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Methods based on backward differentiation formulas (BDFs) for solving stiff differential equations 
require iterating to approximate the solution of the corrector equation on each step. One hope for 
reducing the cost of this is to make do w~th iteration matrices that are known to have errors and to 
do no more iterations than are necessary to maintain the stability of the method. This paper, following 
work by Klopfenstem, examines the effect of errors m the iteration matrix on the stability of the 
method. Apphcation of the results to an algorithm is discussed briefly. 

Categories and Subject Descriptors: G.1.7 [Numerica l  Analysis]:  Ordinary Differential Equations-- 
sttff equations 

General Terms: Algorithms, Theory 
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1. INTRODUCTION 

Klopfenstein [2] introduces the concept of asymptotic (h --* ¢¢) absolute stability, 
and computes asymptotic stability regions for a family of backward differentiation 
formulas (BDFs). In this paper, we give a simplified derivation of his results and 
compute stability regions using a slightly different characterization of asymptotic 
stability which we believe is slightly better for use in a code. 

The analysis is for the linear constant coefficient differential equation 

y ,  = __dY = J y ,  where J is a matrix, 
dt 

(1) 

with the understanding that we will use the analysis to guide us in the solution 
of general nonlinear differential equations. We write the family of BDFs as 
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follows 
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y ( m )  
n + l ,  

(2) 

where h is the step size, V is the backward difference operator (Vyn = y .  
- y.-1), the dr are coefficients which give a correct value for the derivative of a 
polynomial of degree k, ~ is a free parameter, and G is an approximation to 

,.~.(J) 

~ = J - a L  
v~' n + l  

the JY,+I is replaced by the (When solving a more general differential equation, (:) 
expression for the derivative evaluated at (t.+l, y~+~,).) 

When a new factorization of the iteration matrix is needed we form 

G: = J -  &I  = L U ,  (3) 

where J is an approximation to J,  L and U are lower and upper triangular 
matrices, and the iteration matrix coefficient & may either be the current value 
of ~ or some estimate for a future value of o~. The iteration matrix is 

= cG:, (4) 

where c is a scalar selected to minimize the effect that the difference a - ~ has 
on the iteration. (Note that if G: is written (I/~ J - I), as it sometimes is, then 
defining d -- (~/a c)G:, where the c is used as in eq. (4), gives an equivalent 
method. Thus if c is not introduced the two approaches give different results. 
But with c, one can get identical results, and presumably the form we have used 
for G: is to be preferred since it requires less work to form the matrix.) We also 
define the absolute error matrix 

A = G - d = J -  c J -  a I  + cdI .  (5 )  

Methods based on BDFs can be partially characterized by three attributes: (A) 
the formulas used when the stepsize is constant, (B) the way the method is 
modified when the stepsize is varied, and (C) the criteria used for terminating 
the corrector iteration. 

For attribute A, where the stepsize is constant, we have ~ = a, and can choose 
with different objectives: (1) to optimize stability characteristics as in [2]; 

(2) to give a corrector with order one greater than the predictor, in which case 
a = dh+l/h; (3) to give a corrector with the same order as the predictor, in which 
case a = dk /h;  or (4) to do something else. Any reasonable choice has the 
characteristic that  ~ --. 0 as h --* ~. 
ACM Transac t ions  on Mathematmal  Software, Vol 10, No 1, March  1984. 
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Although our stability analysis is for a constant h, we are really interested in 
a variable step implementation using modified divided differences as described 
in Krogh [3]. Thus when considering attribute B the coefficients dr change for k 
steps after a change in h, and one can adjust the method in one of three ways (in 
all cases ~ is fixed until a new iteration matrix is formed): (1) using the constant 
step formula chosen in attribute A and interpolating in the stored data whenever 
the step size changes; (2) trying to model the constant step formula chosen in 
attribute A by replacing the constant step coefficients used there with the 
corresponding variable step coefficients; or (3) using a variable step formula to 
model the formula chosen in attribute A but modifying the coefficient of the 
highest order difference in the corrector to reduce errors in the iteration matrix 
as in [1] by setting a = ~ (frequently called a fixed leading coefficient method). 
Note: if the second choice is made, then one can compensate when h ~ a by 
modifying the iteration matrix. 

With regard to attribute C, one can terminate the corrector iteration: (1) when 
it "converges" in some sense; or (2) when some fixed number of iterations have 
been completed. In this latter case, the number of iterations required depends on 
how accurately G approximates G. Asymptotic absolute stability is a way of 
characterizing, in the fixed stepsize case, how accurately (~ must approximate G 
in order that the sequence y,  remain bounded as h --. oo. As one might expect, 
asymptotic absolute stability is more restrictive than the condition on the spectral 
radius, p ( G - I ( G  --  G)) < 1, required for the convergence of the iteration. 

We are currently inclined toward the choice (A2, B2, C2), that  is, choosing the 
constant step method to give a corrector of order k + 1; using the variable step 
coefficient to define a and modifying the iteration matrix to compensate; and 
doing a fixed number of iterations where the number done depends on the 
estimated error in the iteration matrix. 

2. DERIVATION OF THE CHARACTERISTIC EQUATION 

Following Klopfenstein, we observe 

r(J) = a~"(J) Pn+l) -b l . . ( s )  ' . + i  - ~ , . + I  - ~ ' ~ , ~ + i  - P . + l  + J P ~ + I  - J P ~ + I ,  

(s) .(0) (]) ~_ I..(1) G(y.+I P.+I) + -.+1 = - = G ( y . + I  - P n + I )  - . ~ x z ~ + l  - P.+I) ,  

(6) 

and since 

we have 

yielding 

~5.,(s) = A..(s) ~..(i+1) r(nJ)l  ----" - -  J ' n + l  ' J J n + l  - -  J n + l  , 

~y~+~') = dy~+~ - G(y~+), - pn+~) + d ( y ~ ,  -- P~+I) 

- -  _ ( ~ .  (D  = - ( G  O ~",(~) p . + l )  + ] ~ . J n + l  .Y n+l~ 

y(J+l) ^--1 (J) ,,T(1) ~+~ = - G  A ( y . + ,  - -  p ~ + ~ )  + z ~ + t ,  ( 7 )  

A C M  Transac t i ons  on  M a t h e m a t w a l  Sof tware ,  Vol. 10, No.  1, M a r c h  1984. 



48 • F.T. Krogh and K. Stewart 

which displays the immediate convergence when A = 0. Repeated application of 
eq. (7) gives 

- (m) /~_--lA/~.(m--1) ~ (1) 
Yn+ l  ----- Y n + l  - -  - - ~  ~.al, Y n + l  - -  P n + l )  -b J n + l  - -  P n + l  "}" P n + l  

_ . (1) - P . + I ]  = - G - ' A [  - O - 1 A  (Y(.~7 2) Pn+l)  -I-a'n+l 

.~. • (1) 
,Yn+l - -  P n + l  "t" P n + l  (8 )  

Since 

rn--1 

Yn+l  ---- 2 
r=O 

^--1 r (1) ( -G  4)  (Y.+I - P.+:) + P.+:. 

0 1  . (1) Pn+l)  = - J P . + I  + ' ~(o) 

eq. (8) can be written in the form 

Since 

we have 

rn-1 

Y.+: = ~ (--(~-IA)r(~-:[P~+I -- JP.+ll  + P.+:. (9) 
r=0 

1 ] 
( - - 0 - 1 A )  r [ I  "~ 0 - 1 A  ] = [ I -  ( - - 0 - 1 A ) m ] ,  

L r=O 

rn--1 

2 
r~0 

( - - G - l A y =  [ I -  (--O-:A)m](I + G-:A) -~ 

= [ I -  ( - O - : A ) m ] ( O  + A)-10 

= [ I -  (-0- 'A)m]G-1G. 

And thus eq. (9) can be written 

Yn+l  ---- [I - ( - d - l A ) m ] q - l [ p ~ +  1 - Jp.+:] + P n + l  

= [I  - ( -G- 'A)m][ -p .+I  + G -'~'xv.+, - ap.+l)] + p.+: (10) 

= (-G-'A)mp~+l + [ I -  (-¢-:~)m]G-:(p~+~ - O~pn+l). 

Substitution of the expressions for P~+I and p~+~ from eq. (2) (with do ---- 0) then 
gives 

Yn+l  ----- 2 ( - - 0 - 1 i )  m .at. ( I -  ( - ( ~ - : A ) m ) G  - :  - o~ V r y n  ( 1 1 )  
r=0 

"b - -  OL V r y n ,  

where Bm is the matrix ( -¢ - lA)m and Cm is the matrix (I - ( -¢ - IA)m)G -1. 
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When k, B~, C~, a, h, and & are all constant we can write eq. (12) in the form 

k 

y . + ,  = ~,, A r y  . . . .  (13) 
r = 0  

which in turn can be written 

Yn+l 

Y~ 

° 

Y n - k + l ~  

-A0 
I 
0 

0 

A 1  A 2  • • • 

0 0 . . .  
I 0 . . .  

. . .  I 

A~ "y. -] 

O0 Y.+I. [ 

• , 

• I 

i 

0 .Y.-kJ [Yn L [Yo 1 Yn-1 Y-I  

= W • = W ~ + '  • 

LY.-kJ LY-hJ 

-- T-1 / T " 
° ° •  ' 

0 I_Y-k_l 

(14) 

if W, the block companion matrix associated with eq. (14), can be diagonalized 
with a similarity transformation• Thus the solution to eq. (12) is given by 

y ,  =- ~ c~z~, (15) 
l 

where the z, are eigenvalues of W, and the c, are constant vectors which depend 
on the initial conditions and the eigenvectors of W. 

To find regions of absolute stability, one must find the conditions necessary 
for I z, I - 1, for all i. To investigate this, substitute ~, e,z~ for y ,  in eq. (12), 
obtaining 

 ozn l r '10' 

Since eq. (16) is true for all n, and z~ and z? are linearly independent functions 
of n for z~ # zj, eq. (16) must be satisfied for the individual terms in the i sums. 
Thus we replace Y,~ c~z n with cz ", and sinceVrz" ---- (1 --  Z-1)~Z n, we have 

c = Bm .4ff Cm - o f  z - l ( l  - z - l )  r e ~ 2 E r , m Z - l (  1 - z - l )  r e.  (17) 
r = 0  r = 0  

ACM TransacUons on Mathemaucal Software, Vol. 10, No. 1, March 1984. 
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(If z, ffi zi+l . . . . .  zl then  replace z,+~ with n~z, f o r j  = 1, 2 , . . . ,  I - i in eq. (16) 
and a slight generalization of the above applies.) 

Equation (17) is the general characteristic equation. Its solution in this general 
form for anything but  a single first order differential equation is impractical. But  
in the special case where the Er, m are simultaneously diagonalizable, we can write 

k 

1 = 2 Vj . . . .  Z-1(1- z - l )  r, ( 1 8 )  
r=o 

where V~,r,m is the j t h  diagonal of E,,m after it  has been diagonalized. 
There are two cases of interest  where eq. (17) can be put  in the form of 

eq. (18). If  A = 0, then  B m =  O, Cr~ = G -1, and 

[(dr~h) - a] 
Vj  . . . .  - -  ( )k  - -  Ol] ' 

where X is an eigenvalue of J .  Using the identities (1 - z-~) r = z[(1 - z-l) r 
- (1 - z-l)  r+l] and dr - dr-l  = 1/r,  eq. (18) can be t ransformed (in the case 
A = 0) to 

h 1 - z__l) r - -  Z_I)k+I, hh = ~ - (1 + (ha  - dk)(1 (19) 
r= l  r 

which for a = dh+~/h (or dk /h )  is the more familiar characteristic equation for 
the backward differentiation formula of order k + 1 (or k) when the corrector is 
solved exactly. 

The other case is for h --* ¢¢. In this case the coefficient of Cm ~ O, vj . . . .  

._. Itm where It is an eigenvalue of - G-1A, and eq. (18) takes the form 
k 

1 = Itm 2 z - l (  1 - z - l )  r = Itm[ 1 -- (I - z-l)k+l], (20) 
r=0 

It-m = 1 - (1 - z - ' )  h+i. (21) 

In  order 4o get Klopfenstein's result, note that  it is an eigenva]ue of - ~ - '  A 
---- -- 0 - ' G  + I;  1 - It is an eigenvalue of d-IG; 1/(1 - It) is an eigenvalue of G-~d; 
and g -- I - (I - It)-i ffi _ I t /( l  - It) is an eigenvalue of I - G-IG = G-~(G - G). 
Solving for It, we have Klopfenstein's eq. (3.23): 

(1  - g - ' ) ~  = 1 - (1  - z - ' )  k+' .  ( 2 2 )  

It should perhaps be emphasized tha t  the only assumption about the problem 
tha t  is made to derive eq. (21) is tha t  G- '  A can be diagonalized with a similarity 
transformation;  no assumptions on J are required. 

3. CHOOSING BETWEEN CHARACTERIZATIONS OF ASYMPTOTIC 
STABILITY 

Define 

R, = {tt:l z(it)l <- 1}, (23) 

where I z(it) I is the magnitude of the largest z which satisfies eq. (21) for a given 
It. Similarly, define R~ based on eq. (22). Since both It = 0 and g = 0 map into a 
(k + 1) fold 0 of z, the origin is in both regions. 

ACM Transactions on Mathematmal Software, Vol 10, No 1, March 1984. 
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Table I Minimum [ ~ t for/~ on the Boundary of the Region of Asymptotic 
Absolute Stability for a P(EC)" Algorithm with a Predictor of Order k 

5 1  

Values of k 

m 0 1 2 3 4 5 6 

1 1 0 0.333 0.143 0.067 0.032 0.016 0.008 
2 1.0 0.577 0.378 0.258 0.179 0.126 0.088 
3 1 0 0.693 0.523 0.405 0.318 0.251 0.199 
4 1.0 0.760 0.615 0.508 0.424 0.355 0.298 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 

60 ° 

0.4 6 o 
0 . 2 ~  

0 
-1.0 -.0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0,,8 1.0 

Fig. 1. Asymptotic (h --* oo) stabdlty regions for k -- 1 and rn -- 1 - 4. 

With Klopfenstein's characterization, R~ is the region of asymptotic absolute 
stability where g is an eigenvalue of G-I(G - G) as h ---> oo. We suggest using R, 
in this definition where # is an eigenvalue of - G-I(G - (~) as h --) oo. Note that  
these two characterizations are mathematically equivalent. 

Our primary reason for suggesting this change is that /~ is more intimately 
connected with the rate of convergence of the corrector iteration. From eq. (7) 
for successive values of j, 

. ,n+,  A(~y~.~) O - I ( G -  O)  (~.,(~-1) = - J n + l  . ( 2 4 )  

In Table I we have given the rain I ~ I for u on the boundary of R.. Note that  this 
value occurs at z = -1  giving a # of 

#(-1) -- [1 - 2k+1] -l/re. (25) 

A secondary benefit of using R. is that the numbers in Table I are uniformly 
larger than the corresponding values of g given in Table 2 of [2] (a benefit when 
a code approximates the region by storing a single number, the minimum distance 
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-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

Fig.  2. A s y m p t o t i c  (h  --* oo) s t a b l h t y  r eg ions  for  k = 2 a n d  m = 1 - 4. 
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0.4 

0.2 

0 
-0.8 

#.-PLANE 

x 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

Fig.  3. A s y m p t o t i c  (h  --* o0) s t a b i l i t y  r eg ions  for  k = 3 a n d  m = 1 - 4. 

to the boundary from the origin, for each order). We henceforth take R, as the 
definition of the region of asymptotic absolute stability. 

The regions R, are obtained by mapping z = e '° (the unit circle) into the 
#-plane using eq. (21). We give the results in Figures 1-6. Results are not given 
for k = 0, since in this case the result is obviously a unit circle. In the figures 
we have also given the value of J0l associated with some of the points on 
the boundary of R~. 

This value of 8 is useful in understanding the behavior of the differences as a 
function of their order. It is easy to see that  Vkz" ffi (1 - z-1)kz ". When instability 
is first noticed, z should be reasonably close to the unit circle, and thus we have 
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Fig. 4. A s y m p t o t m  (h  ---, oo) s t a b i l i t y  r eg ions  for k = 4 a n d  m = 1 - 4. 
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Fig. 5. A s y m p t o t i c  (h  --) 0o) s t a b i l i t y  r eg ions  for  k = 5 a n d  rn = 1 - 4. 

#-PLANE 

1 

0.6  

the approximation 

JVkzn] ~ [(1 - e-'~')kznl = ](1 - cos 0) + i sin 0 Iklz~l 

-- 12(1 - cos O)lk/~lz"l 
= [D(O)]  k I z ' J .  

Note that D(O) increases monotonically with 101 in the interval [0, lr], D(0) 
= 0, D(~r/3) = 1, D(Tr/2) = ~/2, D(~r) = 2. For 101 >~ 90 °, instability gives a 
roughness in the solution that tends to induce a reduction in k. (This kind of 
natural protection happens to be present for most methods, including the Adams 
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Fig.  6. A s y m p t o t i c  (h  -- ,  oo) s t a b i l i t y  r eg ions  for  k = 6 a n d  m = 1 - 4. 

method and the BDF corrector solved exactly.) For j # J ~< 60 °, the undesired root 
does not provide this warning and thus instability can occur without increasing 
the error estimate or leading to a reduced integration order. Since such values of 
] # I can occur for k = 0 or 1, some provision for detecting the instability, other 
than checking the convergence of differences, scaled derivatives, or error esti- 
mators, is necessary at low order. (Note: the case k -- 0 arises if a code allows the 
use of a zeroth-order predictor with a first-order corrector. We believe there are 
cases where this is in fact the best choice.) 

4. THE CHOICE OF c IN EQUATION (4) 
We have found that  introducing the scalar c to minimize the spectral radius of 
G-I(G - ¢) results in a significant improvement in the performance of a code. 
Although the results given earlier have guided us in what we present here, the 
theory only applies rigorously as h --* oo. Thus performance of our code is the 
primary justification for what we present here [5]. We believe that  a more 
complete study of eq. (17) would provide a stronger justification. 

To derive a value of c, we assume that  J = J,  in which case 

G - I ( G  - ¢ )  = c - l ( J -  3~I) -1 [(1 - c ) J -  (~x - c30I ] .  (26) 

Using arguments similar to those used earlier, one can show that  if ~, is an 
eigenvalue of J,  then 

#(c, X) = (1 - c)~ - ( a -  c~) 1 ( a -  ~) 
- c ( k -  ~) = 1 - - c  ~ (27) 

is an eigenvalue of the error matrix -G- I (G - (~). Note there are situations with 
zero matrix error: (a) if all eigenvalues equal 0 and c = a/~;  (b) if a = & or the 
magnitude of all eigenvalues --* 0% and c = 1. We have found the algebraic 
ACM Transactions on Mathematical  Software, Vol 10, No 1, March 1984 
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manipulations which follow to be simplified if we assume c has the form 

(~ - ~) 
c = 1 + - - ,  (28) 

m 

and then determine m. With  this substitution, 

m ~ - X (~ - ~) ~ - m -  ~, 
# = 1  

m +  ( a - & )  5 -  h ( m +  a - & )  & -  

We are concerned with the sizes of [ u [ which correspond to the values of ~, in 
the spectrum of J ,  a{J) ,  and therefore want  to examine the quanti ty 

1#12 1 [ & -  m - - ) , [ 2  
( a - 3 )  2 - ( m + a - 3 )  2 ] 3 - X [  2 (29) 

Differentiating the right member of eq. (29) with respect to m, sett ing the result 
to 0, and solving for m gives 

(Im h) e 
m = ~ - R e X +  (30) 

a - R e X "  

By checking the second derivative, one can verify tha t  [ u [ is minimized for a 
particular h by the rn given in eq. {30). Observe tha t  m ~_ & > 0 if Re ), ~ 0, 
which we assume to be the case here and below. 

For a given IX I, we now show tha t  I~[ takes its maximum value on the 
imaginary axis. With  ~b = [(m + a - &)2/(a - &)2]l tt [ 2, ), = re is, we have 

0¢~ _ 2 m r  sin 0 (&2 _ r2 _ &m), (31) 
O0 [ a - r e  '° [ 4  

and since m __ 3, 0¢/00 _< 0 for ~/2 _ 0 _ ~, which is the desired result. 
With  X = iy,  we have 

0_~ = 2 m y  
0 y  (~2 q. y2)2 (23 - m), (32) 

and thus  ¢ is an increasing function of y if m < 2&, and  a decreasing function of 
y i f m > 2 &  

This derivation and a desire for computational  efficiency suggest the following 
procedure: Est imate I ~max I from J using a power method, and [ X~i, [ from Gf 
using an inverse power method. The total  cost is about seven matrix-vector 
multiplies when a new Jacobian is formed. Since the largest [ tt I for a given [ ~, [ 
occurs on the imaginary axis, we assume ~, is purely imaginary and let 

[ ~kmax [ 2 [ Xmin [ 2 
ml = 3 + ~ - m2 = 3 + ~ (33) 

If  m~ < 25, eq. (32) indicates ¢ is an increasing function for each IX I, 
X ~ a ( J ) ,  and we can minimize l g[ by using the largest value of IX [, set 
m = rex. If  m 2  > 2~, a similar argument  sets m = m 2 .  I f  neither, is true, m is 
obtained by setting the value of [ # [ to be equal at  the extreme points, [ ~,m~ 1, 
I ~'mm I. From eq. (32), this happens for m = 2& 
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Given m, c is given by eq. (28). The  corresponding est imates for [/t [ are 

[( I ~,.~.x 12 + (;2)( I x,.ax I ~ + (3L2)] 1/2 

I ,~  - , ;  II ;~m,nl 
I t, I -- [(I ~mm I 2 + ,;2)( I Xm m 12 + a2)]1/2 i f  m --  m s  (34) 

l a  - '~[ i f m  = 2,~. 
(~ + ~)  

Another  approach to gett ing a low cost reduction in the spectral radius of  
O-I (G  - O) which the first au thor  believes has real promise is described in [5]. 
Les t  someone believe we are missing the  obvious, we would like to note  tha t  
because of computa t ion  noise, we have found ratios such as 

. . + 1  tl 
(]) 

II ~y .+ l  II 

or 

[I r~.+~ ~ U 
II " ~  II J. r t + l  

hazardous for use in making computat ional  decisions. Also, in par t  because we 
don ' t  need such ratios, we very  frequent ly  use only a single iteration. 

5. CONCLUDING REMARKS 

We have a code under  development  which is based on the ideas presented here. 
Even though the preceding analysis does not  apply to variable order-variable step 
methods or to nonl inear  problems, the analysis for the  simplified case has proved 
very useful. A few highlights on how these ideas are used in this code follow. We 
compute  a new i terat ion matr ix  when we est imate tha t  the largest eigenvalue of 
O-I (G  - O) exceeds the value given in Table  I for m = 2, and k = the cur rent  
order of  the predictor.  This  est imate is the sum o f [ / t  [ max and an est imate of  the 
magnitude of  the largest eigenvalue of  O - l ( J  - J ) .  This  est imate requires the 
equivalent  of a matr ix-vector  multiply. A new J is computed  when forming a new 
Gf only if it  appears tha t  wi thout  a new J stabili ty would require more than  one 
funct ion evaluation per step. On most  problems we tend  to evaluate J much less 
frequently than  the i terat ion matr ix  is factored. 
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