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Abstract: A model is presented for stability for an extension of linear multistep methods for stiff ordinary differential 
equations. The method is based on a prediction followed by a fixed number of corrections obtained by a Newton 
scheme with inexact Jacobian matrix. The impact on stability of error in the matrix over a broad range of linear, 
constant coefficient equations is modeled. The model provides practical guidance for implementation of software for 
stiff equations. 
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1. Introduction 

The Backward Differentiation Formulas (BDF) are effective for solving wide classes of stiff 
ordinary differential equations (ODEs). A major cost for these implicit methods is the require- 
ment of some Newton-like iteration at each time step. Klopfenstein [8] first investigated a class 
of explicit P(EC) m algorithms related to the BDFs involving a predictor (P) followed by m 
applications of a derivative evaluation (E) and a Newton-like process to compute the BDF 
correction (C) for the model test system, 

y '  = Jy ,  y ~ R s. 

The method explored in this paper is closely related to Klopfenstein's and is called the 
Semi-Implici t  Backward Differentiation Formula (SIBDF). This extension of linear, multistep 
methods was presented by Krogh and Stewart [9], is applicable to stiff ODEs and has been 
implemented in a code, STRUT [15]. 

Klopfenstein analyzed the stability of his method by examining the limit case h = m. Due to 
the continuous dependence of the roots of a polynomial  on its coefficients, this produces a 
stability model applicable to methods with a sufficiently large stepsize. He called this model 
Asymptot ic  (h ~ ~ )  Absolute Stability (AAS). The difference equation for AAS is more involved 
than that for the BDF. Study of the AAS difference equation allowed statements to be made 
relating predictor-corrector order to relative matrix error in the Newton-like process under  the 
assumption of stability. 
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Krogh and Stewart presented a simplified derivation of a related system of difference 
equations. This system of difference equations encompasses both the standard stability model  for 
the BDF (which assumes the corrector is solved exactly) and AAS (where the corrector is not  
solved exactly and h = ~ is assumed). This paper extends the work of Klopfenstein [8] and 
Krogh and Stewart [9] to handle the case of finite h with inexact solution of the corrector 
equation due to matrix error. The analysis can be done in general only for the scalar test 
equation, y ' =  Xy but this provides valuable guidelines for practical codes. A technique is 
developed to enable the examination of families of h values. 

Section 2 presents the notation for the vector system of the SIBDF. Section 3 develops the 
system of difference equations used to model stability. Sections 3.1 (BDF) and 3.2 (AAS) briefly 
summarize the two cases for which the vector system of difference equations for stabifity can be 
solved. Section 4 presents new analysis for finite stepsize and inexact Jacobian for the SIBDF. 
Section 4.1 focusses on error in the coefficient of the correction matrix and is related to the work 
of Addison and Hanson [1] for the Semi-Implicit Blended Formulae.  Section 4.2 focusses on 
error in the approximation of the ODE Jacobian and is related to the work of Bader and 
Deuflhard [2] for the Semi-Implicit Midpoint  Rule. Section 5 concludes with the implications for 
implementat ion of codes based on the stability analysis of the SIBDF. 

2. The SIBDF 

The formulas of a SIBDF method solving 

y ' = f ( x ,  y), y(a)=ya, 
are briefly developed in this section and related to the more familiar BDF. Both are effective 
techniques for stiff ODEs. More detail is contained in [9,11]. Following Shampine and Gear  [10], 
a problem is said to be stiff if the stepsize is limited more severely by stability than by accuracy 
when using one of the classical methods such as Adams. Methods more appropriate for solving 
stiff ODEs require a set of nonlinear equations be solved to some fixed accuracy at each time 
step. 

The case for fixed order and constant stepsize is analyzed here and provides guidance for the 
case of variable order and stepsize. Thus, let the stepsize, h, and step number,  k, be fixed. A 
fixed number of corrections, m, is performed at each time step. In [9], which analyzes the case 
for large h, it is shown that use of m = 2 and a predictor formula of order  one lower than 
corrector formula is preferred from considerations of effectiveness of technique and enhanced 
stability properties. 

The predicted k-step solution (of order k -  1) at x n is obtained by extrapolating the 
polynomial, 

x - x n _  1 (x  - Xn_l)(X - xo_2) 
~ k , n - l (  x ) =Yn-1 "l- h 'WYn-1 -b h22! ~72yn_1 

-'k "'" -Jr- ( X - -  Xn_l)  "'" ( X - -  Xn_k+l) 17k_lyn_l, 
h~- l (k -  1)! 

which passes through the k previous equally spaced points, x n_ 1 . . . . .  xn_~ to yield 
k--1 

P n = ~ k , n - l ( X n )  = E gTryn-l" (1) 
r--O 
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Differentiating ~ k , , - i  and evaluating at x - - x , ,  we have the predicted derivative given by 

, d 1 k - 1  
P. = ~-S~k, . - l (X)lx=~° = ~ E (~r~7%-1 

r = l  

where 

(2) 

3~ 1 ~ 1  1 r 

, -  i - h 
i = 1  i=l  

The coefficient, 3r* = 1/r ,  is from the backward difference form of the BDF [5]. 
Setting y~o) =Pn, m corrections are computed by solving the sequence of linear systems 

dlXy(')=-r"', y ( i + l ) = y ( " + A y ( i ) ,  i = 0  . . . . .  m - l ,  (3) 

where the residual r. (i) of the corrector (k-step BDF of order k)  formula is given by 

3k 
8 i ) : i ( x , ,  y~,>)_pd_ ~ ( y ~ O _ p , ) .  (4) 

The correction matrix, G is a parameterized approximation to a Newton matrix, G 

G -- ~)rn(i) ~S(xn.  Y(n t))  ¢~k 
Oy(ni~ ) -- Oy n ~ 1 = J - a I .  

6 is called the correction matrix rather than iteration matrix to emphasize the f ixed number  of 
corrections to be computed. 

In [9], G had the form G(c, 8 ) =  c ( J - 8 I ) ,  where the parameter  8 is an approximation to 
a = 3k/h; the matrix a ~ is an approximation to J, the Jacobian of the differential equation; and 
the parameter  c is a scalar which is manipulated to help reduce the error when 8 differs f rom a 
due to changes in h or k. The parameter  c is advantageous in implementing an effective variable 
order, variable stepsize method and this was addressed in [9]. Its value is 1.0 per turbed by a small 
amount  depending on estimates of the extreme eigenvalues of J. For  the analysis below, c is 
taken to be 1.0, giving correction matrix 

6 (&)  = a ~ -  81. (5) 

This explicit correction scheme can be considered to be an iterative method taking i = 
0, 1, 2 . . . . .  until convergence. Convergence would be controlled by the eigenvalues of the relative 
error matrix 

B = I - G - 1 G .  (6) 

For  the model system, y '  = Jy, this is the standard convergence matrix for the BDF. It is zero if 
= G. For 6 @ G, the convergence of the BDF requires the spectral radius of B be less than 

one, implying a condition on the approximation of J by J and a by 8. 

3. The Vector Generalized Difference Equation 

Krogh and Stewart [9] presented an algebraic derivation of the SIBDF difference equations for 
the model system, y '  = Jy. This is highlighted in this section. 
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Using the relative error matrix B, above, and labeling, 

C m = [ I - B m l G  -1 

the solution, after m corrections, to the Vector Generalized Difference Equation (VGDE)  is given 
by 

Yn = E Bm'~- h h Cm ~Tryn-l' ( 7 )  
r = 0  

with 8 0 = 0. The  V G D E  will not  be generally diagonalizable unless there is some special 
relationship between J and a ¢. 

3.1. Zero matrix error (stability for the BDF) 

One case where the V G D E  can be diagonalized and easily analyzed is when  J =  J and 
= 8k/h  ( =  a), giving an exact correction matrix and B = 0. This yields stability results 

identical to the s tandard stability results for the BDF which assumes the collocation equat ion [5, 
equat ion (5-45)] 

f ( Y . )  =~k+l ,n (Xn)  

is solved exactly at each time step. Substi tut ing Cm = G-1 and B = 0 in (7) yields 

Rewrit ing yields, 

E v'y._l 
r = 0  

1 k 

E Sr*V'% 
r~] 

using 8r*= 8 r - 8r_ 1. This is the k-step B D F  (of order k) in backward difference form. In 
ordinate form we have 

k 

( I - f l o h J ) Y , =  E a , y , _ ,  
r = l  

yielding the stability polynomial  of the BDF 
k 

er(~; hX) (fl0h X 1)~.k + y ,  k-r = - = + ( 8 )  

r = l  
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Fig. 1. Absolute stabili ty region for three-step (third-order) BDF (stabili ty in the interior  of closed curve). 

Figure 1 presents the plot of the absolute stability region for the third-order B D F  for later 
discussions. 

3.2. Limit for sufficiently large h (AAS) 

The second case where stability of the system in (7) can be analyzed is the limit as h ~ oo. 
Examining the difference equation (7), h ~ o0 will cause the coefficient of C m to vanish. The 
solution of a difference equation can be expressed in terms of the eigenvalues of the associated 
companion matrix. Since the eigenvalues of a matrix are continuous functions of the elements of 
that matrix [7, Theorem 4-2], the limit matrix resulting from h = oo will have eigenvalues which 
are close to those when h is sufficiently large. 

In solving stiff problems we are concerned with stability for large h. The limit case when 
h -- oo is not of interest in itself but  it is solvable and provides guidance. Experimentat ion [12,14] 
and the analysis in Section 4 for finite h provide guidance to determine how well the limit results 
pertain to the practical case of finite, but  large h. 

Klopfenstein 's  definition of AAS required a uniform bound  on the solution of the difference 
equation. If all roots of the difference equation in the limit case are less than one, solution 
growth is bounded.  If any root has magnitude larger than one, then some solution will be 
unbounded.  For  the purposes of this paper, all roots of the difference equation are required to be 
strictly less than one in modulus as h ~ ~ .  By continuous dependence of eigenvalues on the 
elements of the matrix, for h sufficiently large, the solution to the V G D E  will be bounded  if the 
method has AAS. 

As h ~ o0, (7) becomes 

k--1 

Yn = B m  Z ~Tryn-1 = Bmpn " (9 )  
r=0  

This difference equation depends only on the step number  k of the predictor  and the relative 
error matrix B. This can be related back to the B D F  by  examining (8). As h ~ oo, ~r(~; h?~) is 
dominated by  o(~) = ~-k. Since all roots of o(~) = 0 are zero, there is no inherited error, implying 
that the only error is that made in the current step by  the predictor. 

The solution of a difference equation is expressed in terms of the roots of the characteristic 
polynomial.  For  the BDF,  these roots depend on h?~, where ~ is an eigenvalue of J.  Assuming 
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Fig. 2. Asymptotic (h ~ oo) absolute stability region for three-step predictor formula (stability in the interior of closed 
c u r v e ) .  

the matrix B can be diagonalized, we examine the stability of the diagonalized form of the 
difference equation in (9) in terms of the eigenvalues of B and the roots zn=y .  of the 
characteristic equation. The typical component  is of the form 

k - 1  r 
Z ' = l ~ m ~ . z n - - ' ( 1 - - 1 )  , (10) 

r = 0  

since V'~ / = z/(1 - 1/z)  r. For AAS, the roots, z, depend on the eigenvalues, /x, of the relative 
error matrix, B. These eigenvalues measure the accuracy of the approximation of G by  G. The 
requirement for stability is I zl < 1. As in [9], to obtain the limitation on /~ corresponding to a 
stable root z, we solve (10) for ] , ~ m  using the geometric sum to yield 

~m = 

1 

The mapping, z = e i°, 0 = 0(10 o )360 °, takes the unit circle in the z-plane into the boundary  of 
the AAS stability region in the /~-plane. Figure 2 presents the AAS region for the three-step, 
second-order predictor with m corrections of the three-step third-order corrector to tie in with 
the three-step, third-order B D F  in Fig. 1. The method is stable for/~ in the interior of the closed 
curve which corresponds to number  of corrections, m, equal to 1, 2, and 3. 

Additional plots and discussion of AAS regions are contained in [9]. The deviation of/~ from 
zero measures the amount  of relative error allowed in a stable computat ion.  The size of the AAS 

Table 1 
Minimum I # I for/~ on the boundary of the region of AAS for a three-step P(EC) m 

m 1 2 3 ... 

min ]~J 0.067 0.258 0.405 1 
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region is easily summarized by computing the radius of the largest circle contained entirely 
within the appropriate AAS region. The results for a three-step predictor  followed by  m 
corrections are given in Table 1. As more corrections are performed, more error can be tolerated 
in the correction matrix and still yield a stable solution of the difference equation. The large gain 
in tolerated error from m = 1 to m = 2, with a reduced gain going to m = 3, motivated the choice 
of m = 2 to implement in a code. As presented in [9], this is true for all orders examined. Also in 
[9], as the order of predictor increases, the limitations on bt are uniformly more strict. This 
justified the choice of the predictor of order one lower than corrector. 

4. The extended stability model 

The matrices B and C m appearing in the V G D E  (7) will not, in general, be simultaneously 
diagonalizable. Section 3 examined two limiting cases that eliminate one of these matrices, either 
B is zero (corrector solved exactly, i.e., the BDF)  or the scalar coefficient of C m goes to zero 
(sufficiently large h, i.e., the AAS). 

Another  way to glean information from the stability model  is to examine the scalar case with 
matrix error and finite hX, X ~ C. Let 8k - h&. Consider the scalar problem 

y ' = h y ,  X ~ C .  

The results using (7) when X = X and 6 k = 8~ constitute the case of B D F  absolute stability which 
were presented in Fig. 1 for k = 3: 

The effect of matrix error when the stepsize is finite is now examined. With one correction, 
m = l ,  

B = I - -  G-aG = h X - ~ k -  ( h X - 6 k )  hX 8k C 1 = ( I -  B ) G  -1 = d 1 __ 1 - ' X - & "  

When the substitution, y, = z n, is made in the scalar version of (7), the result is k--I[ (h~_hX)_(~k_Sk) ~ r - - ' k  ] r 
z n =  Y', (1 - 1  ) (11) 

r=O hX -- ~k -~- ~ ~-~k zn-1 

Stability requires I z l  < 1, with z depending continuously on the parameters  ~ ,  h X, and h X. 
There are too many parameters to be tractable. Two case are easily examined. 

(a) Let X = X (exact O D E  Jacobian in G). Then examine the effect of error in the coefficient, 
say due to stepsize and order changes. 

(b) Let gk = 8k (exact method coefficient in G). Then examine the effect of error in the 
Jacobian approximation. 

4.1. Error in the coefficient 

Addison and Hanson  [1] examined the scalar stability of the Semi-Implicit Blended Formulae  
using a fixed number  of corrections with the assumption that h -- X. A major cost of the Blended 
Formulae  is solving linear systems with an iteration matrix involving the square of the O D E  
Jacobian. Effective implementations use a perfect square factorization which introduces error 
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into the correction matrix. The analysis done by Addison and Hanson led them to propose an 
alternate form for the perfect square that enhanced stability. 

4.1.1. One correction in the S I B D F  

In the case of the SIBDF with m = 1, the assumption X = X in (11) yields 

(12) 

One can fix a value of 8 k to yield a r e , o n  of stability in the hX-plane defining a class of 
problems which would be stable when 8 k is used in the correction matrix instead of 8 k. 
Alternatively, the focus can be placed on a particular problem, by fixing h X, and examining 
region in the 8k-plane defining coefficients that could be used in the matrix and yield a stable 
computation. 

First, focus on a fixed value of hX and the stability region in the 8k-plane. We are interested 
in the behavior of the method for problems which are stable, i.e. X is in the left half-plane. Even 
if G =  G, corresponding to the BDF, methods of order greater than two can be unstable. 
Examining the root equation for the third-order BDF 

3 1 r,-n 

r = l  

the greatest instability occurs for hX on the imaginary axis. Thus set hX = iv, allow v to vary and 
compute maximum of the three roots of the difference equation. This yields f = 1.0456 occurring 
for hX = 1.149 i. In our first examination, we analyze the stability in the 8k-plane using the value 
of hX which leads to the greatest instability for the BDF. 

Figure 3 presents the boundary  of stability in the 83-plane for the problem hX = 1.149 i. This 
is obtained by solving (12) for 8 k in terms of z and hX,  

8k = r=0 (13) 0 )k 
and then mapping the unit circle in the z-plane, z = e i° into the 83-plane. The interior of the 
closed curve defines the range of coefficients that will yield a stable computat ion.  The BDF 
coefficient 83 --- 1.8333 (labelled 'Exact  Coef' in Fig. 3) is outside the region of stability. Another  
value of 83, say 1.73, the nearest value on the stability boundary,  yields stability at the cost of 
impaired accuracy from the corrector. Typically the predictor delivers accuracy and the correc- 
tion process is used to enhance stability, so this seems a reasonable trade-off. 

Now that there is a coefficient to use in the matrix that enhances stability on the imaginary 
axis, what range of values of hX can also expect to benefit  from this stability induced error. 
Figure 4 presents the boundary  of stability in the hX-plane obtained by solving (13) for hX given 
this choice of 83 = 1.73, 

( 1 )  k 1 ~ 1  ( 1 )  r 
h X = 8  k 1 -  + -  8 r 1 -  , 

Z r = 0  
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- 1 . 00  

- 1 . 5 0  

Fig. 3. Range of coefficients in G for stable three-step one-correction SIBDF for fixed problem hX =1.149 (stable 
inside the closed curve). 

and plotting the image of the unit circle from the z-plane in the h)~-plane. This yields an A-stable 
method which can be compared to Fig. 3 for the BDF.  

The value ~3 = 1.73 is between 62 = 1.5 and 63 = 1.833. This is an indication that on change of 
order, it may not be beneficial to form a new matrix. This is certainly the case for problems with 
eigenvalues near the imaginary axis where the B D F  have demonstra ted poor  performance due to 
stability limitations [3]. If we use ~3 = 1.5, we have the second-order B D F  which is A-stable and 
second order. 

It is not  convenient to examine in detail the results for each specific h)~ as above. A broad 
range of h)~ values is characterized by  fixing the magnitude of h)~ and then specifying six equally 
spaced arguments in the upper quadrant  of the left half-plane. The boundaries  of the stability 
regions in the ~3-plane were computed using (13) and are presented in Figs. 5 and 6 for moduli  
equal to one and five. The method is stable in the interior of the closed curves. F rom Fig. 5, 
63 = 1.73 yields a stable method for all h)~ of magnitude one. 

For  a larger modulus of h)~, say I h)~ I = 5, the third-order B D F  is stable for all arguments of 
h)~ in the left half-plane (from Fig. 1). Figure 6 shows the region of stability for the S I B D F  in the 

4.0 

3.0 

2.0- 

1.0- 

i . . . .  0 . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i • 

- 1 . 0  .0 1.0 2.0 3,0 4.0 5.0 

Fig. 4. A-stable three-step one-correction S1BDF with fixed coefficient ~3 

T a n e ~  

6 .0  7 .0  

= 1.73 (stable inside the closed curve). 
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3 .00  
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~3-plane  ]h X I= 1.0 

'00 " l ~ ; ~ '  k~"%'o6'"'6"'6'" "'7.~ 

-3.0o 'e "t,-e%,a n 'a'e a~, 

Fig. 5. Range of coefficient to use in G for stable three-step one-correction SIBDF for six problems with I hX[ = 1 
(stable inside the closed curve). 

83-plane has increased with I hX l, i.e., a broader choice of the coefficient 83 can be used and 
yield stability. If 83 = 83, third-order accuracy is obtained. Figure 6 shows stability is obtained by 
choosing method coefficient, 83 near 83, though  the cases with dominant  imaginary part  for X 
are more restrictive in the tolerable error. Still, 83 = 1.73 is stable for all arguments  of hA. 

Since the choice of m = 2 and lower order predictor was made based on AAS (h ~ ~ )  results, 
the ~-plane plots for finite h will help clarify the applicability of the asymptotic results. Once 8 k 
is found from (13), the value for the eigenvalue of the relative error matrix is 

8 k - - S k  (14)  
t~- h~--Sk 

4 .00  

2 .00  

.00 

- 2 . 0 0  

- 4 . 0 0  • 

63-p lane  IhX[=5.0 

~ ;o.00 

- 6 . 0 0  

Fig. 6. Range of coefficient to use in G for stable three-step one-correction SIBDF for six problems with I hX ] = 5 
(stable inside the closed curve). 
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.6- ]hX]=l.0 

~ " ~ " %  % % 

Fig. 7. Relative error tolerated by three-step one-correction SIBDF for six problems with i h~l = 1 (stable inside the 
closed curve). 

which is p lot ted  in the/~-plane in Fig. 7 for the three-step predic tor  with three-step corrector.  The  
region of absolute  stabili ty is the inter ior  of the region since the origin, t~ = 0, cor responds  to the 
B D F  third-order  corrector  which is absolutely stable when  thAI  = 1 for all a rgumen t s  of hA 
except  on the imaginary  axis. 

Figures 7, 8, and  9 allow us to examine  the a m o u n t  of  relative error to lera ted by a stable 
m e t h o d  as hA grows. Figure 8 presents  the /~-plane  stabil i ty restr ict ion when  ]hA ] = 5 for the 
full complement  of hA values. Figure  9, for }hA I = 25, reveals stabil i ty boundar i e s  col lapsing 
into  a single curve very near  the m -- 1 case for AAS (Fig. 2). 

Because the AAS bounds  on bt are easily summar ized  as in Table  1, they  were used as the 
basis of the code S T R U T  which has compared  favorably  wi th  B D F  codes [12,14]. The  case of 

/~ -p lane  .4-, lh~l =5.0 ~ - p l a n e  .4-, Ih~I=25.0 

Fig. 8. Relative error tolerated by three-step one-correc- 
tion SIBDF for six problems with I hXI= 5 (stable 

inside the closed curve). 

-14' ' " ~  

- . 4  

y .... .'6 

Fig. 9. Relative error tolerated by three-step one-correc- 
tion SIBDF for six problems with ]hXl= 25 (stable 

inside the closed curve). 
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finite hX allows us to respond to the question, " W h e n  do the asymptotics apply?", i.e., for what 
finite value of h will the model results of AAS be applicable. Figures 7, 8, and 9 display the 
smooth emergence of the tear-drop shaped region characteristic of the AAS model  for the 
three-step, second-order predictor with m = 1 correction in Fig. 2. P ( E C )  m regions for predictors 
of orders zero through four were explored in [11] with similar results. The implication is that for 
I hX [ = 25, the region is sufficiently close to the asymptotic case. 

4.1.2. Two corrections in the SIBDF 
The BDF are iterated to convergence, which corresponds to infinitely many  corrections in the 

SIBDF stability model. As more corrections are computed,  the behavior (good and bad) of the 
BDF is expected to emerge. We have seen that a three-step A-stable method is possible if exactly 
one correction is performed. The question is: Can a stable two-correction method be formulated 
where the BDF are unstable? This could yield enhanced stability performance  along the 
imaginary axis for BDF-related methods. 

For m = 2, the scalar case of (7) has 

B 2 = ~ 2 =  hX-hX-(8~-8~)hX_Sk ][2 and C 2 -  

Stability is examined through (7) yielding 

B2+G h 7 
r = 0  

If the error is placed in the coefficient, i.e., h = X, then 

g 2 =  

1 [ (Sk - -Sk )  a ] 
C2 - x _-~k/h 1 -  -hX- ~ " 

1 - B  2 

k - 8k/h " 

(15) 

Substituting these values in (15), ~2 can  be solved for. Given hX and z = e i°, the two values of/x 
are computed.  Once ~ is determined, 8k can be solved for from (14). 

We begin by examining the worse case hX = 1.149 i for BDF stability. Figure 10 gives the 
stability region in the 83-plane for this problem. Since the coefficient in the correction matrix 
must be real, we see in Fig. 10 there is no real value of the coefficient that can induce stability for 
m = 2. For this moderately small value of h X, the instabilities of the BDF are inherited by the 
SIBDF after just  two corrections. 

The ability to examine in detail the scalar test problem reveals information valuable to the 
implementat ion of the SIBDF as well as BDF. There is no simple change in the third-order 
Backward Differentiation Formula that will induce stability for problems with eigenvalues near  
the imaginary axis once two corrections are computed.  In the general case of nonlinear problems, 
error in the matrix is inevitable and two or more corrections is common.  

A promising technique to allow the BDF and related methods to handle  problems with 
eigenvalues near the imaginary axis is through proper order selection [13] using low-order 
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formulas when h is small enough to cause hA to be in an unstable region of the higher-order 
methods. 

4.2. Error in the Jacobian 

Bader and Deuflhard [2] analyzed the stability for the scalar test problem solved with the 
Semi-Implicit Midpoint  Rule under the assumption that the only error was due to an inexact 
Jacobian (in their Section 2.2 notation, z 0 = hA 4= h B f / ~ y  = z, which in the current notat ion 
would have h ~t = z 0 and h X = z). 

Due  to the results of Section 4.1.2, only the case m = 1 will be discussed. When 6k -- 8k in (7), 
a relationship between hX and hX results. Fixing a value for hX, (7) can be solved for hX. This 
is the appropriate model of stability to use when considering a code that uses sequences of fixed 
stepsizes and order and updates the matrix when order and stepsize are altered such as L S O D E  
[6]. If the code is typically using only one iteration, then the analysis for the S I B D F  with m = 1 is 
applicable. 

Figure 11 presents the boundary  of stability in the hA-plane for the three-step method in the 
extreme cases of h~ = i and h~ = - 1 .  Other arguments of h~ provide a smooth  transition 
be tween these cases and were suppressed for clarity in the plot. If the value used in the correction 
matrix is h~t = i, then the method will not  be stable on the problem y '  = iy.  This corresponds to 
zero matrix error or the BDF,  whose three-step formula is not  stable for hA = i. For  hX = - 1, a 
wide range of problems, including y ' = - y ,  can be solved in a stable manner  using the 
three-step formula. 

Figure 12 presents the case when I hX] = 25. The case when hX = hX is now stable for bo th  
cases displayed. As expected, plots in the hA-plane revealed stability with zero matrix error for 
all hA once [hX I >~ 2, since this defines the upper  limit of the unstable lobe of the three-step 
B D F  from Fig. 1. 
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5. Conclusions 

Any  linear problem y ' =  Jy can be expected to encompass a variety of real or conjugate pair 
eigenvalues. The models of stability presented in this paper allow statements to be made  that 
cover a broad range of h h as well as different strategies for evaluating the correction matrix. 

The AAS model [8,9] has been used to characterize the magnitude of allowable relative matrix 
error with respect to the number  of corrections computed and as the basis of a code which has 
performed well compared with BDF codes [12,14]. AAS uses the assumption h = oe. F rom 
Section 4.1.2, this asymptotic case is appropriate when all hh  have magnitude 25 or larger. 

From the g-plane plots we see that for small magnitudes of hX, the method behavior is 
distinctly different depending on the argument of h. For  h purely real, the more restrictive case 
for tolerated matrix error, ]g I, is for large h X. Small values of I hX] allow the method to 
tolerate more error in the correction matrix or use fewer corrections. For  h purely imaginary the 
opposite is true. For order three and above, the small I h?, I case, with X imaginary, is unstable 
when the correction matrix is exact, while increasing I hXD shifts the g-plane region to include 
the origin. Once h is sufficiently large for some fixed h, the region becomes that of the AAS and 
the method is stable for all Arg(X). Values of hX with both real and imaginary part  exhibit a 
smooth transition from these two extreme cases. 

The implication is that for h small and Re(X) >> Im(X), a SIBDF method is stable even with 
large relative error in the correction matrix. Therefore, few correction matrices need be computed  
as the order and stepsize change when hh  is small and primarily real. 

Altering the SIBDF to enhance stability near the imaginary axis by changing the coefficient in 
the correction matrix was not profitable. We have shown that enhanced stability is possible for 
the one-correction method related to the third-order BDF, but when two corrections would be 
required no stable scheme could be proposed for small hh.  The two-correction SIBDF is 
preferable to the one-correction scheme in most cases because of the sensitivity of the one-correc- 
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t ion  scheme  to e r ro r  in the i t e ra t ion  mat r ix .  T h u s  the sl ight  i m p r o v e m e n t  o b t a i n e d  for  the  

one -co r r ec t i on  case is o f  p r i m a r i l y  a c a d e m i c  interest .  
P r o p e r  o rde r  se lect ion is a poss ib le  so lu t ion  to a l low B D F  re la ted  m e t h o d s  to e f fec t ive ly  solve 

p r o b l e m s  wi th  e igenvalues  nea r  the i m a g i n a r y  axis [13]. L o w e r - o r d e r  f o r m u l a s  a re  used  w h e n  h is 

small .  Once  h is suff ic ient ly  large,  h ighe r -o rde r  fo rmu la s ,  if a ccu racy  dic ta tes ,  c a n  b e  e f fec t ive ly  
used.  A n o t h e r  poss ib i l i ty  is an  inves t iga t ion  of  the i n t e r p l a y  b e t w e e n  c o r r e c t i o n  m a t r i x  e r ro r  a n d  

the  coeff ic ient  of  the h ighes t -o rde r  d i f fe rence  used  in the  m e t h o d .  
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