10-l

12 12 1.4.10P2
16 1 1.8.10-2

NBDF

25
23

K. Stewart / Avoiding inefficiencies in BDF 359

Table 2
Stiff test set no. B5; absolute tolerance = 1.0. 10W2

Code Error Step NFE NG NJ Time

STRUT 1.6.10-’ 136 168 9 1 4.5.10-2
LSODA 5.6.10-’ 166 324 7 7 2.9.10-l
LSODE 2.6,10-l 2354 2568 120 120 5.0.10-’
DC03A 1.1.10-’ 2371 2631 17 1 4.6.10-l

NBDF

117
23

Table 3
Stiff test set no. B4; absolute tolerance =1.0.10m4

Code Error Step NFE NG NJ Time

STRUT 2.4.10P4 116 208 6 1 3.3.10-2

LSODA 3.0. 1o-4 132 252 6 6 2.1.10-l
LSODE 5.4.lop4 113 133 17 17 2.7.10-2
DC03A 2.6.10-4 121 159 26 1 3.2.10-2

NBDF

40

36

Table 4
Stiff test set no. B5; absolute tolerance =1.0.10-4

Code Error Step NFE NG NJ Time NBDF

STRUT 1.8.10-3 239 438 9 1 5.5.10-2 55
LSODA 8.2.10P4 318 620 9 9 5.2.10-l 44

LSODE 1.7.10-3 2350 2716 142 142 5.4.10-l
DC03A 1.2.10m3 2460 2760 65 1 5.0.10-’

poor performance in the next three sections using the standard absolute stability theory for
constant order and stepsize on a linear, constant coefficient system, such as B5. LSODA and
STRUT result in efficient integrations with slowly varying order and stepsize and this is
discussed in Section 6 and 7, respectively. Absolute stability theory is not strictly applicable in
this case, but does give insight to explain the success of LSODA and STRUT.

3. The standard stability theory with a z-plane focus

Consider the initial value problem

y’ = hy.

The kth-order BDF in ordinate form is

(1 - hM,)Y, - i %Y,-, = 0.
r=l

The stability polynomial is defined to be

7Q(z; hh) = p(z) + hh u(z).

(1)

(2)

360 K. Stewart / Avoiding inefficiencies in BDF

Fig. 1. z-plane stability plot for fifth-order BDF;
Arg(hh) = 95“, 1 hX 1 = O(O.l)lO; with ray marked at

Arg(z) = 60’.

Fig. 2. z-plane stability plot for fourth-order BDF;
Arg(hX) = 95”, 1 hX 1 = O(O.l)lO; with ray marked at

Arg(z) = 60”.

For order six and below, the BDF methods converge as h + 0 since they are zero-stable, that is
the zeros of T~(z; 0) are inside the unit disk or on the unit circle and simple.

Though one requires zero-stability for a usable method, stiff problems also require stability for
large values of hh. For a given value of hX, there are k independent solutions to the scalar
difference equation corresponding to the k roots of T~(z; hX) = 0. Label them zi(hh), . . _ , z,+(hX)
and call the plane in which we plot the roots the z-plane. To show stability of a method on a
particular problem, one fixes hh, computes the k roots in the z-plane and verifies that their
magnitude is less than one, or simple when one.

A range of hh values is examined by fixing the argument of hX, and varying its modulus. The
plot that explains B5 involves the dominant eigenvalue X = - 10 + lOOi, which has an argument
of roughly 95”. Four roots of 7~g(z; hh) = 0 remain well within the unit circle, thus Fig. 1
presents the plot of zi(hh), for 1 hX 1 = O(O.l)lO and with Arg(hh) = 95 O.

The principle root, zi(hh) = ehX + 0(hk+‘)), proceeds outside the unit circle in the z-plane
when 1 hX 1 > 0.9. This explains the poor behavior of LSODE which used K = 5 with stepsize
increasing to h = 0.0097, so that 1 hh I = (0.0097(- 10 + 100;) 1 > 0.9. With this 1 hh 1, instability
amplifies errors. Automatic codes see this as an error estimate that exceeds the requested
tolerance and “control” it by small stepsize reductions. When the stepsize is reduced, zi(hX) is
then within the unit circle in the z-plane and errors are no longer magnified. After several steps
the error estimator predicts that a larger stepsize can be used and the process repeats. This
ratcheting in and out of the stability region is typical for codes with finite-stability regions when
faced with stiffness and results in a stepsize effectively on the stability boundary [14].

We show in Section 4 that, if any zk(hX) leaves the unit circle and goes unstable, it is the exit
angle of that z,(hh) that is crucial. In Fig. 1, the principle root, zl(hh), has exit angle of 58”,
~~(0.9) Z ei5’0. If any eigenvalue has Arg(X) = 95 O, a stable numerical solution is obtained with a
stepsize such that) hX I < 0.9, or I hX I > 8.75, since this is where z,(hX) re-enters the unit circle
in the z-plane.

In Table 4 with To1 = 10P4, DC03A does lower its order from K = 5 to K = 4, where it
remains fixed for the rest of the integration. In Fig. 2, we examine the root behavior of the
fourth-order BDF on a problem with Arg(h) = 95”. Only the principle root, z,(hX), has
magnitude greater than one, leaving the unit circle when I hh I = 0.8 with an exit angle of 47 O.
The principle root re-enters the unit circle when I hX I = 4. Thus, for a linear problem with some

K. Stewart / Avoiding inefficiencies in BDF 361

Fig. 3. z-plane stability plot for third-order BDF; Arg(hX) = 95 ‘, (hX (= O(O.l)lO; with ray marked at Arg(z) = 60 O.

eigenvalue of argument 95 ‘, instability in the numerical method will restrict h so that 1 hX 1 -C 0.8
or IhX] >4.

The proper tactic for the code to maintain stability and allow a larger stepsize is to lower
order. For Arg(h) = 95 o the third-order BDF is stable for all h, as is seen from the plot of the
position of the largest root of rX(z; hh) = 0 in Fig. 3. There is no exit angle when Arg(X) = 95 O.

The question: “Why didn’t DC03A and LSODE lower order?”

4. Cause of difficulty

We show that the cause of the difficulty in solving B5 is due to the order selection mechanism.
Automatic codes estimate the local error after each step. Order selection is typically based on
comparing error estimates for the different order formulas available. Although several strategies
are possible, Hall and Watt [4, p.991 outline a commonly used technique. Let Ek estimate the
local error of a method of order k,

Ek ‘- (j;+lhk+ly(k+l) = a,*,,vk+ly,

where vk is the k th backward difference and S: = l/k. Analogous expressions hold for Ek_l

and Ek+r. Estimates of a new stepsize, h new = r h o,d, to match the user’s accuracy request To1 are
computed for the different order formulas, with the change rk for a method of order k given by

l/(k+r)

.

Let order be selected to allow the largest stepsize increase. Production codes use more elaborate
strategies, but the basic design is along these lines. This provides an effective order selection
strategy when accuracy is the main concern. When stability is the concern, this still provides an
effective strategy for many practical methods, but not for the third- through sixth-order BDF on
problems near the imaginary axis.

To see why the order selection strategy did not lower order, we examine the numerical solution
in detail. The computed solution is given by y, = c,z,(hX)” + . - . +c,z,(hX)” for the fourth-
order BDF. When stable, each root zj(hX) = p eie has p < 1. We assume we are accurate and are
following the principle root, so I cl I s== I cj 1, j = 2,. . . , 4, and examine the behavior of the

362 K. Stewart /Avoiding inefficiencies in BDF

backward differences of [zr(hh)]” =y,. As the stability boundary is approached, we expect
1 z,(hX) 1 = 1 and set z,(hh) = eie. Using V/Z” = zn(l - l/z) J, the differences are given by

V’y,= v'[zl(hA)]"= [z,(hX)]" 1 - (&j’=ei..*(l-cosB+isinB):.

The function

(3)
gives the magnitude of ratios of successive differences of z,(hX) when it is near the stability
boundary as a function of the angle 8.

To lower order from k, we require rk_, > I-,, i.e.,

[IF1))‘/* [gyk+‘)> 1.

when the difficulty occurs in B5, LSODE and DC03A remain essentially at fixed order. The
stepsize smoothly increases until zr(hh) leaves the unit circle in the z-plane. The error estimator
then grows and the stepsize is reduced. Due to ratcheting, the stepsize is such that zr(hX) is kept
close to the stability boundary while maintaining Ek = Tol. The method is on the perceived
accuracy boundary due to the principle root being on the stability boundary. Tel/l Ek I = 1, so
its (k + l)st power is nearly its k th power. With this assumption, the left-hand side above is

We are concerned with the value of 0 when zl leaves the unit circle, which we have already
labeled the exit angle in the z-plane. Order reduction will depend on (k/(k + l))D(0) being
greater than one. For different orders k, we present the value of the angle 0 where (k/(k +

l))D(13) equals one, thus the smallest exit angle of the method to allow the order mechanism
described above to indicate order reduction.

Note, O(60 o) = 1 and D is monotonically increasing, so a method whose exit angle is greater
than 60” results in an increase in the norm of successive differences when the method goes
unstable. Examining the ratios of successive error estimators instead of differences only increases
the minimum exit angle of the method to be beyond 60 o to indicate an order reduction when the
method goes unstable. To simplify the discussion, we focus on successive differences and the
angle 60 O. The plots in Figs. 1 and 2 have the ray at 60 O marked and show that the fourth- and
fifth-order BDF on B5 have exit angles less than 60 O, thus no order reduction will occur.

One can summarize the previous z-plane plots for all Arg(hh) by a single plot in the h A-plane
if one displays the argument of z that produces the absolute stability plots. The absolute stability

Table 5
Minimum exit angle of BDF method for error estimator to indicate order reduction

k 2 3 4 5 6

I9 97.18 o 83.62 o 77.35 o 73.74O 71.37 o

K. Stewart / Avoiding inefficiencies in BDF 363

\
2.37

-hh(ei+) \
1.33 \

‘hh(eb/a)

:so
!.

2.00 3.50 5.00 2.50 200 950 11.00

Fig. 4. hi-plane stability plot for fourth-order BDF;
“x” for each Arg(z) = 0”(10”)180”; with ray marked

at Arg(hX) = 95”.

Fig. 5. z-plane stability plot for third-order Adams-
Moulton; Arg(hh) = 95 O, 1 hh 1 = 0(0.1)5; with ray

marked at Arg(z) = 60 O.

regions for Adams and BDF methods computed by Krogh [6-lo] include Arg(z). Lately, the
common practice [3,4,17] is to display absolute stability regions, without this information.

To demonstrate the advantage of retaining Arg(z), we develop the absolute stability region for
the fourth-order BDF. Absolute stability plots are obtained using the boundary locus method
[ll, p.821. Instead of finding the k zeros z, of rk(z; hX) for fixed hX, one maps the unit circle in
the z-plane into the hh-plane using the difference equation and the substitution y, = z”. The
equation

k 1
hhz” = c -v’z”

r=l y
(4)

is satisfied by any zero of rk(z, hh). Using vrzn = zn(l - l/z)’ and z = eie in (4), we compute
the stability boundary in the hh-plane from

k 1
hX= c --(l-e-“)’

r=l

for values of eie with 6’ = 0”(10”)180” for the fourth-order BDF in Fig. 4. We see the lobe of
instability in the left half-plane and the arguments of z that correspond. The ray drawn for
Arg(hX) = 95” intersects the unstable lobe at 1 hh 1 = 0.8 with Arg(z) near 50”. This is in
agreement with the z-plane plot in Fig. 2 which showed the root zi(hX) leaving the root unit
circle when 1 hh 1 = 0.8 with exit angle 47 O.

5. Why LSODE and DCOA became “stuck”

The third- through sixth-order BDFs have an exit angle less than 60 o if Arg(X) lies between
90 o and 95 ‘. Generally stiff problems have transients in the initial part of the solution, and
these transients cause the error control mechanism to select a stepsize small enough that
] zj(hX) I -=K 1 for all j. As the transients decay out of the solution, h may increase to the point

364 K. Stewart / Avoiding inefficiencies in BDF

that (z,(hX) 1 = 1. Since order is not likely to be reduced if Arg(h) is near the imaginary axis for
methods with an unstable lobe in the left half-plane and exit angles less than 60 O, the stepsize is
constrained by stability rather than accuracy. This defeats the purpose of the stiff solver. Hence,
DC03A and LSODE became “stuck” because the code reduces stepsize instead of order on B5.

Some methods, such as Adams, do not exhibit this problem for two reasons. First, the exit
angle is large when Arg(X) is near the imaginary axis causing order to be reduced, as we see in
Fig. 5 for the third-order Adams-Moulton. The exit angle is 84”, yielding O(84”) = 1.34,
growth in the differences and a likely order reduction. Second, the required value of h might not
occur during the solution process due to accuracy considerations. As Krogh [7] notes, when
solving y ” = -y, with A = &i and solution y(t) = sin t, a stepsize of h = 1.047 radians = 60”
would be too large to be accurate.

6. Why LSODA did not become stuck

LSODA is a modification (by Petzold [12]) of LSODE with automatic switching between
Adams and BDF formulas based on an estimate of the Lipschitz constant [14]. In Table 2,
LSODA is using the Adams method with order K = 2 when the switch is made to second-order
BDF. The second-order BDF is A-stable, and the code remains at low order with increasing
stepsize for the rest of the integration. In Table 4 with To1 = 10p4, again the switch occurred
with the Adams method at second order and h = 0.0284. Over several steps, the order was
increased to K = 4 with stepsize increasing to h = 0.277 causing zi(hh) to be stable since this
places hh beyond the lobe of instability in Fig. 4. Equivalently this is the case for zi(hh), with
1 hX 1 > 4 in Fig. 2 where the principle root has re-entered the stability region.

LSODA was fortunate because the order selection mechanism of the Adams code had already
reduced the order to K = 2 when the switch to BDF occurred. The eigenvalue which controls
stiffness detection, h = - 10 f lOOi, in B5 is the same complex eigenvalue that causes the BDF
codes to become stability-limited. When problem B5 is altered by adding an additional
differential equation

y; = - 1000 y,

Table 6
Results for B5 modified to increase 1 A,,,, 1

Stiff set no. BS-modified; absolute tolerance = l.O.lO-*

Code Error Step NFE NG NJ Time

STRUT 2.4.10-l 152 199 14 1 5.7.10-2
LSODA 9.0.10-2 1208 2271 62 62 1.4.1o+O
LSODE 8.8.10-2 128 156 20 20 3.3.10-*
DC03A 9.7.10-2 1224 1382 32 1 3.1.10-’

NBDF

117
1187

Stiff set no. B5-modified; absolute tolerance = 1.0.10-4

Code Error Step NFE

STRUT 4.2.10-3 242 282
LSODA 1.0.10-3 306 503
LSODE 1.7.10-3 282 354
DC03A 1.2.10-3 1328 1501

NG NJ Time

18 1 l.O.lOP’
25 25 9.2.10-l
30 30 7.3.10-2
45 1 3.4.10-l

NBDF

218
71

K. Slewart / Avoiding inefficiencies in BDF 365

to separate the eigenvalue controlling stiffness from the eigenvalue that induces the stability
limitation, the following results were obtained (see Table 6).

With To1 = 10d2, LSODA showed the same stability-limited behavior as in B5. LSODE had a
double step failure on one step near x = 0.3 which caused an order reduction to three on the first
failure and severe stepsize reduction on the second failed step. This reduced order allowed
LSODE to avoid the stability-limited region. DC03A was never this fortunate and produced an
expensive integration. LSODE was lucky this time and resulted in the most effective CPU-time
of all the codes above. An additional run with To1 = 1O-6 resulted in all codes but STRUT
experiencing an expensive, stability-limited integration. It is clear from the LSODE and LSODA
performance that stability-limited stepsize does not always occur, but when it does, the resulting
integration is prohibitively expensive.

7. Resolving the difficulty within STRUT

The code STRUT was implemented by Stewart [19] from algorithms due to Krogh [9] as well
as near daily interactions with Krogh to discuss alternative ideas that came up during develop-
ment. The code switches between Adams and BDF based on an estimate of the Lipschitz
constant [14], with the addition of a check of the spectral radius (obtained from a power
iteration) before the switch occurs. The Adams code in STRUT is STEP written by Shampine
and Gordon [17] with the addition of the stiffness detector. The stiff code in STRUT is a
semi-implicit BDF method [10,19] using direct estimates of the relative error in the correction
matrix, to determine the number of corrections at each time step as well as the frequency of
linear algebra updates. STRUT can change order and stepsize on each step.

The SIBDF inherits many of the properties of the BDF. Absolute stability of the SIBDF and
BDF is identical when the error in the correction matrix is zero. B5 presents a situation where
this is approximately the case.

For To1 = 10p2, STRUT switches to the SIBDF with order K = 4 and h = 0.00947. For
To1 = 10p4, STRUT switches to the stiff code with order K = 5 and h = 0.0132. In both cases,
the stepsize puts zl(hh) near the stability boundary, but the code does successfully lower order.
In STRUT, order is selected to maintain a “clean” difference table. A “clean” difference table
reflects an adequate amount of convergence in the high differences, say

When STRUT solved B5 in its early developmental stages, it became stuck at fifth order with
stepsize h = 0.00897. One expects the high-order differences to reveal information about the
stability-limiting root. Examining the largest component of the vector of differences over a
sequence of time steps, V kt2yn was cyclic (roughly - 1.7 . lo-’ to 2.0. lo-‘) and went through a
sign change after every third step. This continued for hundreds of steps with order and stepsize
constant and zero matrix error, so BDF absolute stability theory was applicable. A stability-
limited root which regularly goes through two sign changes every six steps has argument
approximately 360 O/6 = 60 O, the case for B5 being solved with a fifth-order BDF.

This led us to recognize the need for a modified order-selection strategy for a BDF code
compared to an Adams code. The present test that allows STRUT to effectively solve this
problem relies on several of the properties of the implementation of SIBDF idea. The goal is to

366 K. Stewart / Avoiding inefficiencies in BDF

force the code to reduce order when the sequences of differences fail to appear sufficiently
convergent. We examine differences directly instead of error estimators because ratios of error
estimators increase the required exit angle of the method, as shown in Table 5. Once order is
selected, the stepsize is computed using the appropriate error estimators.

The order is lowered if

(1 P2 1.2 vk+2Y I/ 2 max{ II Vk+‘y II, 0.9 II Vky II } .

Here the backward difference notation is used, but the code actually uses modified divided
differences [9], equivalent to backward differences after a sequence of steps with constant
stepsize.

A key is p2 which represents the history of recent stepsize changes,

p2 = $,“r:+“;;y .
n-1 n 2

If the stepsize has been increasing over the past few steps, then p2 > 1, increasing the likelihood
the order will be reduced. This is due to the investigation by Rubner-Petersen [13] for stability of
the BDF when the stepsize grows geometrically. Not surprisingly, his results show that a
uniformly increasing stepsize reduced the absolute stability regions of his modified BDF. The
factor of 1.2 is similar to the smoothness test proposed by Skelboe [18] where he examined this
difficulty with the high-order BDF. The use of both @+iy and vky is to protect against the
possibility of a high difference passing through zero.

Experimental results using STRUT [20,21] exhibit good performance on nonlinear problems.
On some accuracy-restricted stiff problems, STRUT does not raise its order as rapidly as
LSODE or DC03A, causing more steps to be taken. This is partially offset by less frequent linear
algebra updates due to algorithms presented in [lo].

8. Conclusions

When absolute stability regions are computed for any method, the argument of z which
produces these plots should be displayed. This enables researchers to identify methods for which
special techniques for order selection in the face of instability must be developed.

Adams method should be used to start BDF codes not only because they are more effective on
the initial transients common to stiff problems [12,14], but also because the standard order-selec-
tion mechanism will reduce order appropriately on problems with eigenvalues near the imaginary
axis as evidenced by the performance of LSODA on B5.

Order-selection strategies for the Adams methods and BDF methods should be different. If a
BDF method of order three and above is used in a general ODE solver, then the order-selection
mechanism must not rely on the relative size of error estimators or differences because the exit
angles are not large enough when there are eigenvalues near the imaginary axis. The additional
bias toward low order based on stepsize history over the past three steps is effective for the code
STRUT because the stepsize is allowed to vary on each step. Codes that hold the stepsize
constant for several steps would have fi2 = 1 and so no order-reduction bias results.

References

K. Stewart / Avoiding inefficiencies in BDF 361

[II

PI

131

[41

[51

161

[71

VI

[91

PO1

u11
WI

u31

P41

1151
[I61

[I71

W31
I191

WI

WI

A.R. Curtis, DC03A/AD stiff ODE software from Harwell Library, Comput. Sci. Systems Division, A.E.R.E.,
Harwell, Oxon.
W.H. Enright, T.E. Hull and B. Lindberg, Comparing numerical methods for the solution of stiff systems of
equations, BIT 15 (1975) 10-48.

C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs,
NJ, 1971).
G. Hall and J.M. Watt, Modern Numerical Methods for Ordinary Differential Equations (Clarendon Press, Oxford,
1976).
A.C. Hindmarsh, LSODE and LSODI, two new initial value ordinary differential equation solvers, ACM/
SIGNUM Newsletter 15 (4) (1980) 10-11.
F.T. Krogh, Predictor-corrector methods of high order with improved stability characteristics, J. Assoc. Comput.
Mach. 13 (1966) 374-385.

F.T. Krogh, A test for instability in the numerical solution of ordinary differential equations, J. Assoc. Comput.
Mach. 14 (1967) 351-354.
F.T. Krogh, The numerical integration of stiff differential equations. TRW Systems Group Report 99900-6573-
ROOO, 1968.
F.T. Krogh, Changing stepsize in the integration of differential equations using modified divided differences,
Proc. Conj on Numerical Solution of Ordinary Differential Equations, Lecture Notes in Math. 362 (Springer, New
York, 1974).
F.T. Krogh and K. Stewart, Asymptotic (h + co) absolute stability for BDFs applied to stiff differential
equations, ACM Trans. Math. Software 10 (1984) 45-57.
J.D. Lambert, Computational Methods in Ordinary Differential Equations (Wiley, Chichester, 1973).
L.R. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential
equations, SIAM J. Sci. Statist. Comput. 4 (1983) 136-148.
T. Rubner-Petersen, An efficient algorithm using backward time-scaled differences for solving stiff differential-al-
gebraic systems, Institute of Circuit Theory and Telecommunication, Tech. Univ. Denmark, Lyngby, 1973.
L.F. Shampine, Lipschitz constants and robust ODE codes, in: J.T. Oden, Ed., Computational Methods in
Nonlinenr Mechanics (North-Holland, Amsterdam, 1980) 424-449.
L.F. Shampine, Evolution for a test set for stiff ODE solvers, ACM Trans. Math. Software 7 (1981) 409-420.

L.F. Shampine and C.W. Gear, A user’s view of solving stiff ordinary differential equations, SIAM Rev. 21 (1979)
l-17.

L.F. Shampine and M.K. Gordon, Computer Solution of Ordinary Differential Equations (Freeman, San Francisco,
CA, 1975).
S. Skelboe, The control of order and steplength for backward differentiation formulas, BIT 17 (1977) 91-107.
K. Stewart, Semi-implicit backward differentiation formulas, Ph.D. Diss., Dept. Mathematics, Univ. New Mexico,
1987.
K. Stewart, Computational results for solving Burgers’ equation using the method of lines, Tech. Report l-89,
Dept. Math. Sci., San Diego State Univ., 1989.
K. Stewart and F.T. Krogh, Preliminary comparison test results for STRUT, LSODE and LSODA, Section 366
Internal Memorandum No. 499, Jet Propulsion Laboratory, Pasadena, CA, 1983.

